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Homeomorphism groups of finite topological spaces
and Group actions
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As being pointed out by several authors, finite topological spaces have more
interesting topological properties than one might at first expect. In this short article,
we investigate the homeomorphism groups of finite spaces with group action. In
particular, we study the homeomorphism groups of fixed point set X¢ and G-
actions on homeomorphism groups induced by given G-action on X, where X is a
finite topological space with a G-action.

1 Introduction

Let X be a finite set, and let X,, denote the n-point set {ml,zé, +++,Z,}. Let 7 be a
topology on X, that is, 7 is a family of subsets of X which satisfies:

(1) 0T, XeT;
(2) ALBeT=AUBEeT,
(3) AABeET=ANBeT.

A finite set X with a topology is called a finite topological space or finite space briefly. A
finite topological group is also defined canonically, but it is not assumed to satisfy any
separation axioms. We say that a finite topological space (X, T) is a finite Tp-space if it
satisfies the Tp-separation axiom. }
As several authors have pointed out, finite topological spaces have more interesting
topological properties than one might at first expect. It is remarkable that for every finite
topological space X, there exists a simplicial complex K such that X is weak homotopy
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equivalent to | K| ([4]), and that the classification of finite topological spaces by homotopy
type is reduced to a certain homeomorphism problem ([6]). Some relations with simple
homotopy theory are revealed in [5]. Group actions on finite spaces have been also studied
by several authors ([1], [3], [7]). In [7], Stong proved rather surprising results for the
equivariant homotopy theory for finite Tp-spaces. The homeomorphism groups of finite
topological spaces were studied in [3]. One can find a survey of the theory of the finite
topological spaces from topological viewpoints in [2].

Let G be a finite topological group, (X,7) a finite space with G-action. The purpose
of the present article is to study the homeomorphism groups of the G-fixed point set X G
and the G-actions on Homeo(X). According to [4], for every finite space X, there exists a
quotient space X of X such that X is homotopic to X and satisfies Ty-separation axiom.
In [3], we proved the following splitting exact sequence

] — H[z]e)-(Homeo(ngl([a:])) —* > Homeo(X) — Homeo(X)y —— 1,

where Homeo(X )x is a subgroup of Homeo(X) which is denoted as Homeox (X) in [3].

The rest of this article is organized as follows. In section 2, we review the structure of
Homeo(X) which was studied in [3]. In section 3, we study the homeomorphism groups
of fixed point set X €, where X is a finite topological space with a G-action. Section 4 is
devoted to studying G-actions on Homeo(X), in particular,investigating the fixed point
sets.

2 Homeomorphism groups of finite topological spaces

Let (X,,7) be a finite topological space. Let U; denote the minimal open set which
contains z;, that is, U; is the intersection of all open sets containing z;. We see that
{U1,Us,---U,} is an open basis of 7.

Let X be a finite topological space. We define an equivalence relation ~ on X by

Z;~ Tj if Ui = Uj.
Let X be the quotient space X/ ~, and vy : X — X the quotient map. We note that
ux(x,-) = Ui N Ci,

where C; is the smallest closed set containing z;. jFrom now on, we denote vx(z) € X
by [z]x or briefly [z]. The following proposition bridges the gap between general finite
topological spaces and finite Tp-spaces.

Proposition 2.1 ([4] : Theorem 4). Let X and Y be finite topological spaces. Then
the following hold.




(1) The quotient map vy : X — X is a homotopy equivalence.
(2) The quotient space X is a finite Typ-space.

(8) For each continuous map ¢ : X — Y, there ezists a unique continuous map @ :
X — Y such that vy o p = @ ovy.

