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Shimura correspondence for Maass wave forms
and Selberg zeta functions
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0 Introduction

Shimura in [Shm)] established a significant correspondence from holomorphic modu-
lar forms of even integral weight 2k — 2 to modular forms of half integral weight k—1/2
which is consistent with the actions of Hecke operators. The converse correspondence
was given by Shintani [Shn] in terms of period integrals. After these results, Kohnen
([Koh]) showed that this correspondence yields a bijection from the space Sj_s of
holomorphic modular forms of weight 2k — 2 on SL3(Z) to the plus space S}, 2 of
modular cusp forms of weight £ — 1/2 on I'y(4). On the other hand the plus space
corresponds bijectively to the space J;;” of holomorphic Jacobi cusp forms (resp. the

space J;"lc“”’ of skew holomorphic Jacobi cusp forms ([Sk1], [Sk2])) of weight k and
index 1 on SLy(Z) if k is even (resp. odd). We exhibit here the isomorphisms in the
case of k > 1 being odd:

(0.1) Sak-a X Sy, = S5,

As for the Maass wave forms Katok-Sarnak in [KS] formed the Shimura correspon-
dence from the space of even Maass wave forms to a certain plus space consisting of
automorphic forms of weight 1/2. This work is understood to give an analogue of
Shintani’s converse correspondence to the case of Maass wave forms.

A purpose of this article is to explain an analogue of the right correspondence in
the above (0.1) in the case of Maass wave forms. Another purpose is to interpret
this Shimura correspondence for Maass wave forms from viewpoints of Selberg zeta
functions and resolvent Selberg trace formulas. Finally we discuss some arithmetic
aspects of Selberg zeta functions and also some applications.

We explain a little more in details. Let I' = SLy(Z) and HE"" denote the space
of even functions f € Ho = L*(T'\$)) satisfying f(—Z) = f(z). It is known by Katok-
Sarnak [KS] that to each Hecke eigen Maass wave form f € HE'" there corresponds an
automorphic form g in the plus space of weight 1/2 having reasonable properties. The



whole plus space corresponds to the space H_, 4, of automorphic forms attached to the
theta multiplier system x defined by (1.2). This space plays an alternative role of the
space of skew holomorphic Jacobi cusp forms in (0.1). We have computed the resolvent
trace formula for Hg**" and that of H_;/s,. There attached to the space H5"*" the
Selberg zeta function Zesen(s) is introduced, while associated to the multiplier system
x we have the Selberg zeta function Z,(s) (see (2.1), ( 2.3) ). By comparing the both
resolvent trace formulas for HE"*" and H_1/4, the conjectural bijectivity of the Katok--
Sarnak correspondence will be reduced to some simple relationship of the two Selberg
zeta functions concerned, which will be presented as a new conjecture (Conjecture 4).
Towards the solution of our conjecture we discuss an explicit arithmetic expression
of the Selberg zeta function Z,(s). The explicit espression of Ze.en(s) can easily be
obtained similarly from that of Z(s), the original Selberg zeta function for SLj(Z).

Finally as an application of the trace formula for H§**" the prime geodesic theorem
((4.4), Theorem 6) for GLy(Z) will be given. This will be a refinement of the original
result for the group SLy(Z) due to Sarnak (Sa.

1 Shimura correspondence for Maass wave forms

We use the symbol e(w) for exp(2miw). Throughout this article I' denotes the modular

group SLy(Z). Let $ denote the upper half plane. For A = ( i 3 ) € SLy(R) and

z € 9, J(A,z) := cz + d denotes the usual factor of automorphy for SLy(R). For a
non-zero complex number w, arg w is chosen so that —r < argw < 7 and the branch
of a holomorphic function w* = exp(slogw) (w # 0) is fixed once and for all. For
A, B € SLy(R), the cocycle aa(A, B) is given by

oax(A, B) = exp(2ik{arg J(A, Bz) + arg J(B, z) — arg J(AB, 2)})

(note here that the right hand side is independent of z).

