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Pregeometric Shells
of a Rational Quartic Curve
and of a Veronese surface

姫工大 理 遊佐 毅 (Takeshi Usa)
Dept. of Math. Himeji Institute of Technology *

Abstract

This is a resume of the author’s talk given at R.I.M.S. on June 182003 and is a partial revision of a
recent paper [23] with additional results. The theme of that talk was to give a supporting evidence
for general conjectures raised in [20] (cf. Conjecture 0.1). We classify all the pregeometric shells of
a rational normal quartic curve $X$ (resp. of a Veronese surface $X$ ), namely the closed subschemes
in $\mathrm{P}^{4}(\mathbb{C})$ (resp. in $\mathrm{P}^{5}(\mathbb{C})$ ) which include $X$ and whose homogeneous coordinate rings satisfy the $\mathrm{T}\mathrm{o}\mathrm{r}$

injectivity condition. This $\mathrm{T}\mathrm{o}\mathrm{r}$ injectivity condition is the same as to impose that for every non-
negative integer $q$ , minimal generators of $q$-th syzygy of its homogeneous coordinate ring form a part
of minimal generators of $q$-th syzygy of the homogeneous coordinate ring $R_{\mathit{1}\iota}$ of $X$ . We see that
all those pregeo metric shells turn out to be reduced and irreducible, and moreover the varieties of
A-genus zero (embedded by their complete linear systems, cf. Remark 1.3), namely the varieties of
minimal degree, as predicted from these general conjectures.
Keywords: pregeometric shell, rational quartic curve, Veronese surface, $\triangle$-genus, variety of minimal
degree

\S 0 Introduction.
Dreaming to construct a theory of projective embeddings modeled after the classical Galois theory, we
presented several conjectures and problems on the geo metric structures of projective embeddings in our
previous paper [20]. One of the key concepts appeared in these conjectures and problems is “pregeometric
shell” (abbr. $\mathrm{P}\mathrm{G}$-shell; cf. Definition 2.4), which was first introduced in [19] with expectation that it
may play a similar role as a concept of “intermediate extension field” in the Galois theory and rnay cut
our way to the dream.

We already saw in [20] and [22] that the (pre)geometric shells inherit many excellent properties (cf
Proposition 2.5, Corollary 3.7) from their (pre)geometric core (abbr. $(\mathrm{P})\mathrm{G}$ core ; cf. Definition 2.4),
which reflect the structure of higher syzygies of the homogeneous coordinate ring of the (pre)geometric
core. “Pregeometric shells” had appeared implicitly in many classical works (cf. [13], [15], [5], [7], [16],
$[6],[3]$ etc.) as actual examples. However, there are still deep mysteries on pregeometric shells left (cf.
[20] $)$ . For example, the following conjectures are still open with slight modifications (precisely, only the
first one is added after publishing of [20] $)$ .
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Conjecture 0.1 We fix the total space $P=\mathrm{P}^{N}(\mathbb{C})$ with the tautological ample line bundle $O_{P}(1)=$

$O_{P}(H)$ and consider its closed subschemes defined over $\mathbb{C}$ with induced polarizations.

(0.1.1) Assume that a closed subscheme $W$ is a pregeometric shell of an arithmetically Cohen-Macaulay
closed subscheme V. Then the subscheme $W$ is also an arithmetically Cohen-Macaulay sub-
scheme. (N.B. If $dim(W)=dim(V)$ , then this is obviously true by Auslander-Buchsbaum for
mula on the depths and the homological dimensions. Thus, in this case, $e.g$ . if $dim(V)>0,$
then the case: $W=V\mathrm{I}\mathrm{I}\{1 pt.\}$ never occurs.)

(0.1.2) Assume that a closed subscheme $W$ is a pregeometric shell of a clos $ed$ subvariety $V\subseteq P$ . Then
the subscheme $W$ is also a variety, namely reduced and irreducible. (N.B. When the subscheme
$W$ is a scheme of codimcnsion one, this is true. cf. Lemma 3.2, Proposition 2.5 (2.5.1)$)$

(0.1.3) Take closed subvarieties $V$ and $W$ of positive dimension. Assume that the subvariety $V$ sat-
isfies the arithmetic $D_{2}$ (depth $\geq 2$) condition, namely the natural map $H^{0}(P, O_{P}(m))\mathrm{e}$

$H^{0}(V, O_{V}(m))$ is surjective for every integer $m$ . If $W$ is a pregeometric shell of $V$ , then on
their $\triangle$ -genera $(\mathrm{e}.\mathrm{g}. \triangle(V, \mathrm{O}_{V} (1))$ $:=dim(V)+deg(O_{V}(1))-h^{0}(V, O_{V}(1))$ ; (cf. [6]), the in-
equality:

$\triangle(\mathrm{I}/, O_{V}(1))$ $\geq\triangle(W, O_{W}(1))$

holds, ($e.g$ . As a typical case, if the polarized manifold ( $V$, Oy (1)) is arithmetically no rmal and
is a hypersurface cut of the polarized manifold $(W, O_{W}(1))$ , then $W$ is a $PG$-shell of $V$ and
this inequality is obviously true. On the other hand, if we assume that $V$ is non-degenerate
arithmetically Buchsbaum, and $W$ is a hypersurface, then the result 71 $7f$ on spec $ial$ cases of
Eisenbud-Goto conjecture shows that this claim is also true.)

(0.1.4) Take a closed subvariety $W$ , a vector bundle $E$ on $W$ , a section $\sigma\in\Gamma(W, E)$ , and put: $V=Z(\sigma)$ .
Assume $:(a)$ the subscheme $V$ is a variety and satisfies the arithmetic $D_{2}$ condition; (b) the
restricted section $\sigma|_{Reg(W)}\in\Gamma(Reg(W), E|_{Reg(W)})$ is transverse to the zero section on the open
set $Reg(W),\cdot(c)W$ is a pregeometric shell of $V$ and $Reg(V)\subseteq Reg(W)$ . Then the bundle
$E$ is a $nef$ bundle (N.B. If we do not assume the arithmetic $D_{2}$ condition on $V$ , we have $a$

counter-example, cf. [21]. On the other hand, if $W=P$ and rank(E) $=2,$ this claim is true).

Once we fix a closed scheme $V$ , its $\mathrm{P}\mathrm{G}$-shells generally exist infinitely many, but by the elementary
properties of $\mathrm{P}\mathrm{G}$-shells (cf. Proposition 2.5 (2.5.4)), they are bounded by an algebraic family of finite
components, which suggests the theoretical possibility of classifying its $\mathrm{P}\mathrm{G}$-shells completely. Thus, to
find evidences for these conjectures, what we should do first is to classify all the $\mathrm{P}\mathrm{G}$-shells of the variety
$V$ of $\triangle$-genus zero.

Applying an elementary property (cf. Lemma 2.11) of $\mathrm{P}\mathrm{G}$-shells, we can easily reduced this problem
to the case that the variety $V$ is a non-degenerate rational normal curve of degree $d\geq 3.$ Then the easiest
but non-trivial case is the case : $d=4.$ This case also relates with a Veronese surface which is the only
heretical (and the most interesting) case in the list of the varieties with $\triangle$-genus zero.

In this article, with a help of a classical result on varieties of minimal degree (cf. [12]), or of Fujita’s
modern theory on polarized varieties by using $\triangle$-genera (cf. [6]), using rather primitive and classical
methods, we study these two cases as a first step toward those conjectures. After the classifications of
$\mathrm{P}\mathrm{G}$-shells, wc see that all the claims above are affirmative in these two cases.

The author would like to express his deep gratitude to Prof. M. Green for inviting him to UCLA,
which brought hirn calm days and a nice environment for research, to Prof. T. Ashikaga for much incentive
for this classification (cf. [1]), and to Prof. K. Konno for giving a chance of the talk to the author.
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\S 1 Main Results.
To give an overview, let us summarize our main results as two main theorems. We should emphasize
again here that our “schemes” of course may have a non-equidimensional component or a non-reduced
structure. For precise definitions on terminology, see the next section 52.

The first main theorem is on the classification of $\mathrm{P}\mathrm{G}$-shells of a rational normal quartic curve. We
will give its full proof in the latter part of this article.

Main Theorem 1.1 Let $X$ be a non-degenerate non-singular rational quartic curve in a 4-th projective
space: $P=\mathrm{P}^{4}(\mathbb{C})$ with the tautological line bundle $O_{P}(1)=O_{P}(H)$ , and a closed subscheme $W\subseteq Pa$

pregeometric shell of $X$ with coclirn(W, $P$ ) $>0.$ Then the scheme $W$ is one of the following cases.

(1.1.1) If codim $(W)=\mathit{1}$ , then $W$ be a divisor of $P$ and an irreducible and reduced quadric hypersurface
of rank 3, 4, or 5($\iota.e$ . non-singular). None of these quadric hypersurfaces is a FG-shell(cf.
DefinitiOn2.4) of $X$ .

(1.1.2) If codim(W) $=\mathit{2}$ , then the scheme $W$ is irreducible and reduced. The polarized variety $(\mathrm{W}, O_{W}(1))$

is of $\triangle$ -genus zero (of minimal degree). More precisely, the surface $W$ is a projective cone of
a $nor\iota$-singular twisted cubic curve or $a$ one point blow-up of a projective plane $\mathrm{P}^{2}(\mathbb{C})$ . In the
former case, the curve $X$ passes through the vertex of the cone, arid is not a Cartier divisor
Hence there is no shell frame of $X$ in W. In the latter case, the variety $W$ is embedded by $a$

linear system coming from the conies passing the center of blow-up, and the curve $X$ is a $nef$

(Cartier) divisor on $W$ (thus a unique shell frame ($O_{W}(X)$ , $\sigma x$ ) exists), which $co$ omes from $a$

singular irreducible and reduced cubic plane curve passing through the center of blow up $doubl\mathrm{s}/$

or from an irreducible conic which does not pass through the center of blow-up (more precisely,
cf. Proposition 3.6 and $S\mathit{4}\cdot$ ).