Let 6x : Homeo(X) x X — X be the natural action. According to [3], there exists
unique continuous homomorphism 7 : Homeo(X) — Homeo(X) such that the following
diagram commutes:

Homeo(X) x X X X

wxuxl l"x

Homeo(X) x X — X
%

The product []i,cx Homeo(vy'([z])) is identified with the set of maps F:X -
[zjex Homeo(vx'([z])) with F([z]) € Homeo(vk'([z])) for every [z] € X. Let F be
an element of [] .z Homeo(vy'([z])). Then, F defines a map «(F) : X — X by
(F)(z) = F(|z])(z), under above identification. It is easy to see that . is a group
homomorphism. Set a subset Homeo(X)x of Homeo(X) by

#(la]) = #[z] for every [z] € X, } |

omeo(X)x {f € Homeo( ); where the numbers are counted as subsets of X

We see that Homeo(X)x is a subgroup of Homeo(X). In [3], we proved the following
theorem.

Theorem 2.2 ([3] : Theorem 4.7). Let X be a finite topological space. Then, the
following hold.

(1) Homeo(X)x = Im(r).
(2) The sequence
1 — Tlaex Homeo(vg'([z])) —— Homeo(X) —— Homeo(X)y — 1

s a splitting exact sequence.

3 Homeomorphism groups of fixed point sets

Let G be a finite topological group, (X, 7) a finite space with G-action. In this section
we study the homeomorphism groups of the G-fixed point set X€. In this section, we will
prove the following theorem.



Theorem 3.1. Let G be a finite topological group, (X, T) a finite space with G-action.
Then, there exists a splitting exact sequence

1 — H[m]EXHomeo(u)}l([x])G) L, Homeo(X ) 2, Homeo(X%)ye — L.

Lemma 3.2. Let G be a finite topological group, (X,T) a finite space with G-action.
Then, it holds that

H Homeo(vy* ([z])¢) = H Homeo(vy([z])%).
[z]eXE [z]eX
Proof. Since XG is a subset of X, we see that H[m]e e Homeo(vx!([z])¢) C
[Tizjex Homeo(vg! ([z])%). Since vy (|z])¢ = @ for [z] € X — X6, the equality holds. [
Lemma 3.3. Let G be a finite topological group, (X, T) a finite space with G-action. For
every x € X , it holds that
vxe " ([z]xe) = (v ([z]x))°.

Proof. Under the condition z € X G, it holds the following equivalences.

y € vxe~!([z]xe) <= vxs(y) = [z]xo
<z ~yin X®
<>z ~yin X and z,y € X¢
<=y € XS and vx(y) = [z]x
>y XS and y € vz (alx)
=y € (vx'([z]x))°

Proof of Theorem 3.1 By Lemma 3.2 and Lemma 3.3, we have
H Homeo(vxe 2 ([z]x¢)) = H Homeo(vy!([z])€) = H Homeo(vx!([z])%).
[z}eXS [z]leXC [z]leX
If we apply the exact sequence in Theorem 2.2 for X¢, then the sccond term is nothing
but H[w] xc Homeo(vxe~*([z]x<)). This completes the proof of Theorem 3.1. O

Corollary 3.4. Let (X,T) be a finite space. Put G = Homeo(X) with the compact open
topology. Then the G-fized point set X€ of the natural continuous G-action on X is a
Ts-space.

Proof If vz!([z]) consists of more than two points for [z] € #, it holds that vy ([z])¢ =
8, thereby the group [],c & Homeo(vx'([z])¢) is trivial. Hence we have Homeo(X C)
Homeo()f G)xe, which has discrete topology. According to [3], we see that X G is a Tp-
space. O




4 Group actions on homeomorphism groups

Throughout this section, let G be a finite topological group, (X, T) a finite space with
continuous G-action ¢ : G x X — X. Let ® : G — Homeo(X) be the continuous
homomorphism satisfying ¢ = 6 o (® x idx), where 8 is the natural action of Homeo(X)
on X. In this section, we consider group actions on Homeo(X).

Lemma 4.1. Let G be a finite topological group. For any g € G, let U, denote the
minimal open neighbourhood of g. For given elements g and h of G ,if an open set O
contains gh, O also contains UUy = {g'h'|¢' € Uy and b’ € U, }.