Following [Fi], we give a definition of a multiplier system of I'. Let V be a finite
dimensional C-vector space equipped with a positive definite hermitian scalar product
(v,w) (v,w € V) and let #(V') denote the group of unitary tansformations of V' with
respect to the scalar product. A map x : I' — U(V) is called a multipier system of T
of weight 2k (k € R), if it satisfies

(i) x(—13) = e"?™*idy, idy being the identity map of V.
(ii) x(AB) = oak(A, B)x(A)x(B) for all A, B€T.
We set, for A € SLy(R) and a function f on §,

FIIM, k)(2) == ju(2)"' f(M2)



with ju(z) = exp(2ik arg J(M, z)). Let Hy, denote the space of V-valued measurable
functions on $ with the properties

(i) fl[M,k] =x(M)f forall M €T,
() (f,f) = / (£(2), £(2))dw(z) < +oo.
'\9

Then M, forms a Hilbert space with respect to the scalar product

(f,9) = / @ Ndula),  (f, 9 € He).

The differential operator A, which is consistent with the action f|[A, k] is given by

o2 ., 0
Ak—y(a2+ay2) 2iky -

A fundamental subspace D of H, consists of C*-class functions f satisfying
(Arf,Arf) < . Since —A; is symmetric on D, it is known by [Ro],1, Satz3.2 that
there exists the unique self—ad101nt extension —Ak D—s 'Hk x» Where D denotes the
domain of definition of —Aj. By the self-adjointness of —Ay, eigen values of —A; are
all real numbers. So we let

U

Z+rﬁ M<A<er<A<e-r)

denote all distinct eigen values of —A;. We may choose 7, so that r,, € (0, 00)U[0, 00).

Denote by My x(s) the space of C?-class functions f € My, satisfying —Af = s(1—3)f.
It is known that Hj ,(s) is a finite dimensional C-vector space. Moreover

dy, :=dim ’Hk,x(% +iry)

gives the multiplicity of A, = 3 +72 of — —Ay. Let s, a € C. The spectral series attached
to the multiplier system (T, x) is defined by

(11) sr,x(s,a>:=f(( | o =)

S\G-12"+n (a-1/2)+72

It is known that the infinite series is absolutely convergent for s, a with s 79 +ir,,
a ;é % ir,. Then Sr,(s,a) indicates a meromorphic function of s whose poles are
loca.ted at 8 = 1 & ir,. They are simple poles except for s = 1/2 (r, = 0)."



In this note we éxclusively concider the following two cases. First let k =0.V =C
and x be the trivial character of I'. Then

Ho := Hox = L*(T'\9).

A function f of Mo is called an even function if it satisfies f(—Z) = f(z). Let Hg"™"
(resp. HE*™(s) (s € C)) be the subspace of H, consisting of even functions (resp. even
C?-class functions with —Axf = s(1 — s)f). We denote by Sg***(s,a) the spectral
series attached to the space Hg'*™ and the differential operator Ag = y”(%‘} + 5”})
which is similarly defined as in (1.1).

Another one is the multiplier system obtained from the theta transformation for-
mula. Let 6;(7, 2z) (i =0, 1) be the usual theta series defined by

0i(t,2) = z e((n +i/2)*r + (2n +14)z).

nel

The theta transformation law for these theta series is described as follows:
Bo(M(1,2)) \ _ cz? 12 Bo(T, 2) _fa b
( o) ) =<(Gars) M van ( g (m=(2 2) <)

where U(M) is a unitary matrix of size two. For the convenience we consider the
complex conjugate x of U:

(12) x(M)=U(M) (MeT).

Since we have x(—15) = e™/21,, x forms a multiplier system of I' with weight —1 /2.

Let H_y/4 and H_/4,(s) be the spaces defined as above for this multiplier x and I,
We explain here the Maass wave form version of the correspondences in (0.1).