(1.1.3) If codim(W) $=\mathit{3}$ , then the scheme $W$ exactly coincides rryith $X$ .

Including the trivial case: codim(W) $=0$ , i.e. $W=P$, a polarized scheme $(W, O_{W}(1))$ which is $a$

pregeometric shell of the curve $X$ is always a variety of $\triangle$ -genus zero (of minimal degree), and therefore
an anthrnetically Cohen-Macaulay variety.

Based on Main Theoreml.l , applying Lemma2.11, we can get the next main theorem on a classification
of $\mathrm{P}\mathrm{G}$-shells of a Veronese surface which is the only heretical case in the classification on the varieties of
$\triangle$-genus zero. In this article, we omit its proof because of the page limit. For its full proof, see [24].

Main Theorem 1.2 Let $X$ be a Veronese surface, namely the image of a projective $pla$ ne $\mathrm{P}^{2}(\mathbb{C})$ by $a$

Veronesean embedding of degree 2 given by a complete linear system : $|\mathrm{O}\mathrm{p}\circ-(\mathrm{C})(2)|$ , in a 5-th projective
space: $P=\mathrm{P}$“ $(\mathbb{C})$ with the tautological line bundle $O_{P}(1)=O_{P}(H)$ , and a closed subscheme $W\subseteq Pa$

pregeometric shell of $X$ with codim(W, $P$ ) $>0.$ Then the scheme $W$ is one of the following cases.

(1.2.1) If codim(W) $=\mathit{1}$ , then $W$ be a divisor of $P$ and an irreducible arid reduced quadric hypersurface
None of these quadric hypersurfaces is a $FG$ shell of $V$ .

(1.2.2) If codim(W) $=\mathit{2}$ , then the scheme $W$ is $i$ reducible and reduced. The polarized variety $(W, Ow(1))$

is of $\triangle_{-}$gervus zero (of minimal degree). More precisely, The singular locus Sing(W) of $W$ is only
one point $v_{0}$ , which is included by the surface V. The one point chordal variety(cf. Lemma2. 15):
$Cd(v_{0}, V)$ of the surface $V$ coincides with the variety W. Take a hyperplain $H$ which does not
pass the point $v_{0}$ and intersects the variety $W$ transversely. Then, the hyperplain cut $W\cap H$ is
isomorphic to $a$ one point blow up of $\mathrm{P}^{2}(\mathbb{C})$ . Thus, the variety $W$ is also a projective cone of $a$

one point blout up of $\mathrm{P}^{2}(\mathbb{C})$ .
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(1.2.3) If codim(W) $=d\mathit{6}$, then the scheme $W$ exactly coincides with $X$ .

Including the trivial case: codim(W) $=0,$ $i.e$ . $W=P,$ a polarized scheme $(W, O_{W}(1))$ which is $a$

pregeometric shell of the curve $X$ is always a variety of $\triangle$ -genus zero (of minimal degree), and therefore
an arithmetically Cohen-Macaulay variety.

Remark 1.3 With respect to a polarized variety $(V, L)$ . namely a pair of a projective variety $V$ and
an ample line bundle $L$ on $V$ , the main concern of Fujita $\prime s$ theory or of the theory of $\triangle$ -genus is in
the geometric analysis of the embedding into a weighted projective space associated to the line bundle $L$

instead of the embedding into a usual projective space by the linear system $|L|$ . However, if we restrict
ourselves to the case that the line bundle $L$ is simply generated, or the variety $V$ is embedded into $a$

usual projective space with the “arithmetic $D_{2}$ “conditeon, Fujita’s theory can be applied directly to our
problems. Thus, in this article, if ate say that the subvariety $V\subset P=\mathrm{P}^{N}(\mathbb{C})$ is a variety of $\triangle$ -genus
zero, it means that the pair ( $V$, Ox (1) $|\mathrm{v}$ ) is a variety of $\triangle$ -genus zero in the sense of Fujita ’s theory and
the va riety $V$ is embedded into $P$ by the comlete linear system $|$ Ox (1) $|$

$V$
$|$ (and therefore the variety $V$

is non-degenerate in $P$), where the simple generation of the (very) ample line bundle $O_{P}(1)|$ $V$ is always
guaranteed by Fujita’s theory for the variety of $\triangle$ -genus zero (cf. $[\mathit{6}f$).

j2 Preliminaries.
To avoid needless confusions, let us confirm our notation used in this article.

Notation and Conventions 2.1 In this paper, we use the terminology of [8] without mentioned, and
always admit the conventions and use the notation below for simplicity.

(2.1.1) Every object under consideration is defined over the field of complex numbers C. We will work in
the category of algebraic schemes over $\mathbb{C}$ and algebraically holomorphic morphisms (or rational
maps) or in the categories of coherent sheaves and their ($O$ -linear) homomorphisms othe rwise
mentioned.

(2.1.2) Let us take a complex projective scheme $X$ of dimension $n$ and one of its embeddings $j$ : $X\mathrm{c}arrow$

$P=\mathrm{P}^{N}(\mathbb{C})$ . The sheaf of ideals defining $j(X)$ in $P$ and the conormal sheaf are denoted by $I_{X}$

and $N_{X/P}^{\vee}=I_{X}/I_{X}^{2}$ , respectively. Taking $a\mathbb{C}$ -basis $\{Z_{0}, \ldots, Z_{N}\}$ of $H^{0}(P$, Ox (1 ) . Then we
put.$\cdot$

$S$ $:=$ $\oplus H^{0}(P, O_{P}(m))\mathrm{Y}$ $\mathbb{C}[Z_{0}, \ldots, Z_{N}]$

$m\geq 0$

$s_{+}$ : $= \bigoplus_{m>0}H^{0}(P, O_{P}(m))\cong(Z_{0}, \ldots, Z_{N})\mathbb{C}[Z_{0}$ , . . . ’
$Z_{N}]$

$\overline{R_{X}}$

$:=$ $\oplus H^{0}(X, O_{X}(m))$

$m\geq 0$

$\Pi_{X}$ $:=$
$\bigoplus_{m\geq 0}H^{0}(P, I_{X}(m))$

$R_{X}$ $:=$ $Im[Sarrow\overline{R_{X}}]\cong$ S/I[X.

In this case, the induced ample line bundle $j’ O\mathrm{O}(1)=j^{*}O_{P}(H)$ is denoted by $O_{X}(1)$ or $O_{X}(H)$ .
If the scheme $X$ itself is another projective space $\mathrm{P}^{n}(\mathbb{C})$ , then its tautological ample line bundle
$o_{\mathrm{r}P^{n}(\mathrm{C})}(1)$ is denoted simply by $O(1)$ without any letter to specify the space, otherwise mentioned
explicitly. Thus, if we consider the $d$ -th Veronesean embedding $j$ : $X\mathrm{c}arrow P=\mathrm{P}^{N}(\mathbb{C})$ for $X=$

$\mathrm{P}^{n}(\mathbb{C})$ , then there is an identification of the line bundles $O_{X}(H)=Ox$ $(1)=O(d)$ .
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(2.1.3) For a graded $S$ -module $E$ , the symbol $E(m)$ denotes the degree $m$ part of $E$ , namely
$E= \bigoplus_{m\in \mathrm{Z}}E_{(m)}$

.
The degree shift: $E(d)$ of the module $E$ means that $(E(d))(m):=$ E{ $\mathrm{d})$ . Affine sheafication of
the $S$ -module $E$ ($i.e$ . a canonically constructed $O_{Spec(S)}$ -module from a $S$ -module ) is denoted
by $E^{\sim}$ and projective sheafication of the graded $S$ -module $E(i.e.$ a canonically constructed
$o_{Proj(S)}$ -module from a graded $S$ -module ) is denoted by $E^{(\sim)}$ , respectively.

(2.1.4) For a coherent sheaf $F$ on a closed subscheme $V\subseteq P,$ we set the Hilbert polynomial of the sheaf
$F$ to be:

$N$

$A_{F}(m):=$ $\mathrm{x}(F(m))=E(-1)^{q}\dim(H^{q}(V, F(m)))$ .
$q=0$

In case of $F=Oy,$ we denote its Hilbert polynomial as $A_{V}(m)$ instead of $Ao_{v}(m)$ . Moreover,
if $(V, O_{V}(1))=(\mathrm{P}^{k}(\mathbb{C}), O_{\mathrm{I}\mathrm{P}^{k}(\mathrm{C})}(1))$, we simply write $A_{k}(m)$ for $\mathrm{J}_{\mathrm{P}^{k}(\mathbb{C})}(m)$ . (Precise properties of
Hilbert polynomials are referred to $[\mathit{1}\mathit{1}^{l},)$

(2.1.5) For a real valued function $f(x)$ defined on the field of real numbers $\mathbb{R}$ (or on the ring of rational
integers $\mathbb{Z}$), we define the (first) (backward) difference function to be: $(\mathrm{V}\mathrm{f})(\mathrm{x}):=$ f(x) $-f(x-1)$
and the $k$-th difference function to be $(\nabla^{k}f)(x):=(\nabla(\nabla^{k-1}f))(x)$ for a positive integer $k$ $(\mathrm{N}.\mathrm{D}$.
$(\nabla^{0}f)(x):=f(x))$ . The operator $\nabla$ is called (backward) difference operator.