Proof. Since G is a finite topological group, U, and Uy are connected components
of G. By the continuity of group operations, U,U}, is a connected neighbourhood of gh.
Hence, we have U,U, C Uy, C O. O

Lemma 4.2. The map 9 : G x Homeo(X) — Homeo(X) defined by (g, f) = ®(g)o fo
®(g™1) is a continuous action of G on Homeo(X).

Proof. It is easy to see that % is a G-action. We prove the continuity of ¢. For
any non-empty open set O of Homeo(X), fix an arbitrary point (g, f) € ¥~1(0). Since
¥(g, f) = ®(g) o f o ®(g~") € O and both ®(g) and f are homeomorphisms on X, by
Lemma 4.1,

¥(g, f) € Us(g) Uy Ugg-1y C O
holds. This implies that

(9, f) € 2 (Us(g)) x Uy C~1(0).

Since its middle term is open in G X Homeo(X), it completes the proof. O

In this section, we study the structure of the G-fixed point set Homeo(X)®, which is
denoted by Homeo(X)®. For using the exact sequence of Theorem 2.2, we will define
similar G-actions on [, x Homeo(vy'([z])) and Homeo(X ).

Lemma 4.3. Let F be an element of [[;1cx Homeo(vy'([z])). Given g € G, there ezists
a unigue element F' € [] 5% Homeo(vx'([z])) such that o(F') = ®(g) o «(F) o ®(g7?).

Proof. For any z € X, it holds that
®(g) o «(F) 0 ®(g7)(z) = ¥(g)(UF)(@(97")(2))) = &(9)(F([®(g™)(z)])(B(97")(2)))-

We see that F([2(g7")(2)])(2(97")(2)) € vx'([®(97")()]). Since &(g) maps v’ ([2(g7")(=
onto vz ([®(g)o®(971)(2)]) = vx'([z]x), it holds that ®(g)o(F)od(g7?)(z) € vi'([z]x).
Hence, there exists an element F' € [];, % Homeo(v3'([z])) such that t(F') = ®(g)oc(F)o
®(g™?). Since ¢ is injective, F' is determined uniquely. O



Lemma 4.4. The map 1o : G X [[ex Homeo(vx'([2])) = [lizex Homeo(vy*([z])) de-
fined by vo(g, F) = . 1(®(g) 0 L(F) o ®(g™1)) is a continuous action of G on

[T x Homeo(vx' ([z]))-

Proof. It is easy to see that ¢ is a G-action. Since []cx Homeo(vy' ([z])) has the
trivial topology, ¥ is continuous. O

Lemma 4.5. Let G be a finite topological group, (X, T) a finite space with continuous
G-action p : Gx X — X. Then, the map ¢ : Gx X — X defined by ¢(g, [z]) = [®(g)(x)]
is a continuous action of G on X.

Proof. Since a homeomorphism preserves the equivalence relation, ¢ is well defined.
It is easy to see that ¢ is a G-action on X. Since in the following commutative diagram,
id x vx is able to be regarded as a quotient map, the continuity of vx o ¢ implies the

continuity of @.
GxX 25 X

idx:le lVX

GXXA‘-——T—‘PX
14

Lemma 4.6. Let 3, : X — X be a homeomorphism on X defined by 4,(|z]) = ¢(g, [2]).
The map 11 : G x Homeo(X) — Homeo(X) defined by ¥1(g, f)([z]) = b4 0 f 0 pg-1([z])
is a continuous action of G on Homeo(X) and it holds that

(g, f) = n(®(g)) o fon(B(g7H))

Proof. It is easy to see that 1, is a G-action on Homeo(X). The continuity of 9 is
obtained by an analogous discussion to Lemma 4.2. For any g € G and [z] € X, we have
Bo([2]) = @(g, [z]) = [®(g)(2)] = m(®(g))([z]), which proves the required formula. O

Lemma 4.7. Under the G-action v : G x Homeo(X) — Homeo(X), Homeo(X)x is a
G-invariant subgroup of Homeo(X).