Denote by j(M,7) (M € To(4)) Shimura’s factor of automorphy on I'o(4) given by

§(M,T) = 8(MT)/6(r),

0(r) being the theta series 65(7,0) = .z e(n?®r). Katok-Sarnak defined a certain plus
space consisting of Maass wave forms of weight 1/2. For s € C let T denote the space
consisting of C*-class functions g : ) — C satisfying the following two conditions:

(i) g(Mz) = g(2)j(M,z)|cz+d|'/ for all M € T'x(4) and |9(2)|? dw(2) < +o0,
To(4)\9

(i) g has a Fourier expansion of the form:

4(z) = 3 B(n,p)e(n),

nel



where we impose the condition that if n = 2, 3 mod 4, then necessarily B(n,y) = 0.
Moreover we assume the Fourier coefficients B(n,y) for n # 0 are given of the form

(1.3) B(n,y) = b(n)Waignn/s,s-1/2(4my|n]),
where W, g denotes the usual Whittaker function.

Then a modified version of the second isomorphism in (0.1) generalized to Maass
wave forms is given by

Proposition 1 There ezists the following anti C-linear isomorphism

(1.4) Hoapux(s) 2T

given by H_1/45(3) > g = ( g? ) — G(1) = go(47) + 91 (47) € T} .

Remark. - We note that, if s is real or of the form s = -;- + i¢r with 7 real, then
T; = T, and moreover that T = {0}, otherwise. In particular if s = 1/4, then the
space T1 74 = Ty)4 is nothing but My,(To(4)).

For the proof of the proposition we refer to [Ar4].
An analogue of the correspondences in (0.1) to Maass wave forms is described as
follows:

Heven (25 — ) ~TF 2 H_1145(5).

Here the symbo means that there exists a certain correspondence from
Hg**" (25 — 3) to T;" described as in the following theorem due to Katok-Sarnak [KS].

b
>~”

Theorem 2 ([KS]) Lets € C and let f be an even Hecke eigen Maass wave form
of Hg"*"(2s — 1/2). Then there ezists g = Y, .z B(n,y)e(nz) € T} whose Fourier
coefficients satisfy the relation

b—n)=n""* D" fer)|AstT|™  (n€Z>0),
T,det2T=n

where T runs through all the S Ly(Z)-equivalence classes of positive definite half-integral
symmetric matrices T with det 2T = n and |AutT| denotes the order of the unit group
of T. Moreover 2t is the point in ) corresponding to T; namely if we write T = tg~1g™1

with g € GL (R), then zr = g(4).

Remark. It is expected that for each Hecke eigen Maass wave form f there exists at
least one non-zero g corresponding to f. Under this expectation

(1.5) dim Hg™(2s — 1/2) S dim TS (?).



2 Selberg zeta functions concerned

The Selberg zeta functions Zeyen(s) has been introduced in [Ar3] to describe the trace
formula for Hg*". Let Prm™*(T') be the set of primitive hyperbolic elements P of ' with
trP > 2 and Prm+(I‘)I the set consisting of P € Prm*(T') that are primitive even in
GL3(Z). Set T = GLy(Z) — SLy(Z). An elemnet of T is called primitive hyperbolic, if
trP # 0 and P cannot be represented as any power of any element of T'. Let Prm*(T)
be the set of primitive hyperbolic elements P of T with trP > 0. For any element
P € Prm*(T") (or P € Prm*(T")) let N(P) denote the square of the eigen value (> 1)
of P. For any subset S of GLy(Z) which is stable under the SL;(Z)-conjugation we
denote by S/T the set of I'-conjugacy classes in S. We define Zeyen(s) by

@1) Zewen(s) = [] ﬁ (1- (—1)"‘N(1r>0)-¢*-m)2 < ' ﬁ (x- N(P)™™),

(Fo}r m=0 {P}r m=0

where {Pp}r is taken over Prm*(T)/T and the product H{ Py, indicates that {P}r
runs through Prm*(T')!/T. The zeta function Z...(s) is absolutely convergent for
Re(s) > 1. Moreover it is immediate to see from (2.1) that the logarithmic derivative
of Zeven(8) is given by

Zéven = 10g N(P) —ms log N(PO) —ns
(22 Z=s) = {; 2 TNy +{§ 2 T3 Ny N )

In [Arl] we obtained the resolvent trace formula for the space H_1/4x involving the
zeta function Z,(s) given by

(2.3) z@= I Hdet(lg—x(P)N(P)—""‘).

