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The family of K3 surfaces with a transcendental lattice
U(2)* x (—2)* for a general member
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0 Introduction

Let us consider the lattice P = D3 @ (~2) & (2) of rank 14. A K3 surface S is called of type
P when it satisfies P C Pic(S), where Pic(S) stands for the Picard lattice of S. In this article
we show the outline of the study on the period map for the family F of K3 surfaces of type P.

We work always on the ground field C. Note that the lattice H2(S, Z) is always isomorphic
to L = U3 @ (—Es)? and P* C L is isomorphic to U(2)? @ (-2)*.

In 1992 K. Matsumoto, T. Sasaki and M. Yoshida (7] studied the period mapping for a
family of K3 surfaces of type (3,6), that is the family of double covering surfaces over P2
branching along six lines in general position, and Matsumoto [6] gave the description of the
inverse mapping in terms of theta constants. It gives the modular map for the 4 dimensional
Shimura variety in the Siegel upper half space &4 derived from the family of 4 dimensional
abelian varieties with generalized complex multiplication by v/=1 of type (2,2). So we call it
MSY modular mapping. The second author showed an arithmetic application of MSY modular
mapping in [11].

In the case of MSY modular map the corresponding K3 surface is characterized by the
lattice U(2)? @ (—2)? and the moduli space is a 4-dimensional type IV domain. We suspect
such fruitfull results of the MSY map is the consequence of the eventual coincidence of two
different bounded symmetric domains D%;, and I, . There are a few (finite) such exceptional
coincidences. The highest one is the (analytic) equivalence between D%, and Hyr(4) (in terms
of Lie algebra so(2,6;R) = so(4,F), where F indicates the Hamilton quaternion field ) and it
contains the above coincidence of MSY case. That is our situation.

The ring structure of the regular functions on the parameter space for F is given by the
article of Koike and Ochiai in this volume, their result is the cosequence of the discussion
motivated by the RIMS workshop.

1 Realization as an algebraic surface

We fix an abstract lattice L and its P-part D3 @ (—2) @ (2). A K3 surface S is called of exact
type P when it satisfies P 2 Pic(S) via an isomorphism ¢ : H3(S,Z) — L.That is a general
member of F. A surface S of exact type P is realized as a double covering surface over P! x P!
branching along four bidegree (1,1) curves Hy, Hy, H3, Hy satisfying

J1) Hy (k=1,2,3,4) is irreducible,
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J2) Hi N Hy consists of two different points,

J3) for any different three indices 1,5,k we have H; N H; N Hy = 0

under some nef condition stated in Theorem 1. Such a surface is given as the complete
nonsingular model of the affine variety

4
§=58(z):w*=T] (mgk)st + zgk)s + :vgk)t + m,gk)),
k=1

where we use the notation

zgk) xgk)
k=1 w) (b )]E€ M(2,C).
T3’ T4

So the curve Hy (k=1,2,3,4) is given by

() (0=

b )
By considering the projection to the s-line we find that a general member S of F is an elliptic
fibred surface with 12 singular fibres of type I corresponding to the intersection points H; N
H; (i # j). Counting the Euler number we know that S(z) is a K3 surface. Let E'ij be the

exceptional curves obtained by the blow up processes at the intersections H; N H; (¢ # 7,1 <
i,j <4). Let m be the projection S — P! x P! and set

1, =\ (s

Gi=3(r H,._;(E3+E,.j) (i=1,23,4)
%2

Fo=r"{t=0}, FF =n"{s =0}

Lemma 1.1 The sublattice in Hy(S(z),Z) generated by E;-;, E7,Gi, Fy, F; is isomorphic to P.
So S(z) is a K3 surface of type P.

According to the above Lemma we can define the elements e?;-, gi, [s, fi in the abstract lattice

L corresponding to the divisors with capital letters in H2(S(z),Z) via an isomorphism ¢ :
Hy(S(x),Z2) > L.

Theorem 1 Let S be a K3 surface of type P with an isomorphism @, and suppose that ¢~ (f,)
and ¢~ (f;) are nef divisors . Then S is realized as the form of S(z).