(2.1.6) Let $B$ be a projective line $\mathrm{P}^{1}(\mathbb{C})$ . For a non-negative integer $e$ (or$.e$ to include $e=1$), we
set : $\pi$ : $\Sigma_{e}:=\mathrm{P}(O_{\mathrm{P}^{1}(\mathrm{C})}\oplus o_{\mathrm{F}^{1}}(\mathrm{C}) (-e))arrow B,$ ($i$ . $e$ . a rational ruled surface of degree $e$), $a$

curve $C_{e}$ in the surface $\Sigma_{\mathrm{e}}$ to be a tautological $\pi$ -ample divisor dete rmined by the vector bundle
Opi $(\mathrm{c})\oplus O_{\mathrm{P}^{1}}(\mathrm{C})$ $(-e)$ and a curve $f$ to be the fibre of the morphism $\pi$ .

We will need a classical and well-known result on the Picard group of a rational ruled surface (cf. [8]).

Lemma 2.2 Under the circumstances of (2.1.6), let us consider a rational ruled surface $\Sigma_{e}$ . Then the
curves: $\{f, C_{e}\}$ forrn $\mathbb{Z}$ -free basis of the Picard group $Pic(Ee)$ of the surface $\Sigma_{e}$ and have the following
properties.

(2.2.1) The intersection numbers are : $c_{e}^{2}=-e$ $\leq 0;f^{2}=0;$ and $\mathrm{f}$ .Ce $=1.$

(2.2.2) For integers $u$ artd $v$ ,

the chvisor $uf+vCe$ is very ample $\Leftrightarrow the$ $d\iota vis$or $uf+vC_{e}$ is ample 9 ” $v>0$ , $u>ve$ ”

(2.2.3) For integers $u$ and $v$ ,

the linear system $|uf+\uparrow’ C_{e}|$ contains an irreducible $\tau\iota \mathit{0}r\iota$-srngular curve $\Leftrightarrow it$ contains an irre-
ducible curve 9 ”$(u, v)$ $=(1,0)$ or $(0, 1))$. or $v>0$ , $u>ve$ ; or $e>0,$ $?’>0,$ $u=ve$ ”.

(2.2.4) On the canonical divisor of the surface $\Sigma_{e}$ , we have

$K_{\Sigma_{e}}=(-2-e)f+(-2)C_{e}$ .

Since in our classification, we have to consider non-reduced and non-equidimensional schemes, need an
accurate handling on their nilpotent structures, and can not reduce our problems to the case of reduccd
structures, we have to pay special attention to “primary (or irreducible)” decompositions of schemes.
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Definition 2.3 For a Noetherian scheme $W$ and finite number of its closed subschemes $\{V_{s}\}_{s=1r}^{k^{\mathrm{r}}}$ scheme
theoretic union $Y= \bigcup_{s=1}^{k}V_{s}$ is defined by an ideal sheaf $I_{Y}:=$ I $s=1k$ $I_{V_{\mathrm{s}^{\neg}}}$ , namely the kernel sheaf:
$Ker[O_{P}arrow\oplus_{s=1}^{k-}O_{V_{s}}]$ On the other hand, since there is no uniqueness of primary decomposition of ideals
in Noetherian rings, once if an arbitrary Noetherian scheme $Y$ which may have a nilpotent structure is
given first, then it is not so trivial to find its closed subschemes $\{V_{s}\}_{s=1}^{k}$ such that each topological space
$|V_{s}|$ of the subscheme $V_{s}$ is irreducible and the scheme theoretic union $\bigcup_{s=1}^{k}.V_{s}$ coincides with Y. Thus
we will restrict ourselves to the case that the scheme $Y$ is a closed subscheme of $P=\mathrm{P}^{N}(\mathbb{C})=$ Proj(S)
and will define its “primary decomposition” and “irreducible decomposition” (not uniquely). For the h0-
mogeneous ideal $\mathrm{I}_{Y}$ of $Y$ , $u$) $e$ have a homogeneous primary decomposition in the shortest representation:
$\zeta 1’=$ ’ $s=1k^{\wedge}\mathrm{J}_{s}$ , and we set 7. $:=(\mathrm{J}_{s})^{(\sim)}$ , $V_{s}:=(Supp(Op/J_{5}), O_{P}/J_{\mathrm{s}})$ for $s=1$ , $\ldots$ , $k$ . It is easy to see
that their scheme theoretic union $\bigcup_{s=1}^{k}$ $V$ coincides with Y. We call this finite set of closed subschemes
$\{V_{s}\}_{s=1}^{k}$

. as a primary decomposition of Y. Next we pick up all the minimal prime ideals of $\mathrm{I}_{Y}$ . Then
we may assume that $\{\mathrm{J}_{i}\}_{i=1}^{t}(t\leq k)$ are the primary ideals associated to these minimal prime ideals,
respectively As is well-known, only these primary ideals: $\{\mathrm{J}_{\mathrm{z}}\}_{i=1}^{t}$ (resp. only these “maximal” primary
component subschemes : $\{V_{i}\}_{i=1}^{t})$ are determined uniquely by the ideal $\mathrm{I}_{Y}$ (resp. by the subscheme $Y$).
Now, for $i=1,$ . . . ’

$t$ , $l\mathit{1}C\mathit{2}$ set a subscheme $U_{i}$ to be the scheme theoretic union:

$U_{i}:=V_{s}\underline{\mathrm{C}}V_{1}\cup V_{s}$
.

Then we call the finite set of closed subschemes $\{U_{i}\}_{\mathrm{z}=1}^{t}$ as an irreducible decomposition of Y. We
should make a remark that the homogeneous ideal $\lrcorner \mathrm{v}_{Y}$ does not have the irrelevant maximal ideal $S_{+}$ as
an associated prime by its definition, the homogeneous ideal $\mathrm{I}_{V_{\mathit{8}}}$ coincides with the ideal $J_{s}$ , and that the
homogeneous ideal $\mathrm{I}_{U_{l}}$ does with the ideal:

$\cap$ $\mathrm{J}_{6}$ .
$\sqrt{\mathrm{J}_{\mathrm{t}}}\subseteq\sqrt{\mathrm{J}_{\mathit{3}}}$

If $dim(Y)=n$ , then a primary component $V_{6}$ of dimension $n$ (resp. an irreducible component $U_{i}$ of
dimension $n$) is called a main pri mary component (resp. a main irreducible $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{t}/$

Now let us recall our key concepts for studying the geometric structures of projective embeddings,
the first two : ( “

$\mathrm{P}\mathrm{G}$ shell and (
$‘ \mathrm{G}$-shell”) ) of them were introduced first in [19]. On $\mathrm{G}$-shells, we have

slightly modified its definition from $V\subseteq Reg(W)$ in [19] to $Reg(V)\subseteq Reg(W)$ . By reconsidering classical
examples in Complex Projective Geometry including varieties of minimal degree, with standing on this
new point of view, we can find many good actual examples for these concepts in a number of works such
as [13], [15], [5], [7], [16], [6], [3] and so on.

Definition 2.4 (shells and cores) Let $V$ and $W$ be closed subschemes of $P=\mathrm{P}^{N}(\mathbb{C})$ which satisfy
$V\subseteq W$ (namely the inclusion of the defining ideal sheaves: $I_{V}\supseteq I_{W}$ in the structure sheaf $O_{P}$ of $Pj$ In
this case, the subscheme $W$ is called simply an intermediate ambient scheme of $V$) If the natural map:

$\mu_{q}$ : $Tor_{q}^{S}(R_{W}, S/S_{+})arrow Tor_{q}^{S}(R_{V}, S/S_{+})$

is injective for every integer $q\geq 0$ (abbr. $” \mathrm{T}\mathrm{o}\mathrm{r}$ injectivity condition” ), we say that $W$ is $a$ pregeometric
shell (abbr. $\mathrm{P}\mathrm{G}$-shell,) of $V$ and that $V$ is $a$ pregeometric core (abbr. $\mathrm{P}\mathrm{G}$-core) of W. Moreover, if $V$

and $W$ are closed subvarieties and the regular locus $Reg(W)$ of $W$ contains $Reg(V)$ , we say that $W$ is $a$

geometric shell (abbr. $\mathrm{G}$-shell) of $V$ and $V$ is $a$ geometric core (abbr. $\mathrm{G}$-core) of W. Furthermore, we
assume that (a) there exist a vector bundle $E$ on $W$ and a global section $\sigma\in\Gamma(W, E);(b)$ the zero locus
$Z(\sigma)$ (the scheme structure of $\mathrm{Z}(\mathrm{a})$ is defined by an ideal sheaf: $I_{Z(\sigma)}:=Im[$ $y$ : $E^{\vee}arrow O_{P}]$ ) coincides
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with $V$ including their scheme structures; (c) the restricted section $\sigma|_{Reg(W)}\in$ Reg(W), $E|_{Fteg(W)})$ is
transverse to the zero section on $Reg(W)$ , then we say that $W$ is $a$ framed geometric shell (abbr. FG-
shell of $V$ and $V$ is $a$ framed geometric core (abbr. $\mathrm{F}\mathrm{G}$ core of W. In this case, the pair $(E, \sigma)$ is called
$a$ shell frame of $V$ in W. For the subscheme $V$ , the total space $P$ and $V$ itself are called trivial PG-shells
(or trivial $\mathrm{G}$-shells if $V$ is a variety).

Let us recall a proposition on several elementary properties of $\mathrm{P}\mathrm{G}$-shells from [20]. The outline of
proof is referred to [20] (on the properties of $\mathrm{G}$-shells related to their restricted syzygy bundles and
infinitesimal syzygy bundles, which are not presented here, see [22] $)$ .

Proposition 2.5 Let $V$ and $W$ be closed subschemes of $P=\mathrm{P}^{N}(\mathbb{C})$ which satisfy $V\subseteq W.$

(2.5.1) If $W$ is a hypersurface ($i.$ $e$ . a divisor of $P$; cf. also Lemma 3.2), then $W$ is a pregeometric shell
of $V$ if and only if the equation of $W$ is a member of minimal generators of the homogeneous
ideal $\mathrm{I}_{V}$ of $V$ .