{P}r€Prm*(I)/T m=0

On the other hand in [Ar3], [Ar4] we computed the resolvent trace formula for
the space HS*" and compared the both trace formulas for H_1/4, and H§"" in an
explicit manner. As an important consequence of this comparison we have the following
fundamental theorem which connects the spectral series with the Selberg zeta functions
concerned.

Theorem 3 Let s’ =2s — 1/2 and o’ = 2a — 1/2 with Re(s) > 1, Re(a) > 1. Then
1 Z, 1 Z,
@4 Srals.0) - (E-_fz:(s) TSV )

— even 1 Zéven ! — 1 Z;ven
( (¢ = (2(23'—1)zeuen(3) 2(2a'—1)zm,,(“)))'




For the proof we refer to [Ard].
In (2.4) we expect that the hyperbolic contributions of the both hand sides should
coincide. Therefore we may present the following conjecture.

Conjecture 4 We have
’

ZI
-21(3) = —gﬂﬁ(zs —1/2) or eqivalently, 2,(8)* = Zeyen(25 — 1/2).
X even

Towards the solution of the conjecture it will be necessary to obtain explicit arith-
metic expressions of the zeta functions Z, (s) and Z,yen(2s — 1/2); in particular that of
Zy(s). '

3 Arithmetic forms

For M = ( CCL 3 ) € GLy(Z) (M # %1,), we write
= b~ (d-a)/2 nd n(M) = =37
"\ (d—a)/2 —c 8 Y

where 8 = ged(b,d — a, ¢} (8 is often denoted by B(M)). By a straightforward compu-
tation it is not dificult to see that, for P € GLy(Z),

n(PMP!) = (det P)"'Pn(M)P.
Let ¢ := a + d be the trace of M. The trace of U(M) for M €T, t > 2 is given by
1 1 ~f A
(3.1) trtU(M) = —— Z e(——(/\,u)M( ))
(¢ —2)¥2 apezfa-nz T2 K

The matrix entries of U(M) have been computed by Skoruppa-Zagier [SZ] in terms of
Gaussian sums. The formula above is easily derived from their results. We note that
this trace depends only on I'-conjugacy class of M:

ttU(P~'MP) = ttU(M) (P €T).

Let D range over all positive discriminants and Cp(D) denote the set of all primitive
n (2] / 2 -, 2 _ -

na/2 ng ) with n3 —4n;n3 = D. Denote by

Cpr the collection of such N € C,,(D) with D varying in all positive discriminants D.

The modular group I" acts on Cy, (also on Cy, (D)) in a usual manner by N — PN*P

half integral symmetric matrices N = (



(N € Cp, P €T). Denote by Cp(D)//T (resp. Cp//T’) the set of the I-equivalence
classes in Cp(D) (resp. Cpr) and by h(D) the cardinality of this finite set C,-(D)//T’;
namely h(D) is the class number of primitive binary integral quadratic forms with

discriminant D. Let ¢p = —*ﬂ_— denote the minimal solution of the Pell equation

—B*D =4 with t, 8 € Z>0 Moreover we denote by €2, —"ig"—‘/: the minimal
solution of the Pell equation t3 — 82D = —4 with to, o € Z>o if it ex1sts (in this case

ep = (€p)?).
It is known that there exists a bijection from Prm*(T") to Cpy:

(32) Prm™(T') 3 P — n(P) € Cp,.

and that it induces a bijective map from the set Prm*(T')/T" of all the I'-conjugacy
classes in Prm*(I") onto C,,//I". For each N= (n2}2 n:lé 2 ) € C,,(D) the opposite
map is given by

_[t=Bna)/2  PBm
NHP_( _ﬂn’; (t+Bn2)/2) € Prm*(T).