2 Period map

2.1 Marking of a K3 surface of type P

Definition 2.1 Let S be a K3 surface of type P with an embedding P — L. We call the triple
(S, ¢, P) a P marking of S if we have

(1) ¢ : Hy(S,Z) — L is an isometry of lattices,

(2) cp"l(fs),gp‘l(ft),go"l(eiij @Y (g;) are effective divisors and ¢~ 1(f,) and ¢~ 1(f;) are
nef.

Let O(L) be the group of isometries of the lattice L, and set O(L, P) = {g € O(L) : g(z) =
z for Vz € P}. PuttingT = Pt weset G=0(T) and G(2) = {g € G: g=1 (mod 2)},
where we defined O(T') as same as O(L).



Proposition 2.1 We have G(2) = O(L, P).

Definition 2.2 Let (S,¢,P) and (S',¢', P) be P markings of S and S', respectively. An
isomorphism p : S — S’ is called an isomorphism of these 2 markings when we have ¢ = ¢'op,.
We say 2 markings (S, ¢, P) and (S’,¢', P) are equivalent when we have a v € O(L, P) such
that (S’,¢’, P) is isomorphic to (S,v o ¢, P).

Remark 2.1 Fguivalent markings correspond to the same configuration of the branch locus
with the order of Hy,...,Hy of the double covering surfaces. And this relation corresponds to
the base change of the K3 lattice which preserves the polarization P.

2.2 Parameter space

From the above argument we can take the cofiguration space for the family of 4 bidegree (1,1)
curves as a parameters space of our family of P marked K3 surfaces. The presentation of Hj
has an ambiguity of a constant factor. By considering the projective coordinate transformation
of s-spave and t-space our parameter space is given by

X = (PGL(2,0)\{(z1,---74)} = (GL(2, C))*/ PGL(2,C)) /(C*)*.
For further investigation we need a realization of X as a projective variety. That is suggested
in the article of Koike and Ochiai on this same volume.
2.3 Period domain
Let T';,...,I's be a fixed basis of T such that we have the intersection form
(T:-Ty)=A:=U(2) & (—21y).

For a P marking (S, ¢, P) let Q be the holomorphic 2-form on S that is unique up to a constant
factor. We define the period of (S, ¢, P) by :

=[/ Q/ Q) € P7.
¢~ (1) »—1(Ts)

The image of the period mapping for the family of P marked K3 surfaces is open dense in the
6-dimensional domain given by

Dt ={n=[m, --,ns] € PT :'nAn = 0,'5An > 0,S(na/m) > 0}.

We get this fact by using the Riemann-Hodge relation of the period and the Torelli theorem
for K3 surfaces. It is a bounded symmetric domain of type IV. We set

t={geG: g(DY)=D%}, G2)* ={g € G(2): g(D*) =D*}.

We can determine the modular group for the equivalence classes of the P marked surfaces.
Namely

Theorem 2 Let (S, ¢, P) and (S',¢', P) be P markings of K3 surfaces of type P. Let  and

7' be the corresponding periods, respectively. Then these two markings are equivalent if and

only if

!

g(m=n
for some g € G(2)*
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Theorem 3 The modular group G(2)% is a reflection group.
Here a transformation
Ry: A v—2('wAN wAv)v, A€ D%, veZ8

is called a reflection with the root vector v.

2.4 Degenerate locus
3 Differential equation

We can determine the system of differential equations for the period with 16 variables sz

It becomes a holonomic system of rank 8. So our periods / ( )Q (t=1,...,8) make a
e~ 1Ty

basis of the space of solutions for this system defined on a domain X’ = X — V, where V is

the degenerating locus corresponding to the set of K3 surfaces of type P which violate some
condition of Jy, J3, Js.
So we can consider the monodromy group M for this system.

Proposition 3.1 We have G(2)* C M.

Remark 3.1 We have possibly G(2)* = M. But we cannot decide it at present, because Some
monodromy transformation may cause an interchange of E?;

Remark 3.2 The image of the degenerating locus V by the period map is consists of 4, 6,

16 hyperplanes (so in total 26 hyperplanes) in the period domain Dt which correspond to the
violation of the condition Jy, Ja, J3, respectively.

