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Principal series Whittaker functions on SL(3,R)

Hiroyuki MANABE, TAkU ISHIH, AND TakAYUKI ODA
EMEs, HE, BEHES

Graduate School of Mathematical Sciences, The University of Tokyo
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This is an extract from a preprint with the same title. The full proofs are contained
in that. Here we write only the major results. The numbering of the statement are the
same as the original full paper. Some statements in the original are skipped.

Introduction

The study of Whittaker models of algebraic groups over local fields has already some
history. The Jacquet integral is named after the investigation of H.Jacquet [7]. Multi-
plicity free theorem by J.Shalika for quasi-split groups, was later enhanced for the case
of the real field by N.Wallach. For redutive groups over the real field, this theme was
investigated by M.Hashizume [5], B.Kostant, D. Vogan, H.Matsumoto, and the joint
work of R.Goodman and N.Wallach [4].

More specifically GL(n, R), explicit expressions for class 1 Whittaker functions are
obtained, firstly for n = 3 by D.Bump [2]. The main contributor for the case of general
n seems to be E.Stade. Other related results will be find in the references of the papers
of him ([9],{10]). .

Let us explain the outline of this paper. The purpose of the master thesis [1] refered
above is to investigate the Whittaker functions belonging to the non-spherical principal
series representations of SL(3,R). The minimal K-type of such representations is 3-
dimensional. So we have to consider vector-valued functions. The main results are.
firstly, to obtain the holonomic system of the A-radial part of such Whittaker functions
with minimal K-type explicitly (§4), and secondly to have 6 formal solutions (§5,
Theorem (5.5)), which are considered as examples of confluent hypergeometric series
of two variables. We also have integral expressions of these 6 solutions(§5, Theorem
(5.6)). In the subsequent section, the Jacquet integral (so to say, the primary Whittaker
function) is written as a sum of these 6 secondary Whittaker functions (§6-8).

1 Preliminaries. Basic terminology

1.1 Whittaker model

Given an irreducible admissible representation (7, H) of G = SL(3,R), we consider
its model or realization in the space of Whittaker functions. This means, for a non-
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degenerate unitary character ¢ of a maximal unipotent subgroup N = { ( ) €

G} of G defined by

1 29 713
P( 1 293 |) =exp{2n \/:I(lehz + caa3) }
1

with ¢;, ¢2 € R being non-zero, we consider a smooth induction C>-Ind$ (1) to G, and
the space of intertwining operators of smooth G-modules

Homg(Hoo, C*-Ind§ (1))

‘with H,, the subspace consisting of C®-vectors in H. Or more algebraically speaking,
we might consider the corresponding space in the context of (g, K)-modules (with
g = Lie(G), K = SO(3)):

Homg gy (Heo, C-Ind (¥)).

1.2 Principal series representations

Let Py be a minimal parabolic subgroup of G given by the upper triangular matri-
ces in G, and Py = MAN be a Langlands decomposition of P, with M = K N
{diagonals in G}, A = expa, with

a = {diag(1, ta, ta)|t: € R,t1 +t2 +13 = 0}.

In order to define a principal series representation with respect to the minimal
parabolic subgroup P, of G, we firstly fix a character o of the finite abelian group
M of type (2,2) and a linear form v € a* g C = Homg(a, C). For such data, we
can define a representation o ® e” of M A, and extend this to P, by the identification
Py/N =2 M A. Then we set ‘

Moy = L2-Ind%(a ® e’ @ 1n).

Here v(diag(t:, t2,t3)) = 2?=1 v;it; with v; € C and p is the half-sum of positive roots
of (g, a) for Py, given as follows. For i < j (1 <4,j < 3), we put 7;;(a) = a:/a; for
a = diag(ay, az, as) (ay02as = 1). Then we have a* = [];; a:/a; = a}/aj = alaj by
definition. Hence a® = a?a;.

Here the characters o; of M are identified as follows. The group M consisting of 4
elements is a finite abelian group of (2,2) type, and its elements except for the unity
is given by the matrices

1 0 O -10 0 -1 0 0
m=!0 -1 0},m={0 1 0],ma=|0 —-120}.
0 0 -1 0 0 -1 0 0 1

Since M is commutative, all the irreducible unitary representations of it is 1-
dimensional. For any 0 € M, we have 02 = 1. Therefore the set M consisting of
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4 characters {o; : j = 0,1,2,3}, where each o;, except for the trivial character oy, is
specified by the following table of values at the elements m;.

my | Mg | M3
o1 1] -1 -1
(o] -1 1 -1
03 -1 -1 1

Proposition (1.1) (i) If o is the trivial character of M, the representation 7., is
spherical or class 1, i.e., it has a (unique) K-invariant vector in the representation
space Hy,,.

(ii) If o is not trivial, then the minimal K-type of the restriction T,y to K is a 3-
dimensional representation of K = SO(3), which is isomorphic to the unique standard
one (12, V2). The multiplicity of this minimal K -type is one:

dim¢ Homg (7, Hyp) = 1,
namely there is a unique non-zero K-homomorphism

t: (12, V2) = (o pk, Hov)

up to constant multiple.