(2.5.2) Assume that the subscheme $V$ is a complete intersection. Then the scheme $W$ is a pregeometric
shell of $V$ if and only if the subscheme $W$ is defined by a part of minimal generators of $\mathrm{I}_{V}$ .

(2.5.3) Take a closed scheme $Y$ such that $V\subseteq Y\subseteq$ W. Assume that $W$ is a pregeometric shell
of V. Then $W$ is also a pregeometric shell of Y. In particular, the subscheme $W$ is also $a$

pregeometric shell of the $m$ -th infinitesimal $Jv\cdot\cdot,ighborhood$ $Y=(V/W)_{(m)}$ of $V$ in $W$ , ?1)here
$(V/W)_{(m)}=(|V|, O_{W}/I_{1\nearrow/W}^{m+1})$ .

(2.5.4) Fix the subscheme $V$ of codim(V, $P$ ) $\geq 2.$ Then all non-trivial pregeometric shells of $V$ form
non empty algebraic family of finite components (N.B. The family of all non-trivial $G$-shells of
$V$ may be empty even if $V$ itself is a smooth variety).

(2.5.5) If $W$ is a pregeometric shell of $V$ , then we have an inequality: arith.depth(V) $\leq$ arith.depth(W)
on their arithmetic depths. In particular, if $thc$ natural restriction map $H^{0}(P, O_{P}(m))$ $arrow$

$H^{0}(V, O_{V}(m))$ is surjective for all integers $m(i.e. R_{V}=\overline{R_{V}})$, then the natural restriction map
$H^{0}(P, O_{P}(m))arrow H^{0}(W, O_{W}(m))$ is also surjective for all integers $m(i.e.R_{W}=\overline{R_{W}})$ . In other
words, the arithmetic $D_{2}$ condition is inherited from pregeometric cores to their pregeometric
shells.

(2.5.6) If the subscheme $W$ is a pregeometric shell of the subscheme $V$ with arith.depth(V) $\geq 2,$ then we
have an inequality on their CastelnuovO-Mumford regularity(cf. [4]): $reg^{CaM}(V)\geq reg^{CaM}(W)$ .

(2.5.7) Assume that there exist $r$ hypersurfaces $D_{1}$ , . . . , $D_{r}$ in $P$ with homogeneous equations $F_{1}$ , $\cdots$ , $F_{r}$

of degree $m_{1}$ , $\cdots$ , $m_{r}$ , respectively, and satisfying the conditions :(a) $V=W\cap D_{1}$ ’ . . . $\cap D_{r}$ ,
(b) $H^{0}(W_{t}, O_{W_{\mathrm{t}}})=\mathbb{C}(t=0, \cdots, r)$, where $\mathrm{i}$ $0:=W$ and $W_{t}:=W\cap D_{1}\cap\ldots \mathrm{q}$ $D_{t}(t= 1, \cdots, r)$

; (c) the homogeneous equations $F_{1}$ , $\cdots F_{r}$ form an $O_{W}$ -regular sequence, namely the sequence :

$0arrow O_{W_{\mathrm{t}-1}}(-m_{t})arrow\cross F$
,

$\mathit{0}_{W_{\mathrm{t}-1}}$ ,

is exact for $t=1,$ $\cdots$ , $r$ . If arith.depth(V) $\geq 2,$ then $W$ is a pregeometric shell.

(2.5.8) Assume that the subscheme $V$ is non-degenerate, namely no hyperplane contains V. If $W$ has
a 2-linear resolution, $i$ . $e$ . the homogeneous coordinate ring $R_{W}$ of $W$ has a minimal S-free
resolution of the form : $0arrow R_{W}7$ $Sarrow$ Fi $(-2)arrow F_{2}(-3)arrow\cdots\vdash$ $Fp(-p ・1)$ $+-$ . .

’

where $F_{u}(v)$ denotes (&S(v) :a direct sum of several copies of $S$ with degree $v$ shift, then $W$ is
a pregeometric shell of V. (cf. also Corollary 3.7)
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Remark 2.6 Related to Proposition 2.5 there were two minor mistakes in the claims of [20]. The
first one was in the old version of the claim (2.5.6). The author had failed to attach the condition:
arith.depth(V) $\geq 2$ by a misprint, which is corrected in the improved version of [$\mathit{2}\mathit{0}f:math$.AGfOOOl 004.
The second one was a failure to attach the condition: $H^{0}(W_{t}, O_{W_{\mathrm{t}}})=\mathbb{C}(t=0, \cdots, r)$ of the claim
2.5, 7). Without this condition, the claim (2.5.7) is not true in general. A counterexample is given by

the next example.

Example 2.7 In $P$ $=$ If $N$
$(\mathbb{C})$ $(N\geq 4)$ . take a smooth hypersuface $D_{0}\subset P$ of degree $m_{0}\geq 2,$ a line $L\circ$

which intersects the hypersuface $D_{0}$ transversely, and define a closed subscheme $W$ to be $D_{0}\cup L_{0}$ , namely
by a sheaf of ideals : $I_{W}:=I_{D_{0}}\cap I_{L_{0}}\subset \mathit{0}_{P}$ . Now we take a smooth hypersuface $D_{1}\subset P$ of degree $m_{1}\geq 2$

which intersects the hypersuface $D_{0}$ arid the line $L_{0}$ transversely, and satisfies $D_{1}\cap D_{0}\cap L_{0}=\phi$ . Then
we see that $W_{1}=W\cap D_{1}=(D_{0}\cap D_{1})\cup$ {pi, $\cdots,p_{m_{1}}$ }, where the set $\{\mathrm{p}\mathrm{i}, \cdots,p_{m_{1}}\}$ is a set of finite
points : $D_{1}\cap L_{0}$ . Last we choose a smooth hypersu fact $D_{2}\subset P$ of degree $m_{2}\geq 2$ with two conditions:
$D_{2}\cap\{p_{1}, \cdots, p_{m_{1}}\}$ $=$ ’; $D_{2}$ intersects $D_{0}\cap D_{1}$ transversely, and put $V:=W\cap D_{1}$

”

$D_{2}$ . The scheme
$V$ coincides with $D_{0}|\gamma D_{1}\cap D_{2}$ . Then we see easily that arith.depth(V) $\geq 2,$ the trvo hypersurfaces $D_{1}$

and $D_{2}$ form an $O_{W}$ -regular sequence, $H^{0}(O_{W})\cong H^{0}(O_{V})\cong \mathbb{C}$ , but $H^{0}(O_{W_{1}})\cong \mathbb{C}^{\oplus m_{1}+1}$ . Since the
variety $V$ is a complete intersection, its pregeometric shells are only complete intersections. However,
the scheme $W$ is obviously not a complete intersection, and therefore is not a pregeometric shell of V. In
this case, it is easy to check that arith.depth(W) $\leq 2$ by seei $ngh^{1}(O_{W})=m_{0}-1$ $\geq 1.$

Relating to Remark(2.6), we summarize an easy result on homogeneous coordinate rings of closed
subschemas, which is well-known in the case of closed subvarieties.

Proposition 2.8 Let $W\subseteq P=\mathrm{P}^{N}(\mathbb{C})(N\geq 2)$ be a closed subscheme satisfying $H^{0}(O_{W})=\mathbb{C}$ ,
$D\subset P$ a hypersurface with a homogeneous equation $F$ of degree $m_{0}$ . Assume that the equation $F$ of
$D$ is an $O1\mathrm{t}$

- $r\cdot egu$la$r$ element, namely the multiplication : $\cross F$ : $O_{W}(-m_{0})arrow Ow$ is injective, and that
arith.depth(W $\cap D$ ) $\geq 2.$ Then, $R_{W\cap D}=R_{W}/F.R_{W}$ , and arith.depth(W) $=$ arith.depth(W $\cap D$ ) $+1.$

Before starting its proof, let us recall an easy fact from (5.2)Lemma of [18].

Lemma 2.9 Let $W\subseteq P=\mathrm{P}^{N}(\mathbb{C},)$ be a closed subscheme satisfying $\dim(W)\geq 1$ and $H^{0}(Ow)=\mathbb{C}$ , and
$o_{\nu v}(1)$ the restriction bundle of the tautological ample line bundle $O_{P}(1)$ . Then $H^{0}(O_{W}(-m))=0$ for
any positive integer $m$ .