4 'Transfer of the period domain

The type II domain H is defined by

H=Hy={ZeMu&C):LZ='Z] (Z-2>0},

O, E,
J2n - ("En On)

and the member Z € H is described in the form

where we use the notation

a b 0 s
c d —-s 0
Z= 0 t a c
-t 0 b d

We define the mapping ¥ : H = P7 by
C = [21, 22y 23,34, 25,26, 27, 28] =t [17 —ad + bc — 3t7 a, d7 ba ¢, —8, t]

As a direct translation of the above lemma, we obtain :



Proposition 4.1 The image of v is determined in P7 by the following three conditions:
(1)
CUsUsUaU) =0.

(2)
CFUsUsUU)X >0,
where (* = tC.
3)

(2
3( 21) > 0.
By straight forward calculation we have the following.

Theorem 4 The image ¥(H) is transformed to the type IV domain D}, by the map :

n=P¢
with
(L0000 0 0 0 0\
010606 0 0 0 0
0010 0 0 0 0
0001 0 0 0 0
P=loooo & & 0o o (4.1)
00600 75 g5 0 0
0000 0 o0 & &
b 000 0 0 T T

So the composite mapping 6 = P o gives the isomorphism
6 :H= Dyy.

Remark 4.1 The analytic equivalence of the domains DY, and H is well known. But we are
wishing to find the transfer which preserves the modular groups each other.
4.1 the Quaternion half space
Let F be the Hamilton quaternion R—algebra generated by {ei, eq, €3, €4} with

e1 =1, eze3=ey, e? = -1.
Then the ring of integers in F is given by

O(F) = Zeg + Zey + Zeg + Zes,
where eg = T(er + ez +e3+ey).
Proposition 4.2 The mapping

¢ :M(n,F) - M(2n,C)

defined by

y_ [ Arer+ Azez  Azer + A4€2)
(P(; Aiei) = (_A3el + Ages  Ajey — Azer

is an injective homomorphism of R-algebra.
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Definition 4.1 We set
Sym(2,F) = {X € M(2,F) # X = X},
Pos(2,F) = {X € Sym(2,F) : X > 0}.

Note that we have
X € Sym(2,F) < ¢(X) € Sym(4,C),
X € Pos(2,F) <= ¢(X) € Pos(4,C)

and it holds also
X € Pos(2,F) < X =g*g, 3Jg € GL(2,F).

Definition 4.2 The quaternion half space is defined by
H(n,F) = {X ++v~-1Y : X € Sym(n,F),Y € Pos(n,F)}.

Remark 4.2 (1) We can define the half spaces using R and C instead of F. The half space
H(n,R) is a Siegel half space, and H(n, C) is the bounded symmetric space of type I.

(2) Tuwo spaces H(2,F) and ¢(H(2,F)) C H(4,C) are isomorphic as complez manifolds
via the correspondence .

Proposition 4.3 For an element Z € H we have a decomposition Z = X + +/—1Y with

X= %(z#‘z‘), Z -t7),

__1
T 2/-1
and so H is naturally embedded in the half space H(4,C).

Remark 4.3 We can examine the equality H = o(H (2, F)) by direct calculation.

Set
Sp(2n,F) = {g € GL(2n,F) : g*Jong = Jon}

and we define Sp(2n, C) by putting C instead of F. The following is wellknown:

Proposition 4.4 The group Sp(4, F) is generated by
‘W0 I S .
J4,( 0 W‘l)’(O I) ,where W € GL(2,F) and §* = S.

So we obtain :

Proposition 4.5

et =< (5 22).(4 %)>

_ 'Al A2 * _.

with



Proposition 4.6 (/4] p.55)
The group Sp(4,F) N GL(4, O(F)) is generated by

Js ( I S) <U O_ )
"\O I1)’\0 (U"H™!
where S € Sym(2,O(F)),U € GL(2, O(F)).
Proposition 4.7 The group Sp(2n,F) is a subgroup of Aut(H(n,F)) via the action
Z+— (AZ+B)(CD+ D)™
for an element

M= (é’ g) € Sp(n, F).

Proposition 4.8 ([4] p.50)
We have
Aut(H(2,F)) = Sp(4,F)- < II >,

and we have
Aut(H (n,F)) = Sp(2,F)

Jorn > 3. Where Il indicates the transposition as an element of M(2,F), and - means the semi
direct product.

Remark 4.4 The transposition Il acts as an automorphism of H(n,F) only for n = 2. If we
have n > 3, it does not preserve the positivity condition —/~1(Z — Z*) > 0.