2 Representations of K = SO(3)

2.1 The spinor covering

To describe the finite dimensional irreducible representations of SO(3), the simplest
way seems to utilize the double covering s : SU(2) = Spin(3) — SO(3), which is
realized as follows. _

The Hamilton quaternion algebra H is realized in M;(C) by

H= {(_“5 Z) € My(C)la,b € C}.
Then SU(2) is the subgroup of the multiplicative group consisting of quaternions with

reduced norm 1, i.e.,
SU(2) = {z € H|detz = 1}.

Let P = {z € H|trz = 0} be the 3-dimensional real Euclidean space consisting of pure
quaternions. Then for each z € SU(2), the map
peEP—z.p-27'€P

preserve the Buclid norm p — det p and the orientation, hence we have a homomor-
phism
s:SU(2) — SO(P,det) = SO(3),

which is surjective, since the range is a connected group. The kernel of this homomor-
phism is given by {£1,}.
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By the derivation of s ds : su(2) — so0(3), the standard generators:

(5 ) (8 D (T

are mapped to 2K, 2K3, 2K3 with

00 O 0 01 0 -1 0
Ki=|00 -1},K;=[0 00}],Kz=|1 0 0]€g,
01 0 -1 00 0 0 O

respectively. Here ¢ is the Lie algebra of K.

2.2 Representations of SU(2)

The set of equivalence classes of the finite dimensional continuous representations of
SU(2) is exhaused by the symmetric tensor products 7 ({ =0,1,...,) of the standard
representation. These are realized as follows.

Let V; be the subspace consisting of homogeneous polynomials of two variables z, y

a b

in the polynomial ring C[z,y]. For g € SU(2) with g™ = -} d)’ and f(z,y) € Vi

we set _

7(9)f (2, y) = f(ax + by, —bzx + ay).
Passing to the Lie algebra Lie(SU(2)) = su(2), the derivation of 7, denoted by the same
symbol, is described as follows by using the standard basis {vx = zhy-k (0 <k <)}

and the standard generators

an (i) (8 (2

Namely we have
n(u)vx = V=101 — 2k)v, 7(X3)ve = (I = k)vrq1, (X )vg = —k - vg_1.

Here we put X, = 3(uz + v=Tug), X_ = j{ua — v—1us).

The condition that n defines a representation of SO(3) by passing to the quotient
with respect s : SU(2) — SO(8) is that m(—12) = (—1)' = +1, i.e., | is even. Therefore
the dimension of V;, [ + 1 is odd in this case.

The representation 7, of SU(2) is equivalent to the spinor homomorphism. Hence
passing to the quotient, 7, is equivalent to the tautological representation SO(3) —
GL(3,C).

2.3 Irreducible components of » ® 7, and 7, ® Ad,

For our later use, we want to specify the standard basis of the unique irreducible
constituent 77 in the tensor product 7» ® 74.



Lemma (2.1) Let {v; (: =0,1,2)} and {w; (0 < j < 4)} be the standard basis of
(12, V2) and (14, V4), respectively. Then the elements

= U @ wg — 2v; @ w1 + vz ® wo,
= YRws— 20w, + 12 ® W,
= v®ws— 2V Qws+v; QW

define a set of standard basis in T2 C T2 ® T4, which is unique up to a common scalar

multiple.

2.4 The K-module isomorphism betwenn pc and V;

We denote by pc the complexification of the orthogonal complement p of & with respect
to the Killing form, on which the group K acts via the adjont action Ad,. We denote
by E;; the matrix unit with 1 at (¢, j)-th entry and 0 at other entries. Then Ej; and
Eij + Ej; are considered as elements in p. We set H;; = Ey; — Ej; for i # j.

Lemma (2.2) Via the unique isomorphism Vy and pc as K-modules we have the

identification
Wo
w,
Wy
Wa
Wy

—2{Hys — V=1(E3 + Es)},
V=1{(Eis + Ez3;) — V=1(Ex3 + Ea)},
3(Hiz + Hys),

V=1{(Ep2 + En) + V=1(Ei3 + En)},
—2{Hy + v—=1(Ex + Ez)}.

3 Principal series (g, K)-modules

3.1 The case of the class one principal series
3.1.1 The Capelli elements

A set of generators for the center Z(g) of the universal enveloping algebra U(g) of
g = sl3 is obtained as Capelli elements, because sl3 is of type A,.