We define, for each positive discriminant D and a positive integer m,

Cym(D):= Y tx(x(P)™),

NeCpr(D)/ /T

where P corresponds to N by the above bijective map, namely, n(P) = N. Then we
have another expression of (Z;/Z,)(s):

0 S I

D>0m=1

where ¢p = t_"’__?_@ with (¢, 8) denoting the minimal solution of the Pell equation

2 - D@2 = 4,t, B € Z>;. To obtain this expression we note that tr(x(P™)) =
tr(x(P)™). Since x(P)™ are unitary matrices of size two, the values which tr(x(P)™)
can take are rather limited. We have tried to compute C, (D), but at present we
have got only partial results.

Proposition 5 Let D be a positive discriminant with D = 1 mod 4. Assume that

there exists a fundamental unit ¢} = fot FovD + fov'D (to, Bo € Zyo) with (to, Bo) giving
the minimal solution of the Pell equation t3 — D32 = —4 (namely, N(e}) = —1) and



moreover assume that to is odd. For each N € Cp (D), chosse P € Prm™*(T") which
corresponds to N by n(P) = N. Then we have

tr(x(P)™) = 2cos‘ﬁs”- (m € Zso).

Accordingly,

Cyym(D) = 2h(D) cos %

Proof. Let ep, €, P and N be the same as above. We note that ep = (3,)?, P = AN,
from which we have t — 2 = ¢ and 3 = t;3. The expression (3.1) implies that

. 1
- plt-2
where for each prime p dividing t — 2 we set
1 ~( A A
b= ¥ elr0wP( ) )= X e@own( )
ApEZ/p°Z ApeZ/pez 0

with p*||t —2 (this means that p* divides £ —2 and p**! does not). For each prime p the
function e(z) restricted to Q extends to a continuous function e,(z) on Q, in such a
manner that e,(z) = e(x) for € Q. Let a prime p divide ¢ — 2. By the assumption on

to, p is an odd prime. We may assume that N is SL2(Z,)-equivalent to ( 8 __u91 D )
with 4 € Z;. Then,
Jp= ( Z ep(&u/\z)) ( Z ep(—@u‘lDuz)) .

A mod p* t . 1 mod p* to

If we write to = p/t) with (¢}, p) = 1, then e = 2f and
e Bou Bou™'D
JP“”GP’( t:, )GP’( ) )

where we put, for a € ZX,

aX?
Gpr(a) = X zd: fep(p—,)-
mod p
It is well-known and easy to see that
pf? ' if f is even,

G =
(@) {p(f-1>/2¢,,(a)c(¢,,) if £ is odd,



where 1), is the non-trivial quadratic character modulo p (¢, is extended to Zy) and
G(3,) is the usual Gaussian sum associated to ¥y:

Glwy) = Y ¥nl@)es(®).

x mod p

Using the identity G(3y)? = ¥,(—1)p, one can compute J, in an explicit manner:

{ pe/3 if f is even,
P Py, (D) if £ is odd.
Since t2 — 82D = —4, we have v,(D) = 1. Therefore by (3.3) we conclude that

trtU(P) =1, namely, try(P)=1.
Set, for any M €T,
w(M) =detU(M).
Then w forms a character of . We now borrow some notations and results from [Ar2].

We may assume N = (nr:}z n:lé 2) € Cpr(D) to be reduced; namely, ny, ns > 0 and

ng > Ny + na. Set
ng + \/D_
a=——-:
2n1
Then N is reduced, if and only if o satisfies the condition

(3.4) a>1 and O0<a' <1,

which amounts to saying that a has a purely periodic continued fraction expansion:

a=b — 1 (bjGZ,bl,...,b,QZ).