4.2 Relation between G*(Z) and I'(H)
Definition 4.3 Set

- O iE4 _ O J4 _ J4 0 : _ O Im)'
H‘(-m o)’ S_(—J4 o)’ L‘(o —J4)’ J'”"“(—I,,, 0
SO*(8,C) = {g € GL(8,C) : g*Hg = H, ‘gSg=S}.

And set
I'(H) = S0"(8, Z[i) - (&),

where ¢ indicates the involution

a b 0 s a b 0 t
¢ d -5 0 , d -t 0
Z= 0 t a ¢ Mz = 0 s a ¢
-t 0 b d -5 0 b d

We can easily examine that SO*(8) is a subgroup of Sp(8,C). We obtain the following by
checking the conditions for SO*(8).

Proposition 4.9 We have a injective homonﬁorphism of R-algebra ® : Sp(4,F) — Sp(8,C)

by putting B (é g) > ((Pgév; Qfg;)’
e(C) ¢

and the image is contained in SO*(8).
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Remark 4.5 (1) Let O' denote the order Zey + Zey + Zez + Zey of F. Then we have
SO*(8,2[i]) = Sp(4,0)

via the mapping ¢.
(2) We ezpect that the isomorphism § induces injective isomorphisms

(6H*:rH) » Gt

and
&* (Gt (2)) Cc T'(H).

But to get them, it is necessary to proceed more detailed argument on the discrete groups on
D+ and H. We don’t have these results still now.

4.3 Embedding of H into the Siegel upper space Ss

We use the following notation:
Ss={Q € GL(B,C): *Q=0,3Q) > 0},
_ (0O Ja _J40) _(o Im)
K= (J4 0) L= (o _1) ™=\ o
Ss(q) = {2 € Ss : Vs = JpQ, QK = KQ,QL = LQ}.

Note that {Is, Js, K, L} make the basis of the Hamilton quaternionic field.

Proposition 4.10 The domain Hys is embedded in Sg by the mapping

L 1( Z+4'Z i(Z—*Z))
”'Z’_’z(—i(z—tZ) Z+4'2

It induces the biholomorphic equivalence between H and Ss(q).

The group SO*(8) has an injective embedding into Sp(16, R) by the mapping A:

o (R
z =(c D)” R(C) -S(C) R(D) -S(D)
() R(C) S(D) R(D)

For an element g € SO*(8) we have p~'ogo p = A(g).

Proposition 4.11 Put

0O 0 J O
_J .
Jir= _?]4 g 8 04 , Jie=Js @ Js.
O Jy O O

Then it holds 3 _
IX9)VJAg) =T, A(g)J1eA(g) = Jie



for every g € SO*(8). If we put
Sp(a) = {y € SP(16,R) ** vIuy = Jir, 116 = J167}
the mapping X\ induces the isomorphism
SO*(8) = Sp(q).
Especially the mapping p induces an isomorphism
SO*(8, Z[i]) = Sp(q) N M(16, Z).

Let Q be a point on Sg, and set Ag = A = Z8 + Z8Q. Let Vy denote the abelian variety
C8/Aq. So we regard Sg as the coarse moduli space of principally polarized abelian varieties V.
Note that I1g, Js®Js, KG&K and LB L belong to Sp(16,Z). We can check that I1g, JsBJs, KHK
and L @ L are contained in the algebra of endomorphisms of A provided Q@ € Sg(g). Let
(Ie,Js® Js, K ® K, L @ L) be a Q-algebra generated by I16,Js ® Js, K & K,L & L. Then we
have

Fq= (e Js®Js, K& K,L® L) C End(Vq) for Q € Ss(q),

where Fq indicates the Hamilton quaternion algebra over Q.

Proposition 4.12 The space Ss(q) is the coarse moduli space for the family of 8-dimensional
abelian variety V with the property

FQ >< he, Js D Js, K K, L L >C End(Vg).

In this sense we can call Sg(q) the Shimura variety for the Hamilton quaternion endomorphism
algebra Fq.

5 Corresponding Kuga-Satake varieties

We use the method developped in [12] and [10]. The detailed calculation and argument are
exposed in [2] also.