Proof of Proposition (2.8) Since we assume arith.depth(W $\cap D$ ) $\geq 2,$ we have the surjectivity of the
restriction map: $H^{0}(P, O_{P}(m))arrow H^{0}(W\cap D, O_{W\cap D}(m))$ for any integer $m\in \mathbb{Z}$ . Let us show first that
arith.depth(W) $\geq 2,$ namely the surjectivity of the restriction map : $H^{0}(P, O_{P}(m))arrow H^{0}(W, O_{W}(m))$

for any integer $m\in \mathbb{Z}$ by induction on $m$ . By the assumtion, we can apply Lemma(2.9) to the scheme
$W$ and may assume that the restriction map: $H^{0}$ ( $P$, Op $(\mathrm{m})$ ) $arrow H^{0}$ ( $W$, Ow $\{\mathrm{m}’$ ) $)$ is surjective for any
integer $rn’\in \mathbb{Z}$ with $m’<m$ as an induction hypothesis. We apply the snake lemma to the diagram:

0 0

$\uparrow$

$|$

0 $-arrow H^{0}(W, O_{W}(m-m_{0}))arrow \mathrm{x}FH^{0}$ ( $W$, Op $(\mathrm{m})$ ) $arrow H^{0}(W\cap D, O_{W\cap D}(m))arrow 0$

$\uparrow|$ $\uparrow$
$\uparrow$

0 $-arrow H^{0}(P, O_{J^{\mathit{3}}}(m-m_{0}))$ $arrow \mathrm{x}FH^{0}$ ( $P$, Op(m)) $arrow$ $H^{0}(D, O_{D}(m))$ $arrow 0$
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and see the surjectivity of the restriction map: $H^{0}$ $(P, O_{P}(m)$ $)$ $arrow H^{0}(W, O_{W}(m))$ (This argument is the
same to apply Nakayama’s lemma to the $S$-module $\oplus_{m}H^{0}(W, O_{W}(m))$ based on the finite generation of
this module asserted by Lemma(2.9) $)$ . Then, we again apply the snake lemma to the diagram:

0 0

$\uparrow$
$\uparrow$

$0arrow H^{0}(W, O_{W}(m-m_{0}))arrow\cross FH^{0}$ ( $W$, Oy $(\mathrm{m})$ ) $arrow H^{0}(W\cap D, O_{W\cap D}(m))$ $arrow 0$

$\uparrow$
$\mathrm{t}$

$\uparrow$

$0arrow$
$(R_{W})_{(m-m\mathrm{o})}\uparrow$

$arrow\cross F$

$(R_{W})_{(m)}\uparrow$

$arrow$ $(R_{W}/F.R_{W})_{(m)}$ $arrow 0$

0 0

and see that $RwnD=Rw/F.Rw$ , which implies that arith.depth(W) $=$ arith.depth(W ” $D$ ) $+1.$

Corollary 2.10 Let $V$ and It be closed subschemes of $P=$ IF $N(\mathbb{C})$ which satisfy $V\subseteq W$ . Assume that
there exist $r$ hypersurfaces $D_{1}\ldots$ ., $D_{r}$ in $P$ with homogeneous equations $F_{1}$ , $\cdots$ , $F_{r}$ of degree $\mathrm{m}\mathrm{i}$ , $\cdot$ , $m_{r}$ ,
respectively, and satisfying the conditions :(a) $V=W$ ” $D_{1}\cap\ldots\cap D_{\tau}$ ; (b) $H^{0}(W_{t}, O_{W_{L}})=\mathbb{C}(t=$

$0$ , $\cdot$ $\cdot$ .
’

$r$), where $W\circ:=W$ and $W_{t}:=W\cap D_{1}$ ”). . . $\cap D_{t}(t= 1, \cdot\cdot, r)$ ; (c) the homogeneous equations
$F_{1}$ , $\cdots$ $F_{\mathrm{r}}$ form an $O_{W}$ -regular sequence. If arith.depth(V) $\geq 2,$ then $R_{W_{\ell}}=R_{W}/(F_{1}, \cdots , F,)R_{W}$ , the
sequence $F_{1}$ , $\cdots$ , $F_{r}$ form $R_{W}$ -regular sequence, and arith.depth(W) $=$ arith.depth(V) $+r.$

By the similar argument, we can obtain the next helpful lemma for studying $\mathrm{P}\mathrm{G}$-shells of arithmetically
Cohen-Macaulay $\mathrm{P}\mathrm{G}$-cores. In these cases, this lemma guarantees that we can apply the hyperplain cut
(or ” Apollonius” ) method to reduce the problems on higher dimensional $\mathrm{P}\mathrm{G}$-cores into those on PG-core
curves.

Lemma 2.11 Let $V$ and $W$ be closed subschemes of $P=\mathrm{P}^{N}(\mathbb{C})$ which satisfy $V\subseteq W.$

(2.11.1) Assume that arith.depth(V) $\geq 9.$ and the scheme $W$ is a pregeometric shell of $V$ in P. If we take
a hyperplain $H\subset P$ with a linear equation $F$ which is an $O_{V}$ and $O_{W}$ -regular element, then the
scheme $W\cap \mathit{1}$ $H$ is a pregeometric shell of $V\cap H$ in the projective space $H\cong$ IF $N-1(\mathbb{C})$ (or in $P$ ).

(2.11.2) Suppose that $H^{0}(O_{V})=H^{0}(O_{W})=\mathbb{C}$ . Take a hyperplain $H\subset P$ with a linear equation $F$

which is an $O_{V}$ and $O_{W}$ -regular element. Assume that arith.depth(V $\cap H$ ) $\geq 2$ and the scheme
$W\cap H$ is a pregeometric shell of $V\cap H$ in the projectiue space $H$ (or in $P$ ). Therz the scheme
$W$ is ($s$ pregeo’rnet’ $ic$ shell of $V$ in $P$ .

Proof. Let us suppose the assumption of the claim (2.11.1). By the definition, the rings $R_{V}$ and $R_{W}$ can
be regarded as subrings of $\oplus_{m}H^{0}$ ( $V$, Oy (m)) and of $\oplus_{m}H^{0}$ ( $W$, Oy (m)), respectively, which implies that
the equation $F$ is a regular element for $R_{V}$ and for $R_{W}$ . The claim (2.5.5) shows that arith.depth(W) $\geq$

arith.depth(V) $\geq 2,$ which implies that $depth_{S_{+}}$ Rw/F.Rw, $\geq depth_{S_{+}}$ (RV/F.RV) $\geq 1.$ Thus we see
that $RvnH=R_{V}/F.R_{V}$ and $RwnH=R_{W}/F.R_{W}$ . By tensoring $S$f $S_{+}$ to the exact sequence:

$0arrow R_{V}(-1)arrow\cross FR_{V}arrow RvnH$ $arrow 0,$
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we have an exact sequence:

$Tor_{q}^{S}(R_{V}(-1), S/S_{+})\underline{\cross F}\rangle$ $Tor_{q}^{S}(R_{V}, S/S_{+})$ $arrow \mathit{7}$ $or_{q}^{S}$ RVnH $S/S_{+}$ )

$arrow Tor_{q-1}^{S}(Rv(-1), S/S_{+})arrow \mathrm{x}FTor_{q-1}^{S}(R_{V}, S/S_{+})$ .

Since the modules: $Tor_{q}^{S}(R_{V}(-1), S/S_{+})(q\geq 0)$ are $S/S_{+}$ -modules, the multiplication by $F$ annihilates
the modules: $Tor_{q}^{S}$ $(R_{V}(-1), S/S_{+})(q\geq 0)$ . After the similar argument on $R_{W}$ , we have an exact
commutative diagram:

$0arrow$ 7 $or_{q}^{S}(R_{W}, S/S[perp])-arrow Tor_{q}^{S}(R_{W\cap H}, S/S_{+})arrow Tor_{q-1}^{S}(R_{W}(-1), S/S_{\tau})arrow 0$

$\downarrow|\mu_{q}$
$\downarrow\overline{\mu_{\mathrm{q}}}$ $\downarrow|\mu_{q-1}$

$0arrow Tor_{q}^{S}(R_{V}, S/S_{+})arrow Tor_{q}^{\mathit{8}}(R_{V\gamma H}, S/S_{+})arrow Tor_{q-1}^{S}(R_{V}(-1), S/S_{+})arrow 0.$

Then the assumption asserts the injectivity of the map $\mu_{q}$ and of the map $\mu_{q-1}$ , which brings the
injectivity of the map $\overline{\mu_{q}}$ , or equivalently the scheme $W$ \cap $H$ is a $\mathrm{P}\mathrm{G}$-shell of $V\cap H$ in the projective
space $P$ .

Next let us suppose the assumption of the claim (2.11.2). Then, the claim (2.5.5) shows that
arith.depth(W $\cap H$ ) $\geq$ arith.depth(W $\cap H$) $\geq 2.$ By Proposition (2.8), we see that $RVnH=R_{V}/F.Rv$ ,
$R_{W\cap J}f$ $=R_{W}/F$. $R_{W}$ and the equation $F$ is a regular element for $R_{V}$ and for $R_{W}$ . By the similar
argument in the proof of the claim (2.11.1) above, we get an exact commutative diagram:

$0arrow Tor_{q}^{S}(R_{W}, S/S_{+})arrow Tor_{q}^{S}(R_{W\cap H}, S/S_{+})arrow Tor_{q-1}^{S}(Rw(-1), S/S_{+})arrow 0$

$\downarrow\mu_{q}$ $\downarrow^{1}\overline{\mu_{q}}$ $\mathrm{v}|^{\mu_{q-1}}|$

$0arrow Tor_{q}^{S}$ -Ry, $S/S_{arrow}$ ) $arrow Tor_{q}^{S}.(R_{V\cap H}, S/S_{+})arrow Tor_{q-1}^{S}(R_{V}(-1), S/S_{+})arrow 0.$

In this case, the assumption asserts the injectivity of the $\mathrm{m}\mathrm{a}\mathrm{p}:\overline{\mu_{q}}$, which induces the injectivity of the
map $\mu_{q}$ . Thus we see that the scheme $W$ is a $\mathrm{P}\mathrm{G}$-shell of $V$ in the projective space $P$ .