Let

1,3 e
E,=E; - 5(2 Eu), Bl = Ey (i # j).
a=1

Then E; € g. Define a matrix C of size 3 with entries in g by

Then for

B, Ey Ej,
C= E’;l Eég .E,é3 —dlag(—l,O,l)

v / 4
31 32 E33

A = (Aij)i<ij<s = T - 13 — C € Ms(glz]) € Ms(U(g)[z]),

we define its vertical determinant by

det | (A) = ) 5g0(6) Aoy Aro(r Aso@)-

€Sy

b7



Then it is written in the form z® + Cpyx — Cps € U(g)[z] with some elements Cp; and
C’p3 in Z (g)

Proposition (3.1) The set {Cpz, Cps} is a system of independent generators of Z (g).
Here are explicit formulae of Cps and Cps:

Cpy = (B, —1)Ejy+ E5y(Esy + 1)+ (Efy — 1)(Eg + 1)
—ExnEs; — EysEs — E3Ey,

Cps= (B} —1)Ey(Ess+1) + ErnExsEas + ErsEy Eay
—(Ely — 1)ExEx — BisEpFgy — Era B (Eas +1).

Eigenvalues of Cp;, Cps

We compute the value Cpsfo(e) and Cpsfo(e). Let Sa(a,b,c) = ab+ bc + ca and
Sa(a, b, ¢) = abc be the elementary symmetric functions of three variables of degree 2
and 3, respectively. Then we have the following.

Proposition (32) The infinitesimal character of Ts,,. is given by

Cpafo = 32(%(2'/1 - 1), %(21/2 - 1), %(% + w))fo

and
1 1 1
Cpsfo = 53(‘:,;(2111 - 1), §(2V2 - 1), §(V1 + 1)) fo.

3.2 (g, K)-module structure of non-spherical principal series
at the minimal K-type

3.2.1 Construction of K-equivariant differential operators

Lemma (3.3) Let {f; (i =0,1,2)} be the set of the standard basis of the minimal
K-type 7 C 75, of a non-spherical principal series representation 75, = 7. Define
another three C®-elements {p; (i =0,1,2)} by the formulae:

o = 2r(2En — Exn — Eas)fo
—2v/=1n(Ew2 + En — V-1(Er3a+ Ea)) f1
—2n(E13 + Eo1 — V—=1(Es + Ez2)) fa,
¢1 = V=In(Eu+ Exn +V-1(Ewa + Ea1)) fo
—3m(2E1 — Ex2 — Es3) fi
+v=1n(E13 + Ez1 — V=1(E13 + Ea1)) fa,
—2n(Eqg — Ess +vV—1(Eas + Ea2)) fo
~2v/=1In(Er3 + En) + V=1(E1s + Es1)) f1
+-2§1T(2E11 — FEgy — E33)f2

2

Then (o, 1,92) is & constant multiple of (fo, f1, f2)-
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3.2.2 Computation of eigenvalues

The previous lemma tells that there exist a scalar A(o, v) depending on ¢ and v such
that ¢; = A(o,v) fi (i =0,1,2). We determine this eigenvalue A\(a, v) by using explicit
models of the principal series 7, .

To do this, we have to find functions in

L3 Ind% (o) = Lﬁlm(K) = {f € L*(K)|f(mk) = a(m)f(k) for all m € M,k € K}

corresponding to the standard basis in the minimal K-type for each i.
In the larger space L?(K), the 7-isotypic component is generated by the 9 matrix
elements s;;(k) (1 <4,j < 3) of the tautological representation

k € K v S(k) = (3a(k))1<ap<3 € SO(3).

It is directly confirmed that si(k) (b = 0,1,2) belong to the subspace L%, (K) for
each 4.

Diagonalizing the action of u;, we find that s;; corresponds to v; for each i. And
finally we find that the standard basis is given by

v = \/"_1(3i2 - \/—_18;'3), V1 = 81, and Vg = \/-——1(31'2 + \/—_1'313)
We need the values of these standard functions f,(k) = v, (a = 0,1,2) at the identity
e€ K.
Lemma (3.4) The values of the standard functions at e € K is given as follows.

1 If 0 =0y, (fO(e)’ fl(e)va(e)) = (0’ 1’0)'
2. If 0 =03, (fole), fi(e), fale)) = (v=1,0,v=1).
3. If o =03, (fole), file), fale)) = (1,0,—1).

Now we can proceed to the compuation of the value A(o;, ).
Lemma (3.5)

4 4 4
Moy, v) = —5(2111 —1g), Ao, v) = §(V1 = 21,), XNos,v) = §(V1 + vy).

Summing up the lemmata in this section, we have the following.

Proposition (3.6) Let {f; (¢ =0,1,2)} be the set of the standard basis of the minimal
K-type T C 7o, of a non-spherical principal series representation m,, = m. Define
another three C*-elements {; (i = 0,1,2)} by the formulae:

@o = 3m(Hi+ Hys)fo
- =2y/=1n(E3 + Es1 — V-1(Ei3 + Ea)) i
. =2m(Hys — V=123 + 3w1) f,
¢1 = V—=In(Eiz + Ey +vV=1(Eis + Ea1)) fo

—37(Hia + His) fy
+v=1n(E3 + By — v—1(E3 + Ea1)) fa,
w2 = —2r(Hy+vV-12En+iw)fo

=2v/=1n(E12 + Ea1) + V=1(E13 + Ea1)) f1
+4n(Hyz + His) fo.