Let us consider the lattice T’ defined by the intersection matrix A = U(2) & U(2) @ (-214)
and V, =T®k (k=R or Q). Let Q(z) denote the quadratic form on T and at the same time
on Vi. Let Tens(T) and Tens(V;) be the corresponding tensor algebras. And we let Tenst(T)
and Tens* (V) denote the subalgebras composed of the parts with even degree in T'ens(T) and
Tens(Vy), respectively. We consider the two sided ideal I in Tens¥ (V}) generated by elements
t®z — Q(x) for z € Vi, and the ideal Iz in Tens(T) is defined by the same manner. The
corresponding even Clifford algebra is defined by

Ct(Vk,Q) = Tenst (Vi)/1.
By the same manner, we define
CH(T,Q) = Tens*(T)/Iz.

We note that C*(VR,Q) is a 128 dimensional real vector space and C* (T, Q) is a lattice in it.
So we obtain a real torus '

T = ct (VR, Q)/C+ (T1 Q)
Let F denote the quaternion algebra
Qe Q:idQj® Qij

with i = j2 = —1. By some routine calculations of the Clifford algebra we obtain the following.
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Proposition 5.1 We have an isomorphism of algebras Ct(Vq,Q) = M4, F) & M(4,F).

Let a complex vector = (n1,---,7s) be a representative of a point n = [n,---,78] € D*.
So it has an ambiguity of the multiplication by a non zero complex number. Put n = s+it (s,t €
R?®). If we impose the condition (st)2 = —1 in C*(VR,Q), the representative is uniquely
determined up to a multiplication by a complex unit. We denote it by

n=my(n) + imz(n).
Put
m(n) = my(n)ma(n).

It is uniquely determined by n without any ambiguity. According to the imposed condition,
the element m(n) € Ct(VR, Q) defines a complex structure on C*(Vg, Q) by the left action.
It induces a complex structure on the real torus 7R also.

Let {€1,+-,€8} be a basis of T with the intersection matrix U(2) & U(2) @ (—214), and let

{e1,--,es} be a orthonormal basis of V given by
Ploo o
0 0 3 -3
(el,-'-,€3)=(€1,---,8)( 1 __% (2) 02 @(14))‘
2
0 o 3 -}

Then the corresponding intersection matrix takes the form I @ (—1I2) @ (—214).
Let ¢ be an involution on C*(V,Q) induced from the transformation

L€y ®€1‘2 ®"'®eik '—)eik®"'®€{2®e|’1
for the basis. Set o = 4eze;. According to the method in [St] we know that
E(z,y) = tr(az'y)

determines a Riemann form. So the triple (T, m(7n), E(z,y)) determines an abelian variety.
We denote it by A*(n), that is so called the Kuga-Satake variety attached to the K3 surface
corresponding to the period 7. In this way we can construct a family of abelian varieties

At ={A*(n) : ne D'}

induced from the lattice T parameterized by the domain D*. We can construct the ”conjugate
family”

A~ ={A(n) : ne D7)
parameterized by
D= ={n=[m, - ,ms]: *nAn =0, '[An >0, S(ns/m) < 0}

by the same procedure with the Riemann form E~(z,y) = —tr(az'y). The right action of
C*(Vq,Q) on C*(VR,Q) commutes with the left action of m(n). So we have

C*(Tq) C End(A*(7))® Q
for any A*(n). For a general member 5 € D*, the endomorphism ring is given by
Endq(A(n)) = End(A(7)) ® Q = C*(Vq).

According to Proposition 6.1 we obtain :
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Theorem 5 For a general member n € DY, A*(n) is isogenous to a product of abelian vari-
eties (A1(n) x A2(n))* where A1(n) and Az(n) are 8-dimensional simple abelian varieties with
EndQ(Ai(T))) = FQ (1 = 1,2).

Remark 5.1 Here we describe the relation between A;(n) and As(n). Now we define the linear
involution * on VR by
ej=—e and e=¢ ((=2,---,8).

It can be eztended on Ct(VR,Q) as an automorphism of algebra. We define an involution o
onD :

c:D—7D, (noo""yTN)'-)(_7767"7]007773’"'7'\7’)-

So we have DI = D_. It is easy to check that we have

Az(m) ~ A1(n°), Ai(n) ~ A2(n°),

where ~ indicates the isogenous relation.

E. Freitag and C. F. Hermann [1] study a similar family of lattice K3 surfaces from a
different view point. We think that it should be clarified the exact relation between their
family and our F.
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