Proof. Since ®(g) is a homeomorphism on Homeo(X), we have #(vx'([8(g)(2)])) =
#(vx([z])). Hence, we obtain m(®(g)) € Homeo(X)x, thereby (g, f) = m(®(g)) o f o

~

m(®(g~')) € Homeo(X)x, which implies that Homeo(X)x is a G-invariant subgroup of
Homeo(X). O

Theorem 4.8. A sequence of the G-fized point sets
1 —— Tluex Homeo(vz'([z])¢ —— Homeo(X)S ~"— Homeo(X)§

is an ezact sequence of finite topological groups, where 6 and 7€ are the restrictions of ¢
and 7 to the fized point sets respectively.



Proof. The continuity of :© and 7% are follows from the continuity of + and 7. Since

¢ is injective, € is injective.

Since for any element F' € J],;cx Homeo(vyg!([z]))¢ it holds that (~1(®(g) 0 L5(F) o
®(g7)) = F, 1°(F) is in Homeo(X)C. For any f € Homeo(X)®, we observe that

b1(9,7%(f)) = 1(2(9)) o 7E(f) o m(B(g 7)) = 1(B(g) © f 0 B(g71)) = 7(f) = 7%(f).
According to definition, we obtain
(7% 0 ) (F)([2]) = [C(F)(2)] = [F([z])(2)] = [z] = idx([=])

for every F € []j,;;cx Homeo(vy'([z]))¢ and every [z] € X. Hence, it holds that 7€ o
LG(F) = idy for every F € []},)cx Homeo(vx' ([z])). Let f be an element of ker 7°. Then,
f(z) € [z] for every z € X, thereby f defines an element F € [] 1 % Homeo(vy' ([z])) by
F([z])(z) = f(z) for every z € X. Then +(F) = f. Moreover, F satisfies that

LH2(g) o u(F) 0 ®(g7)) =17 (B(g) 0 fo B(gT)) =) = F,

which shows ker(7¢) C Im(.%). O

Remark 4.9. By Theorem 4.8, we have an exact sequence of finite topological groups
1 —— [Tex Homeo(vz!([s]))° —— Homeo(X)S — Im(r®) —— 1.

In general, however, this sequence does not split and Im(7€) # Homeo(X)$.

Example 4.10. Let (X35, 7) be a finite topological space which was treated in [3], that
is, let (X3g, T) be a finite topological space with the topology which has the following open
basis.

{ {z1, 32}, {21, T2, 23}, {24, 25}, {Z4, T5, T6 }, {27}, {77, 78} }-

Then, the quotient space X is the set of six points

{[z:] = [22), [2a], [2a] = [z5), [m6], [27], [zs]}

with the topology generated by a open basis

{{['Tl]}’ {[le ["1:3]}1 {{274]}1 {[.’174], [xﬁv]}1 {[x7]}’ {[:1':7], [xS]}} .
We see that

Homeo(X) & &3, Homeox(X) = Z,, H Homeo(vy!([z])) = Z; x Z,,
z]leX

and consequently,
Homeo(X) £ (Zy X Zs) X Zg = Dy,



where Dy is a dihedral group of order 8.
Let a and b be two homeomorphisms on Xg defined by

(123456738 d oo (12
" \21345678 “\4 5
that is, a(z;) = Ta(z;) and b(Z;) = Zs(z;). We observe that

Homeo(X) = Dy =<a, b> and o =b*=abab=1.

For various group actions on X we investigate the group actions on the homeomorphism
groups induced by them. We note that Homeo(X)% £ Z, for any finite topological group
G. We classify the fixed point sets of G-actions by observing Im® : G — Homeo(X).

Im(®) [1;.1cx Homeo(vx'([2]))¢ Homeo(X)® Im(n®)
Homeo(X) <P >=Z, <P >27Z, 1

<b> < 1B > 2, <b>27, ;0’;32&2)9{ ~z,
A e e
z :ll:a>>or <P > Z, < ab,ab® >X Zy X Zy ;oﬁzz)(}:)g ~7,

We note that if Im(®) is < b°> >, < ab > or < ab® >, the exact sequences of Remark
4.9 split.
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