Then we have
(¢07 Y1, (102) = A(U-j, V)(fD, fl’ f2)

with eigenvalue Xo;,v) given by
4 4 4
Moy, v) = -—5(21/1 — 1), Mog,v) = §(V1 —-2u3), Ao3,v) = §(V1 + v).

In the next section, we consider the Whittaker realization of the equation of the
above proposition. Then we need the following Iwasawa decomposition of standard
elements of g.

Lemma (3.7) We have the following decompostion of standard generators of g with
respect to the Iwasawa decomposition g =n+ a+ ¢. For H;; € a we have

Hij =0+H,;j+0.
Since E;; + Eji = ZE,;_,' - (Ez'j - Eji), we have

Eiy+Ey =2E;3+0+Ks, FEyjs+FE3 = 2E13+0+(—K2), Eo3+ Ey3 = 2F53+0+ K.

4 The holonomic system for the A-radial part of
the principal series Whittaker functions

4.1 The case of the class one principal series

Let I be a non-zero Whittaker functional from the class one principal series 74,
to C=-Ind$(1). Let F be the restriction of the image I(fo) of the K-fixed vector
fo to A. We write here the holonomic system for F with respect to the variables
¥ = ma(a) = a1/as, y2 =hs(a) = az/as = a1/aj.

Proposition (4.1) Put F(y1,32) = 11%2G(3, y2) (note ¢ = y1ya). Then Gy, y2)
satisfies the partial differential egautions:
AG = %(V'{‘ + V2 — )G
and
{0101 — 803 + 4 cia0y — A IBYG = —o (2w — ) (204 = )11 + )G,
Here 8; is the Euler operator y,-%'_— fori=1,2. and we write

Ag = (8% + 83 — 318y) — AP (Hy? + c3u3).

Remark From these equations for the monodromy exponents ay,as at the origin y; =
0, y2 = 0, we have an equality of sets of complex numbers:

1 1 1
{a1,—0o1 + ag, —as} = {5(21/1 - 1), §(2V2 - u), —§(V1 + w)}.
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4.2 The holonomic system for the A-radial part of non-spherica
Whittaker functions

Let I be a non-zero Whittaker functional from the principal series 7., ,. For the set
{fili = 0,1, 2)} of standard functions, we put F; = I(f;).

Theorem (4.4) Let F(a) = (Fo(a), Fi(a), Fa(a)) = (1192)"(Go(y), G1(y). Ga(y)) be
the vector of the A-radial part of the standard Whittaker functions with minimal K -type
of the principal series representation m,, with non-trivial o = 0;. Then it satisfies the
following partial differential equations:

(i):
0y drayy 8, — 20, —dmeape (Go(y)) | [Goly)
—2reign -2, —2meign Gi(y) | = 5)\& Gi(y) |,
01 — 205 + dmeays  Amay: o Ga(y) - \Ga(y)
(ii):
Go(y) Go(y) Gi1(y) 1 {Gov)
Az-13- | Gi(y) | —2mcaye 0 +2ray | 5(Go(y) +Ga(v) | = 3H Gi(y) | -
Ga(y) ~Ga(y) Gi(y) Ga(y)

Moreover the eigenvalues \; and i depending on the representation 7, are given by

M=—=32n—-1) (6c=0)
=21 -21) (6=03) and p= V? + Vg — Wy
Az = §(U1 + V2) (0' = 03) '

Remark We can write the differential equations (i) and (ii) of the above Theorem as
(i) DyG=XNG  (ii): DG = uG,
with D; (i = 1,2) 3 by 3 matrix-valued differential operators. Then we have

Dl-DQ—DQ'Dl =0.

4.3 The equations via the tautological basis

Let k € K — S(k) = (8ij(k))1<ij<3 be the tautological representation of K = SO(3).
Let I € Homg g (75, », Ind§(¢)) be a Whittaker functional and define function T}; on
A by

I(si;)ia = nyaTii(y) (1<4,5<3).

Go 0 v=1 1 Ty
Gil=({1 o o T | .
(6)-C o o) ()

Then

61



62

Then for each i, the equation (i) of the above theorem is transformed to

-0, =2nv-lay 0 T; 1 [T
—2rv-1lay O — 0, “2rv=legys | | Ta | =5h | Ta ),
0 —21v/—1caye Oy T; “ \Tis

and the equation (ii) to

0 2/ —1ein 0 T; 1 [Ta
A2 <1la+ —27('\/ "]-Clyl 0 21/ —102y2 T, = gp, Tiz .
0 ~2m/ —1Czy2 0 T,'a T;

5 Power series solutions at the origin

We determine 6 linearly independent formal power series at the origin (31, y2) = (0,0)
for generic parameter v in this section. These formal solutions converges because the
singularity at the origin is a regular singularity. These solutions do not have exponential
decay at infinity, different from the unique ‘good’ solution given by Jacquet integral.
We refer to these solutions as secondary Whittaker functions sometimes.