This expansion is denoted by
(35) a=[[b11b2)"'sbr]]

(for this type of continued fraction expansion and the relationship with quadratic forms
we refer to Zagier [Za)]). Here r is called the period of a. Let B denote the I'-equivalence
class in C,(D) represented by N. Then the period r depends only on the class B and

10



is-denoted by r(B). Let B* be the class of C,,(D) represented by N* = —'QNQ with
-9 -
Q= ( 1” 11 ) Then we know in the proof of Proposition 5.1 of [Ar2] that

W(P) = BB,
Moreover it is known that if there exists €}, with norm —1, then r(B) = r(B*). There-
fore det U(P) = w(P) = 1. This means that U(P) is GLy(C)-conjugate to some
i6
e?,.g ) with 6 € R. Then trtU(P) = 2cos6 = 1, which implies § = £7/3 + 2nm

e
0
(n € Z). Thus,

trtU(P™) = tr(U(P)™) = 2cosmf = 2cos %

We have completed the proof of Proposition 5. |

Let Z(s) denote the ordinary Selberg zeta function for I':
> <]
Z29= [ 1I (1 - N(P)""").
{P}rePrm+(I')/T m=0

It is well-known ([Sa], [He]) and easy to see from the bijection (3.2) that Z(s) has the
following arithmetic expression:

Z(s) = H ﬁ (1 _ 6-[-’2(8+m))h(D),

D>0m=0

56 = 33 ho) {2 o

D>0m=1

!

For each positive discriminant D let C (D) be the subset of Cy,,(D) consisting of
N for which there exists a P € T with PN'P = —N. Denote by C,, the union of
all C;.(D) with D varying in all pos1t1ve discriminants. We see easﬂy that for each
D only the case of either C,, (D) ¢ or C,(D) = Cp(D) occurs and moreover that

C,r(D) = Cpe(D) if and only if €}, with norm —1 exists.

Therefore one can consider the set C,,(D)//T (or C,,//T) of '-equivalence classeis
in C,,(D) (in G,,). Then it is easy to show in a 81mlla.r manner that there exists a
bijection from Prm*(T’) onto C,. via the map Prm*(I') 3 P — n(P) € C,, and that

it induces a bijective map from the set Prm*(T')/T onto C,//T.

11



Consequently by (2.1), (2.2), we have the expression for Zeyen(s):

Zeven(8) = HB ﬁ (1 - (_1)m€5(’+m))2hw) % H H (1 —2(s+m))h(D)’
D>0 m=0 D>0 m=0
gevcn (8) — ZZ Zh(L()) lOg:: )~2ms + Z Z zh(D) lOg-GnD )_M’
even D>0m=1 € ) ) >0 )

where ! (resp. !) indicates that D runs over all positive discriminants for which €}
with norm —1 exist (resp. for which €}, do not exist).

4 Prime geodesic theorem

It is known originally by Sarnak [Sa] that
(4.1) Y lgN(P)=X + O(X +°),
{P}c
N(P)SX
and hence that

(4.2) Y h(D)log((ep)?) = X? + O(X#+°)

D>0
€ DSX

(note that (4.2) is easily derived from (4.1) with the help of the bijection from Prm*(T)/T
onto Cp//T"). The best possible error term in the right hand side of (4.2) is O(Xz*¢)
which is given by Luo-Sarnak [LS].

Similarly by using the Selberg trace formula for the space H§**" and by a general
procedure (cf. [Iw], [He]) the following estimate follows:

(43) ( 3 lgN(P)+ Y logN(Po)2> =X +0(Xi*)  (¢>0),
{P}r {Po}r
N(P)$X N(Po)SX

where the summations indicate that {P}r and {Po}r run through Prm*(I')/T" and
Prm™*(T)/T with the conditions N(P) £ X and N(P)) £ X, respectively. Then by
comparing (4.1) and (4.3) we have

(4.4) 3 logN(R) =X+ O(Xi%e).
{Po}r
N(R)SX

Therefore in the arithmetic terminology we have

12



Theorem 6 Assume € > 0. We have

. 2
(45) 3~ ¥ (D) log((€p)?) = - +O(X4+)
D>0
SSX

and I

> " h(D)log((ep)?) = X* + O(X3+9),

D>0

epSX
where the second summation indicates that D runs through all positive discriminants
Jor which fundamental units with norm —1 do not exist.

Proof. The former identity is a direct consequence of (4.4) and the bijectivity of the
map from Prm*(T')/T onto C,,//T', while the latter one is derived from (4.2) and (4.5).
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