Now let us show that the scheme $Y:=W\cap H$ is a $\mathrm{P}\mathrm{G}$-shell of the scheme $X:=V\cap H$ in $H$ if and
only if the scheme $Y:=W\eta$ $H$ is a $\mathrm{P}\mathrm{G}$-shell of the scheme X.— $V\cap$ $H$ in $P$ . We may assume that
$H=V_{+}(Z_{N})=$ Proj{T), where $T=S/Z_{N}.S\cong \mathbb{C}[Z_{0}, \cdots, Z_{N-1}]$ . Take a point $p_{0}$ in $P$ which is not
contained in the hyperplain $H$ . Then the space $P$ can be considered as the projective cone $C_{\mathrm{P}0}(H)$ with
$\mathrm{c}\mathrm{h}t^{1}$ vertex $p_{0}$ , namely the ring $S$ can be considered as the polynomial ring $T[Z_{N}]$ , which is faithfully flat
over the ring $T$ . Consider the projective cones $\hat{X}:=C_{\mathrm{P}0}(X)$ of $X$ and $\hat{Y}:=C_{p0}(Y)$ of $Y$ with the vertex
$p0$ . Then $R_{\hat{X}}=R_{X}3\tau$ $S$ , $R_{\hat{Y}}=R_{Y}\otimes_{T}S$ , $X=\hat{X}\cap H$ , $Y=\hat{Y}$ ” $H$ , and the equation $Z_{N}$ is a regular
element for the ring $R_{\hat{X}}$ and for the ring $R_{\hat{Y}}$ . Thus, starting from the minimal 7-free resolutions of $R_{X}$

and of $R_{Y}$ , we can construct the minimal 5-free resolutions of $R_{\hat{X}}$ and of $R_{\hat{Y}}$ and the minimal 5-free
resolutions of $R_{\hat{X}\cap H}=R_{X}$ and of $R_{\hat{Y}\cap H}=R_{Y}$ , successively. We can also construct all the induced
homomorphisms of complexes for those minimal resolutions compatibly. Through these constructions,
we see that:

$Tor_{q}^{S}(R_{W}, S/S_{+})\cong Tor_{q}^{T}(R_{W}, 7 /\mathrm{Y}_{+})\oplus T\mathrm{m}’-1(R_{W}, T/T_{+})$

$\mathrm{t}^{\mu_{\mathrm{q}},S}$ $\downarrow\mu_{q},\tau$ $\downarrow^{\mu_{q}-1T}|$

$Tor_{q}^{S}(R_{V}, S/S_{+})\cong Tor_{q}^{T}(R_{V}.T/T_{+})\oplus Tor_{q-1}^{T}(R_{V}, T/T_{+})$ ,

which shows that all the maps: $\{\mu_{q},s\}_{q\geq 0}$ are injective if and only if all the maps: $\{\mu_{q},\tau\}_{q\geq 0}$ are injective,
which is what we wanted. I
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Related to Conjecture 0.1(0.1.1), we have a very easy result which srnplifies our argument later.

Proposition 2.12 Let $V\subset P=\mathrm{P}^{N}(\mathbb{C})$ be a variety of $\triangle$ -genus zero (cf. Remark 1.3) whose dimension
is $n$ , and a scheme $W\subset P$ a pregeometric shell of V. Assume that the scheme $W$ is arithmetically
Cohen-Macaulay and of (pure) dimension $m$ . Then, the scheme $W$ is also a variety of $\triangle$ -genus zero.

Proof. By the results of [6] and [5], our assumption implies that the homogeneous coordinate ring $R_{V}$

is Cohen-Macaulay and has a 2-linear minimal $\mathrm{S}$-free resolution. The minimal $S$-free resolution of $R_{V}$

is of the form: $\mathrm{F}_{V}$,. : $0\prec-R_{V}\mathrm{w}$ $\mathrm{F}_{V,0}=Sarrow \mathrm{F}_{V,1}=\oplus S(-2)arrow i$ $V$, $2=\oplus S(-3)arrow\cdotsarrow \mathrm{F}_{V,p}=$

$\oplus S(-p ・1)$ $<-\cdot$ . . $arrow \mathrm{F}_{V,r}=\oplus S(-r ・1)$ , where $r=N-$ n. Since we assume that the scheme $W$

is arithmetically Cohen-Macaulay and is a $\mathrm{P}\mathrm{G}$-shell of $V$ , the homogeneous coordinate ring $R_{\mathcal{W}}$ has a
minimal $S$-free resolution of the form: $\mathrm{F}_{W}$,. : 07 $R_{W}\mathrm{w}$ $\mathrm{F}_{W,0}=Sarrow-\mathrm{F}_{W,1}=\oplus S(-\underline{9})+-\mathrm{F}_{W,2}=$

$\oplus 5(-3)arrow-\cdot$ . $\succ \mathrm{F}_{W,t}=\oplus S(- t-1)$ , where $t=N-m=r-(m-n)$ . Then we apply Theorem 4.1.15 of
[2] and see that $e:=deg(V)=(1/r!)\Pi_{k=1}^{r}(k+1)=r+1$ and $e’:=$ deg(V) $=(1/t!)\Pi_{k=1}^{t}(k+1)=t+1.$

Let us show that the scheme $W$ is a variety. Take a main primary component (cf.Definition 2.3): $W_{0}$ of
$W$ which includes $V$ , give a reduced structure on $W_{0}$ , and put $\overline{e_{0}}:=deg((W_{0})_{red})$ . Since the scheme $W$

is arithmetically Cohen-Macaulay, the scheme $W$ is locally Cohen-Macaulay and equidimensional. The
scheme $W$ is a variety if and only if $\overline{e_{0},}=e’$ . Now we assume eo $<c’$ . Then $\overline{e_{0}}<t+1=N-m+1=$
N-dim((i $0$ ) ) $+1$ , which implies that the variety $(W_{0})_{r\mathrm{e}d}$ in degenerate, namely there is a hyperplain
$H$ including the variety $(W_{0})_{red}$ . Then $V\subset(W_{0})_{red}$ implies that the variety $V$ is also degenerate, which
contradicts our assumption. I

Corollary 2.13 Let $V\subset P=\mathrm{P}^{N}(\mathbb{C})$ be a variety of $\triangle$ -genus zero and a scheme $W\subset P$ a pregeometric
shell of V. Assume that $\dim(V)=\dim(W)$ . Then, $V=W.$

Proof. By the assumption, using the claim (2.5.5), $\dim(R_{W})=$ dinl(RV) $=de_{J}pf_{J}h_{S_{+}}(R_{V})\leq depth_{S_{+}}(R_{W})$ ,
which shows the ring $R_{W}$ is Cohen-Macauilay. Then, applying Proposition 2.12, we see that the scheme
$W$ is a variety, which implies $V=$ $W$ . I

To handle Hilbert polynomials efficiently, we prepare the following lemn$1\mathrm{a}$ .

Lemma 2.14 (Finite factorial series expansion of Taylor type) Let us consider a polynomial of
real coefficients $f(x)\in \mathbb{R}[x]$ of degree $r$ , in other words, a real valued function $f(x)$ defined on the field
of real numbers $\mathbb{R}$ (or on the ring of rational integers $\mathbb{Z}$) which has an expression by factorial monomials

$x\mathrm{i}’ 1$ $(k=0,1, \ldots, r)$ :

$f(x)$ $=$ $c_{0}+( \frac{c_{1}}{1!})x^{\lfloor 1]}\mathrm{T}$ $( \frac{c_{2}}{2!},)x^{\lfloor 2]}+\cdot$ . . $+( \frac{c_{r-1}}{(r-1)!})x^{[r-1]}$ $+( \frac{c_{r}}{r!})x^{1r\rfloor}\llcorner$

$=$ $c_{r}A_{\mathrm{r}}(x)+c_{r-1}A_{r-1}(x)+\cdots+c_{1}A_{1}(x)+c_{0}$ ,

where the coefficient $c_{k}$ is also a real number, and the $k$ -th factorial rnonomial $x^{[k|}$ means $(x+k)(x+k-$
$1)(x+k-2)\cdot$ $\cdot$ . $(x+1)$ and the Hilbert function $A_{k}.(x)$ of $\mathrm{P}^{k}(\mathbb{C})$ is

$A_{k}(x)= \frac{x^{[k]}}{k!}=(\begin{array}{l}x+kk\end{array})$ $= \frac{(x+k)(x+k-1)\cdots(x+1)}{k!}$

Then the coefficient $c_{k}$ can be computed by using the (backward) difference operator $\nabla$ as follows.

$c_{k}=(\nabla^{k}f)(-11$,



138

Proof. Analogously to the usual Taylor expansion, it is easy to see the formula on $c_{k}$ holding if we
take a notice on the facts that $\nabla x^{\lfloor 0]}=$ Vl $=0,$ for a positive integer $k$ , $\nabla x^{[k]}.=k\cdot x[’-1]$ , namely
$\nabla A_{k}(x)=A_{k-1}(x)$ and that $A_{k}(a)=0$ if and only if $a=-1,$ -2, . . .

$,$

$-k$ . $\mathrm{I}$

We should also recall a classical and well-known result for later use (cf. [8], [6]).

Lemma 2.15 (One point Chordal Variety) Let $V\subseteq P=\mathrm{P}^{N}(\mathbb{C})$ be a non-degenerate closed subva-
$7ir^{\lrcorner}ty$ of degree $\geq 2.$ If we take a sufficiently general smooth point $x_{0}\in V.$ then there is a projective line
$L$ satisfying the conditions: (a) this line $L$ contains the point $x_{0}$ and another point $y\in V;(b)$ this line
$L$ itself is not contained in V. Now we put:

Cd(xo, $V$ ) $:=$ $\cup$ line(xo, $x$ ),
$x\in V-\{x_{0}\}$

namely the Zariski closure of the union of all the lines joining any point of $V-\{x_{0}\}$ and the point $x_{0}$ .
Then this variety Cd(xo, $V$ ) coincides with the projective cone with the vertex $x_{0}$ of the Zariski closure

of the image of $V-\{x_{0}\}$ projected from the center $x_{0}$ . and therefore $dim(Cd(x_{0}, V))$ $=dim(V)+$ 1.
Moreover, ate have: $deg(Cd(x_{0}, V))=deg(V)-$ $1$ . (In case of emphasizing this construction process, we
will tall this variety $Cd(x_{0}, V)$ as “one point chordal variety” with vertex $x_{0}$ instead of “the cone” ).