5.1 The case of the class one principal series

This case is more or less discussed in the paper of Bump [2], up to some difference of
notations. We omit its explicit formula.

An integral expression of this power series solution was found by Stade ([9, Lemma
3.10], [11, Theorem 2]) as an analogue of an integral formula for Jacquet integral by
Vinogradov and Takhadzhyan [12]. The same as non-spherical case discussed later, we
let {e1, €3, e3} be a permutation of the three complex numbers {- 3 (201 — ), —1(2n—
V1)1 %(Vl + V2)} = {711')‘1’ %’\2’ '}"\3}

Theorem (5.2) For Re(ez —e1) > 2,

By, ya) = T(2598 + DI(258 + DT(25% + 1)(merpn) T (meays) = (mer) (mea) ™

1 _3,,du
oy et Ig_;_-l(zwclyn/l + l/u)Ifz}-_ﬂ(21rczy2x/1 +u)u"4 s—u—.

5.2 The case of the non-spherical principal series

In this case also, the holonomic system obtained in Theorem (4.4) has regular singu-
larities at the origin (y;,y2) = (0,0) with rank 6, i.e., the order of the Weyl group
of SL(3,R), for generic values of parameter . We determine the characteristic in-
dices and the convergent formal power series solutions at y = 0. Here to abridge the
notation, we write the set of variables (y1,y2) as y collectively.

By inspection we find that it is convenient to introduce scalar functions ®;(y1, y2) (i =
0,1,2) by

0 S 1
F(y) = 1.02G(y) = n1y2{2o(y) ((1)) + &,(y) (flJ) + ®3(y) ( 01) }
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5.3 The holonomic system for ®;(y)
Now we can rewrite the holonomic system for G; to that for &;.
Proposition (5.3) The holonomic system in Theorem (4.4) is equivalent to the fol-
lowing system for ®; = ®;(11,y2) (1 =0,1,2).
(1) (i) [0 + FA] o + (2mery1)®1 = 0,
(ii) [81 — B2 — IN]®1 + (2meryn) Bo + (2meaya) By = 0,
(iii) [B — $Ail®2 — (2meaya) @1 = 0,
(2 (i) [Az — $ul®o + (27c13)®; =0,
(i) [Ag — Lp]®; + (2me1y))®o — (27caye)®; = 0,
(iif) [Ag — u]®2 — (2mcays) @y =0.

5.4 The characteristic indices at the origin (y;,%2) = (0,0) and
the recurrence formulae.

Let
Bu(y) =475 D Chmma(meyn)™ (meapn)™,  (k=0,1,2)

ni,ng20

be a system of formal power series solutions at the origin y = 0.

Now we can determine the 6 pairs (—e;, e3) of characteristic indices at the origin,
and the corresponding initial values conditions for F or ®;. the system at the origin and
to determine the first coefficients Moreover we have the recurrence relations between
the coefficients.

Lemma (5.4) When o =o; fori =1, 2 or 3, we have the following:

(1) The characteristic indices take the siz values:

(—en,e9) = (A, 3N) (1<k#1<3).

(2) For each case, the set of first coefficients, or the initial values at the origin are
given as follows:

() If (—en,e2) = (—3M, kM) (K #14),

0

(15'y2 2 G)(0,0) = 1) s ie, (37Y7 2 20)(0,0) = 1, and (37'y; “ ®;)(0.0) =
0

0 for other j.

(il) If (—e1,e2) = (=3, %/\1) (k #£4,1#4,k #1),

1

(¥1'¥:°°G)(0,0) = O) i, (Y'Y 2 @1)(0,0) = 1, and (y7'y;®;)(0,0) =
1

0 for other j.



(lll) If (—61,62) = (_'}I’\k’ %/\z) (k 7é Z),
1

(u1'y2 *G)(0,0) = ( 0 ),i-e- (4152 **@2)(0,0) = 1, and (y7'y; **#;)(0,0) =

-1
0 for other j. ‘

(3) We have the following recurrence relations for the coefficients:

(i) (n1— e1 + Ih)Comum + 201m-1m = 0;
(i) (m—na—er—ex— %)\i)cl;nxm + 2C0,n, —1mg + 20201 001 = 0;

(iii) (n2 +ea— i’\i)cmm,na — 2C1:ny mg-1 = 0.

5.5 Power series solutions at the origin

Now we can show the following formulae for the power series solutions.
Theorem (5.5) Assume that (A — A1) € Z. Then we have the following.

(I) When o = a1 we have the following siz independent solutions.
Ay

(@57, 8, 0)) = 4

B ) S VL
mimtzo (2 & Do (355 4 D)y (534 Do (555 + Do,

A2—Ap

S R ) (meayn )™+ (megye) ™

my,ma20

Z (-“'—l + z)mm(A X L), ml'm'z'(&—l + 1) 41 (228 + 1),

Z (A A 2)m1+m2+1 (ﬂclyl)nm‘+1(7rc2y2)2m2+l
mi1,mz>0 (A 8* )m1+1(_L_..L"\ + 2)m;;+1 mllmz!(éa_l. + 2)m1+1(_z__a. + 1)m2}
A2 A
t(q)l.III QI,III’ Q;,IH') =y —}%4
my1,ma20 (M + 1)""1("3__,\1 + 1)m2 m1|m2'(“1‘:\‘z + 2)m1+1( ;'\ + %)mz
-2 = (2&;& ¥ Dyt (wclyl)z"“ (meaya)*™
m1,m22>0 ( EA + 1)’"!(&%&1 + 1) ma ml'm2'( + 2)m1("°‘—_& + 2)m2 '
( ;'\ + 1)m1+mg (ﬂ'clyl)zml (ﬂ-CQyz)ﬂmg+l

\ my,m220 (

2 1), (R0 4 1)y, mylmal(Mg22 4+ Dym, (252 + %)m,H/

. Az A
‘@hY, e, 8" = v Tu

Al=Ag
A=2 2)m1 +ma+1

(meryn ) 2™+ (megyg) et

('1_'2 + 2)m1+m3+1

( e
z (A 2 + 'z)m1+1('\ A=k g 2)m2+1 ml'm2|(Lz + 1)m1(—L—& + 2)""'-""1

(meayn )™ (megys)® ™!

(‘J';Az + 2)'m1+m2

Z (_dz + 2)MI(M + 2)m2+1 m1|m2'(-A-9-—z + l)ml(—‘—’\i + 2)mz+l

(meryy 2™ (meoys)®™

\ Z (52 4 Do (352 + D mutmal (352 + Dy (252 + g

)
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and other three solutions ®, &7V and &7 are given by exchanging the role of A
and As in the expression for <I>1 o <b1 T gnd &V, respectively.

(IT) When o = 09, ezchange A and )z in the part (I).
(III) When o = 03, exchange Ay and A3 in the part (I).

5.6 Integral representations of the secondary Whittaker func-
tions

In this subsection, we rewrite the power series solutions of the previous subsection by
integral expressions.
Theorem (5.6) (I) When o = 0, we have

H&y, &) = (7l'C1ZI1) +i(meqys)” F4h
-(21r\/—_1)'1I‘(—3g—1 + E)r(—%& + DP(2252% 4 1)(mey) ¥ (meg)~

du
~/Iu!=1 Iﬁ,iﬂ_%(%rqyu/l + l/u)Iﬁ?l_%(ZWQyﬂ/l T u) u—%’ﬂwi_
(—l)/ Igg;_al+%(21r01y1\/ 1+ l/u)I,\z;,\l _%(2162y2M)u fere=i(14 )3___

|ul=1
1d
(-1) / 152;_.\,__’_%(2%61%\/ 1+ l/u)Iﬁ;_A,_+%(27r62ygv 1+u)u 13'\3_1-1—?
lul=1
for Re(%234) > 3,
2 >
‘@, &y 25 = (mean) ¥ (meap)

(2rv=D)TI0(35% 4+ D22 + D25 + 1) (mer) ¥ (mep) ™%
( (7m1:l/1)/| Ing-a (21rc1y1\/1+1/u)h _xg (2mCoya VT F ) uTe%8— %du \
u|=1
(-1) /lJ - [7r61y1 v1i+ l/uIﬁE_,\l_l(%rclyn/l +1/u) + (_1;1\1 + 5)

IM(27rc1y1\/1+1/u)] Lng-n (2meayaV/T +u)ut Tere~ ’!%-
\( 1)(11'023/2)/'l Iiﬁ‘—"Z(%"Clyl\/l+1/“)I_s_3_*z(27r02y2*/——1+u)u Exﬁgdu)
u|=1

for Re(2322) > 1,
‘@7, 81V, 83Y) = (reayn) FH (meyyy) E
(2nV/=T) (A4 + PP + P2 +1)(ne))? (rer) ¥

(-1) In-» +1(27rc1y1\/1 + 1/u)Ia-a +1(21rczy2\/1 +u)u” TGA"**ldu
|uj=1 § ud
U
Ll_l Ingrg 3 (2meiyn V1 + 1/ ) g (2mC2y5 V1 +u)u” fee=(1 +:)’~’-u—
u

I,\ -2 %(21rcly1\/1+1/u)I_L;_a1 %(271'62?/2\/1 Fu)u fere-i== -

juj=1
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for Re(Az22) > 3,

: : LII zlIV LVI
To have the integral expression for ®; ,<I>,-I and ®;""", we have to exchange the role
of A2 and )3 in the expression for <I>$'I , M gnd <I>3’V, respectively.

(I} When o = a3, exchange A and Az in (I).
(III) When o = 03, exchange A1 and Az in (I).