We will use the next proposition including singular cases. For its proof, we refer to [10] and [8].

Proposition 2.16 Let $Y$ be a complete intersection closed subscheme of type $(m_{1}$ , . . . , $m_{r})$ in $P=\mathrm{P}^{N}(\mathbb{C})$

with $dim(Y)=N-r\geq 3.$ Then $Pic(Y)\cong$ ZOy(1). Moreover, if the scheme $Y$ is a variety, then the
canonical bundle $K_{U}:=det(\Omega_{U}^{1})$ of the regular locus $U:=Reg(Y)$ of $Y$ can be extended to the dualizing
lirle bundle $K_{Y}^{\mathrm{o}}$

$\mathrm{i}$ $O_{Y}$ $(-N-1+5_{i=1}^{r}m_{i})$ of $Y$ .

Q3 Classification on $\mathrm{P}\mathrm{G}$-shells of $(\mathbb{P}^{1}, O_{\mathrm{P}^{1}}(4))$ .
Since a non-degenerate rational normal quartic curve $X\subset P=\mathrm{P}^{4}(\mathbb{C})$ is uniquely determined up to the
action of $PGL(5, \mathbb{C})$ , we set up the circumstances as follows.

Let $X$ be a projective line $\mathrm{P}^{1}(\mathbb{C})=$ Proj $(\mathrm{C}[\mathrm{Z}0, T_{1}])$ and embedded into the 4-th projective space:
$P=\mathrm{P}^{4}(\mathbb{C})=Proj(\mathbb{C}[Z_{0}, \cdots, Z_{4}])$ which has the tautological line bundle $O_{P}(1)=O_{P}(H)$ by using the
arnple line bundle $O(4)=O_{\mathrm{P}^{1}(\mathbb{C})}(4)$ , or more precisely, by using the morphism in which the homogeneous
coordinates $[Z_{0} : Z_{1} : Z_{2} : Z_{3} : \mathrm{Z}\mathrm{A}]$ correspond to $\lfloor\lceil T_{0}^{4}$ : $T_{0}^{3}T_{1}$ : $T_{0}^{2}T_{1}^{2}$ : $T_{0}T\mathrm{j}$ : $T_{1}^{4}$ ]. Then the homogeneous
ideal $\mathrm{I}_{X}$ coincides with ( $Z_{\mathrm{i}}^{2},$ $-Z_{2}Z_{4},$ $Z_{2}Z_{3}$ -Z2Z4, $Z_{1}Z_{3}$ -Z2Z4, $Z_{2}^{2}$ -Z2Z4, $Z_{1}Z_{2}$ -ZOZ3 $\mathrm{i}Z_{1}^{2}-Z_{0}Z_{2}$ ) $\cdot$ $S$ ,
where $S=\mathbb{C}[Z_{0}, \cdots, Z_{4}]$ . Since the sheaf $O_{X}$ has the CastelnuovO-Mumford regularity 1 with respect
the line bundle $O_{P}(H)$ , it is easy to see that the homogeneous coordinate ring $R_{X}=S/Ix$ has a minimal
graded $S$-free resolution of 2-linear type:

$\mathrm{F}\chi$ . $\mathrm{O}arrow$ S $\underline{\varphi_{1}}\oplus^{6}S(-2)\underline{\varphi 2}\oplus^{8}S(-3)$ $\underline{\varphi \mathrm{s}}\oplus^{3}0(4)arrow 0$ ,

where the maps $j$)$i(i= 1,2, 3)$ are described by the matrices:

$\varphi_{1}=\vee|\lceil Z_{1}^{2}-$ ZYZ2, Zl $\mathrm{Z}2-\mathrm{Z}2$Z3, $Z_{2}^{2}-Z_{0}Z_{4}$ , $Z_{1}Z_{3}-Z_{0}Z_{4}$ , $Z_{2}Z_{3}$ -Z2Z4, $Z_{3}^{2}-Z_{2}Z_{4}$ ]
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$\mathrm{j}$ $2$
$=[-Z_{0}-Z_{2}Z_{1}Z_{0}00$ $-Z_{2}-Z_{0}Z_{1}000$ $-Z_{3}-Z_{0}Z_{1}000$ $-Z_{0}-Z_{3}Z_{2}000$ $-Z_{2}Z_{4}Z_{1}000$ $-Z_{3}Z_{2}Z_{4}000$ $-Z_{3}Z_{1}Z_{4}000$ $-Z_{3}-Z_{4}Z_{2}z_{4}^{0}\mathrm{o}]$

$\mathrm{p}_{3}$
$=[-Z_{0}-Z_{2}Z_{1}Z_{3}Z_{0}000$ $-Z_{4}-Z_{2}-Z_{2}-Z_{0}Zz_{0}\mathrm{o}_{1}^{3}$ $-Z_{2}-Z_{4}Z_{3}Z_{4}Z_{1}000]$

Next we take a $\mathrm{P}\mathrm{G}$ shell $W$ of the rational normal quartic curve $X\subseteq P$ and consider a minimal
graded $S$-free resolution $\mathrm{F}_{W}$ . of the homogeneous coordinate ring $R_{W}$ of $W$ . Then by the definition of
$\mathrm{P}\mathrm{G}$-shell, we see easily that this complex (resolution) has a form:

$\mathrm{F}_{W}$ . $0arrow$ S $\underline{\psi_{1}}$ aS{-2) $\underline{\psi_{2}}\oplus^{b}S(-3)\underline{\psi_{3}}\oplus^{c}S(-4)arrow 0,$

and is a subcomplex of the complex $\mathrm{F}_{X}$ . . Then we can compute the Hilbert polynomial $A_{W}(x)$ of $W$ as
follows.

Lemma 3.1 Under the circumstances, using the integers $a\in\{0,1, \ldots 6\}$ , $b\in\{0,1, \ldots 8\}$ , $c\in\{0,1, \ldots 3\}$ .
the Hilbert polynomial $A_{W}(x)$ is written in the form:

$A_{W}(x)=(1-a+b-c)A_{4}(x)+$ ($2a-3b+$ 4c)Ai $(\mathrm{x})+(-a+3b-6c)A_{2}(x)+(-b+4c_{J})A_{1}(x)+(-c)$

Proof. From the projective sheafication of the minimal graded $S$-free resolution $\mathrm{F}_{W}$ . of the ring $R_{W}$ , we
have the exact complex of sheaves:

$0arrow \mathit{0}warrow \mathit{0}_{P}\underline{\psi_{1}}\mathrm{e}6\mathrm{o}\mathrm{P}(-3)\underline{\psi_{2}}\oplus^{b}O_{P}(-3)\underline{\psi_{3}}$
- $\oplus^{c}O_{P}(-4)arrow 0,$

which shows that $A_{W}(x)=A_{4}(x)-a\cdot A_{4}(x-2)+b\cdot A_{4}(x-3)$ $-c\cdot A_{4}(x-4)$ . By applying Lemma 2.14,
we have the result. $\iota$

Now let us classify all the $\mathrm{P}\mathrm{G}$-shells of the rational normal quartic curve $X\subseteq P$ depending on
their codimensions. Here we should pay attention to the fact that the curve $X$ is a non-degenerate
arithmetically normal non-singular projective variety of $\triangle$-genus zero and satisfies all the assumptions of
Conjecture 0.1 except the last one (i.e. the existence of a shell frame ( $E$ , $\sigma$ )).

. The Case of codim(W) $=1$

First we handle the case: codim(W) $=1.$ Before we apply Lemma 2.5 directly, we should take care the
fact that for an arbitrary closed scheme $V\subseteq P,$ the condition that codim(W) $=1$ and the scheme $W$ is
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a $\mathrm{P}\mathrm{G}$-shcll of the scheme $V$ does not in general imply that the scheme $W$ is a divisor of $P$ since we do
not assume, for example, the scheme $W$ is equidimensional and so on. It may happen that the scheme
$W$ has a primary component of codimension 1 and has another component of codimension more than 1
or an embedded component. Thus, to consider this case, we need the following lemma.

Lemma 3.2 Let $V$ be a reduced and irreducible closed subscheme of $P=\mathrm{P}^{N}(\mathbb{C})$ , a closed subscheme
$\ddagger V$ is of codimension 1 in the total space $P$ and a pregeometric shell of the variety V. Then $W$ is an
irreducible and reduced divisor of $P$ .

Proof. We have only to show that $dim_{(S/s_{+})}Tor_{1}^{S}$ (Rw, $S/S+$ ) $=1.$ Now $.\mathrm{a}$assume that

$dim(s/s_{+})Tor_{1}^{6^{\mathrm{f}}}(R_{W}, S/S+)\geq 2.$

Then there are at least two equations {Gi, $G_{2}$ } of $W$ which is linearly independent in the $(S/S_{+})$-vector
space $TorS1$ $(R_{W}, S/S+)$ . By the $\mathrm{T}\mathrm{o}\mathrm{r}$ injectivity condition of $\mathrm{P}\mathrm{G}$-shells, we see that the equations $\{G_{1}, G_{2}\}$

form a part of a minimal generators of the homogeneous ideal $\mathrm{I}_{\mathrm{V}}$ of $V$ . Since the ideal $\mathrm{I}_{V}$ is a prime
ideal, both the equations $G_{1}$ and $G_{2}$ are irreducible polynomials, otherwise they can not be a part of
minimal generators of the ideal $\mathrm{M}_{V}$ . Since the equations : {Gi, $G_{2}$ } are linearly independent, they form
$S$-regular sequence. Thus the closed subscheme $Y=\{G_{1}=G_{2}=0\}$ of $P$ is of pure codimension 2. On
the other hand, by its construction, $W\subseteq Y$ and codim(Y) $=2,$ which is a contradiction. 1

Corollary 3.3 Let $W$ be a pregeometric shell of the rational quartic curve $X\underline{\mathrm{c}}P$ and of codimension
1 in P. Then the scheme $W$ is a reduced and irreducible quadric hypersurface of rank 3,4, or 5 which
means that $\triangle(W, O_{W}(1))$ $=0$ and the variety $W$ is arithmetically Cohen-Macaulay. Moreover, if the
variety $W$ be a $G$ shell of $X$ , then there is no shell frame $(E, \sigma)$ of $X$ in $W$ .