6 Evaluation of Jacquet integrals

We give explicit descriptions of Jacquet integrals for non-spherical principal series
Whittaker functions here. These are similar to the class one case ([12]).

6.1 Jacquet integrals
Let us denote by g = n(g)aLg)k(g) the Iwasawa decomposition of g € G. We define
Jacquet integral J;; for o; € M (1 <4,j < 3) as

Ji(g) = /N ()~ a(s5 ng)s:;(k(s5 ng))dn

(2]

the longest element in the Weyl group of SL(3,R) and s;;(k) is the element of the
tautological representation of K (cf. [4, (7.1)]).
Since

for 1 < j <3. Here

vo = V—1(8ig — V—18ia) 11 = 81, v2 = V—1(8ia + vV —183)

(§3.2.2) and
&y =Gy, 28, =Go+ Gy, 203 = Go — Gy,
(85.2) the vector of integrals ¢(Ji1, v/—1Jig, Jia) has the same K-type as *(®o, @1, ®2).

For an element a € A, we use the coordinates (y1,¥2) = (a1/a2,a103). In the Iwasawa
decomposition of the element s;'na its A-part a(s;'na) is given by

1 2 1

5,3 p 3 A
als='na) = h yz,(ﬂ) 1
S VAL \»n Ag

Ar =22 + 0k + (mng — ng)?,  Ag =yl + yind +nd.
Under the symbol above

with

21— 3+1 3+1
Jiy) = g TS ey

i A=/ NV exp(—2mv/—=1(c1n1 + catia)) dnydnadns.
R

Here (kij)i1<i<s = k(sg'na).



6.2 Integral representations of Jacquet integrals

To write down our results, we use the following notation.
Notation.

K(e, 8,7,65y) := ar (nlea]) € (mleal)™ % (yrga) (mlerlyn) ¥ (rlcalys) =3
/ Kig-a +a(27l"61|y1 v1+ 1/1})K,\3g,\, +5(27T'Cg'y2\/ 1+ ‘U) QI~EA2+7(1 + 'U)5 é’l_}
0

with K, (2) the K-Bessel function.

6.2.1 The case of the class one principal series
In the case of class one, the Jacquet integral Jo(y) is
Theorem (6.2) ([12]) For Re(A — A1) > 0, Re(As — A3) > 0,

1
Jo(y) = = = =
T 1+ DT(= + DIS= +3)

K(0,0,0,0;y).

6.2.2 The case of the non-spherical principal series

Theorem (6.3) For Re(X; — \;) > 0, Re(\s — A\3) > 0, the Jacquet integrals J;; can
be written as follows.

1 1 1 , -1 _119.
(j;;§g§) _ (e rlea) (rleslyn) rleslsn) (_jl_i;’;,f@,_ﬁ,t‘%j?;y))

Jra(y) L33 + DM(33%2 + Hr2ght +1) K(a,%?, $0:9)
Ja(y) 1 -V K61K(0 0, - ),1/)
J - : 00,1, —1
ngz; L(35% + PR + )T (25> + §) \/—e(zK(OBO,z,Oy y)

Ja1(y) (1|3 (wlea]) 3 (mea |y )3 (mleaya) -K(3}, %1 ;ﬁ O'y) .
(522?53) " gt presg s e (Vg )

Here g; (1 =1,2) means 1 if¢; > 0 and —1 if ¢; < 0.

7 Integral expression of Mellin-Barnes type

As in [9], we consider the Mellin-Barnes integral expression for J;;(y) to find linear
relations between Jacquet integrals J;; and power series solutlons ®,*. We discuss only
the non-spherical case.

Lemma (7.1) For p,q € C,

o0 dv
(1r|c1|y1)p(1r|02|y2)‘1/ Ko(2rlelpnv/1 + 1/v) Kg(2r|calyaVl + v) v (1 + v)? >
p1+v =100 ppa+v/—Too

IS e——— V , —83 —”ds dS ,
2421/ =1)? J gy —v=Too J p2—v=Too 0(81k82)(1r|cl|y1) (mlcalys) 1082
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I‘(sl+§+a)r(sz+§—a)F(31+;;+27)F( sz+2q+;3)l-( 82+2q—ﬂ)1—\( S‘J+q—-22j—-26)

%(31!82) = 182
F(a + _2+E+g _ 6)

Here the lines of integration are taken as to the right of all poles of the integrand.

Proposition (7.2) Let

M(ah Q2,03 ;blv b27b3 o y)
p1+\/:1'00/p2+\/:foo

1 / » -
= V (81, s2)(w|ca|yn) % (| caly2) "*2ds1dsa,
@V Jpovrtw v e lva) ™ ds:

with
l"(s‘+“2’ =1 )I‘("’ +a22—1\2)1"(81 +g§,2 —A3 )P(""H;‘ +X )F(a,+t_:32 +A2 )F( a,+§_32+§g)

V(Sl’ 32) = F(a; +;z;|;c)

Here the lines of integration are taken as to the right of all poles of the integrand. Then

(ﬁ“ﬁiﬁ) wd(rles)) ¥ (rleal) % r3e ( eeM(1,1:1,0.0:0:4) )
12 *

= —\/—1£2M(100'100'0'y)
Aa—A —\ 1 —A yWU,U,4L4,0,0,V,
Jaly)) 4TI+ DI+ L33 + 1) ~M(1,0,0;0,1,1;1;)

(Jﬂ(”’) rb(rles) ¥ (rleal) =¥ 1101 ('V‘MIM“’“’1?"*“’;1;”)

Jul) | = Yy ey N TN -M(0,1,0;0,1,0;0;y)
Jaa(y) 40(25% + D55 + (35 +3) vV—1e3M(0,1,0;1,0,1;1;y)

J , i ] | "
JZ?;; _ w3 (rles)) E (rlea))~ % 3 _ _11\;(;4,(16%,2,'0610,11,%).3’)
Joly)) AT+ T2 + HI(3F +1) \ ,0,1;0,0,1;0;7) | -

51€2M(0$0s 1,1,1,0,1 5y)
Proof. Tt is obvious from Lemma (7.1). )

Remark. In view of this proposition, we can see the following symmetry for J;; with
respect to the parameter (A1, A3, As). This is natural but is not immediately seen from
the formulae for J;; (Theorem 6.3). We denote

rd (mfea ) E (wlea) =% pugn
T(2agM 4 p)D(2Z2 + g)T(252 + 1))

with (p,-,q,-,ri) = (1, %, 1) (z' = 1), (1, 1,%) (i= 2), (%,1, 1) (t= 3). Then
JaO, Mg, da) = (—vV=D) e21(Da, My As),  Ja(i A, da) = —€16241 (A3, A, ).

-1
Ji( A1, Mg, Ag) = ( ) YT (y), Jia(y), Jia(y))

8 Relation between Jacquet integrals and power se-
ries solutions.

We omit the case of the class one principal series here, which is discussed by other
people. In the same way of [9] for class one case, we move the lines of Mellin-Barnes



sgral expression in Proposition (7.2) to the left and sum up the residues at the poles.
:n we obtain the following.

eorem (8.2)

"(Inw), J2(y), Jis(y)) = 73 (r)er)) F (wlea)) " prwa
1Y), J12{y), Jis 472252 + 1)I(Agh 4 Hp(dcd 4 )

‘[5152(71101I)—A‘l(7flcle)i‘zf‘(‘\1§—'\2 + $N(Agae + hr(egh) (a7, 617, 8;)
+area(rled]) ¥ (mleaf) Fr(252 4 (2 + Hr(daghe) (o, o}, o))
~ea(rleal)~ ¥ (rleal) ¥ + P2 + Hriagie)(@p™, o, a5 ")
—ea(rleal) =¥ (wlea) ¥T (252 + P25 + Hr(2z22) (a5, 817, ;)
~(alea) =% (xlea) ¥T(22 + Pr(igh + Hriag) (@5, o, 25"
~(mleal) ™ (rlea) T (2252 + T2z + hr(2gie) (o}, o}V, &) )],

3 23 S
—V=1m2(r|er|) ¥ (mlca]) "3 g
Y(Ja(y), J: ) J: =

[ermlenl) 7 (rleah R T2 4 Dyr(dage 4 Dr(degh) (@, 83, 83
tes(mler])~ € (nlcal) T (222 + DHP(Ragh + DT 2agde) H(@3, @21, 221
~(rla) =% (rlea) FT + HICae + Hr(dghe) (@, 87, 2311
—(mlea]) =% (mleal) ¥ T(2e522 + LT (22 4 Lyr(2agh) (@21, 6217 ¢37)
—ea(mle)) T (rleal) ¥T (252 + HP(252 4 Hr(2uge) @3V, 23, 63Y)

A
—ea(mler]) =% (mlea]) 0252 + Hr(aghe + Hrdegd) (el 82V, V7)),

—rd(rle)) ¥ (mleal) "2 13
4T(%5M + H(Ag2 4+ 1)(Agd 4 1)
[ leal) =% (rleal) BT (g 4 r(2eg + Hr(dagh) (el 83, 83)

"(Ja1(y), Jaa(y), Jas(y)) =

+mlen]) ™% (rlepf) ¥ T(252 4 Lyr(dsgh 4 Lr(dgh) H@%T, a3, 8317
—ex(mled]) % (aleal) ¥ (252 4 HD(2e522 4 LyP(Augha) 1(@3, 31T §3117)
—ex(nle))™ % (o) ¥ T(252 4 DP(2ash 4 yr(agh) (@3, o3V, @37Y)
—erea(mlen]) ¢ (mrlcol) F0(2g2 4 LN(2azds 4 Lr(digda) (&Y, 83V, 83Y)

A Py g 7 7
—eiea(rler])™ % (nlea) ST (2252 + Hr(aghe + Hredag) (edv, a3V, o).
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