Proof. For the claim on the rank of quadric equations, we see that irreducibility of minimal generators
implies :rank $\geq 3.$ To see that every case occurs, we give examples of the quadric equations of the
rational quartic curve $X$ in Table 1.

rank quadric hypersurface $\supset X$

3 $\mapsto Z_{1}-Z_{0}\overline{Z_{2}}$

4 $Z_{1}Z_{3}-Z_{0}Z_{4}$

5(non-sing) $Z_{2}^{2}-$ $2\overline{Z_{0}Z_{4}}1$ $Z_{1}Z_{3}$

Table 1: Examples of Quadrics

All the claims except the last one have been already proved in Lemma 3.2. Now we assume that there
exists a shell frame $(E, \sigma)$ of $X$ in $W$ as in Definition 2.4. From the homomorphism $\sigma$ : $E^{\vee}arrow$t $I_{X/W}\subseteq O_{W}$ ,
we see that the norrnal bundle $N_{X/W}$ of $X$ in $W$ is isomorphic to $E\otimes O_{X}$ . Putting $U:=Reg(W)$ and the
dualizing line bundle of $W$ to be $K_{W}^{\mathrm{o}}$ (cf. Proposition 2.16), we have $O(-2)\cong K_{X}\cong K_{U}|_{X}\otimes detN_{X/W}\cong$

( $K_{W}^{\mathrm{O}}$ & detE) (& $\mathit{0}\chi$ , namely the line bundle $O(-2)$ can be extended to a line bundle $L:=K_{W}^{\mathrm{o}}$ (& $detE$

on $W$ . By Proposition 2.16 again, we have an isomorphism $Pic\{W$ ) $\cong \mathbb{Z}O_{W}(1)$ . Then the line bundle $L$

and therefore the line bundle $O(-2)$ can be extended to a multiple of the tautological line bundle $O_{P}(1)$

of $P$ , which contradicts to the fact : $O_{X}(1)\cong O(4)$ . 1
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. The Case of codim(W) $=3$

Next, skipping the most bothersome case of codim(W) $=2,$ we proceed to the case of codirn(W) $=3.$

Then we easily get the following result from Corollary 2.13.

Lemma 3.4 Let $W$ be a pregeometric shell of the rational quartic curve $X\subseteq P$ and of codimension 3 in
P. Then the scheme $W$ coincides with the curve $X$ .

. The Case of codim(W) $=2$

Now we has come to the remaining case: codim(W) $=\underline{9}$ . Let us list up all the cases of the triplet
$(a, b, c)$ in the order of handling in the sequel.

Lemma 3.5 Let $W$ be a pregeometric shell of the rational quartic curve $X\subseteq P$ and of codimension 2
in P. Then all the cases of the $Tor$-Betti numbers $(a, b, c)$ of the minimal graded $S$ -free resolution $\mathrm{F}_{W}$,.
and of the Hilbert polynomials are listed in Table 2 below.

Case No. $(a, b, c)$ $A_{W}(x)$

(1) (4, 4, 1) $2A_{2}(x)-1$

(2) (5, 6, 2) A2 $(x)+2A_{1}(x)-$ $2$

(3) (3, 2, 0) $3A_{2}(x)-2A_{1}(x)$

Table 2: Betti Numbers and Hilbert Polynomials

Proof. Since the degree of the Hilbert polynomial $A_{W}(x)$ is 2, applying Lemma 3.1, we have the equa-
tions below $((a, b, c)\in\{0,1, \ldots 6\}\cross\{0,1, \ldots 8\}. \cross \{0, 1, \ldots 3\} )$ , which are easily solved and bring Table
2.

$\{$

$1-a+b-c$ $=$ 0
$2a-3b+4c$ $=$ 0
$-a$ $4$ $3b-6c$ 7 0

1

Now we will follow the order in Table 2 and handle each case, respectively.

so (1) The Case:(a, $b$ , $c$) $=(4,4.1)$

It is easy to see that this case never happens.

Since the Hilbert polynomial $Aw(x)$ is A2 $(\mathrm{x})-1$ , we see that $deg(W)=2.$ On the other hand, we
have $a=4,$ which means that there exit four $\mathbb{C}$-linearly independent quadric equations $\{G_{1}, G_{2}, G_{3}, G_{4}\}$

generating the ho mogeneous ideal $\mathrm{I}_{W}$ . Now, using the condition that $W$ is a $\mathrm{P}\mathrm{G}$-shell of the curve $X$ , we
recall the proof of Lemma 3.2 and see that {Gi, $G_{2}$ } forms a $S$-regular sequence and $Y=\{G_{1}=G_{2}=0\}$

is an arithmetically Cohen-Macaulay closed subscheme of pure codimension two. Obviously, $X\subset W\subseteq Y,$

$dim(W)=dim(Y)=2,$ and cleg(Yl) $=4.$ Now we take a primary component $Y_{0}$ of $Y$ containing $X$ and
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consider $(Y_{0})_{re}d$ after putting the reduced structure on the space $|$ } $\mathrm{o}$ $|$ . If de $7((Y\mathrm{o})_{re\mathrm{Z}})$ $\leq 2,$ then after
the process of Lomma 2.15, the one point chordal variety Cd(xo, $(Y_{0})_{r\mathrm{e}d}$ ) turns out to be a linear variety
of dimension 3. Since $X\underline{\subset}(Y_{0})_{red}\subseteq$ Cd(xo, $(Y_{0})_{red}$ ), we see that the curve $X$ is degenerate, which
is a contradiction. Hence we have $de/$ ((YQ) $\Gamma ed$ ) $\geq 3$ and the component $Y_{0}$ can not contain any main
component of $W$ . Now we have $W\cup$ (Yo)red $\subseteq Y$ and therefore $deg(Y)\geq 5,$ which is absurd... (2) The Case:(a, $b$ , $c$) $=(5,6.2)$

Using a rather delicate argument than the case above, we show that this case never occurs.

On the Hilbert polynomial, we know that $A_{W}(x)=A_{2}(x)+2A_{1}(x)$ - $2=(1/2)x^{2}+(7/2)x+1,$ which
implies : $deg(W)=1.$ This shows us that the main component $F$ is only one and its structure sheaf as a
primary component of $W$ is already reduced and isomorphic to the projective plane $\mathrm{P}^{2}(\mathbb{C})$ . Since $X\subseteq W$

and $X$ is non-degenerate, we have $Xl$ $F$ and $Y=X$ ’ $F\subseteq W,$ where the closed subscheme $Y$ is a
scheme theoretic union of the closed subschemes $X$ and $F$ . At the generic point $\langle$ of the main component
of $W$ , $\mathit{0}_{W,\zeta}\cong O_{Y,\zeta}$ , which implies that the support of the ideal sheaf $I_{Y/W}$ does not contain the generic
point $\zeta$ , and therefore $dim(I_{Y/W})\leq 1.$ Then, the Hilbert polynomial of the ideal sheaf $I_{Y/W}$ is the form
$:\chi(I_{YW}/(x))$ $=px+q$ ($p,$ $r\in \mathbb{Z}$ and $p\geq 0$ ) (cf. [11]). On the other hand, $XnF$ is finite number of points,
which implies that the Hilbert polynomial is a $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}:\chi(\mathrm{O}_{\mathrm{X}\cap \mathrm{F}}\urcorner(x))=k,$ where $k=lengthO_{X\cap F}$ . Now
lot us consider the following two exact sequences:

0 $arrow I_{Y/W}arrow \mathit{0}_{W}arrow \mathit{0}_{Y}arrow 0$

$0arrow O_{Y}arrow O_{X}$ % $O_{F}arrow O_{X\cap F}arrow 0.$

Let us take their Hilbert polynomials, bind them up and get:

$A_{W}(x)$ $=$ $\mathrm{x}\{\mathrm{O}\mathrm{f}\{\mathrm{x}$ )) $=\mathrm{x}$ {Of $\{\mathrm{x}))+\chi(I_{Y/W}(x))$

$=$ $\chi(O_{X}(x))+\chi(O_{F}(x))-\chi(O_{X\ulcorner 1F}(x))+\chi(I_{Y/W}(x))$

$=$ $A_{X}(m)+$ $4_{2}(x)-k+px$ $+q$

$=$ $4x+1+$ (l/2) $(\mathrm{x}+2)(x+1)+px$ $c$ $q-k$
$=$ $(1/2)x^{2}+((11/2)+p)x+(2+q-k)$ .

Comparing the coefficient of the second term in this Hilbert polynomial with that of $Aw(x)$ previously
obtained, we see that (7/2)=((11/2)+p)\geq (ll/7), which is a contradiction... (3) The Case:(a, $b$ , $c$ ) $=(3,2,0)$

This case really occurs and is tllc most interesting from our view point.
Let us recall: $Ay/(x)=3\mathrm{A}2(\mathrm{x})-2A_{1}(x)$ , which implies $deg(W)=3.$ Moreover, the length of the

minimal graded $S$-free resolution $\mathrm{F}_{W}$,. is 2, and therefore arith. $de,pth(W)=$ depth(R $y$ ) $=5-hds$ $(Rw)=$
$5-2=3=dim(R_{W})$ . Thus the homogeneous coordinate ring $R_{W}$ is an arithmetically Cohen-Macaulay
ring. Applying Proposition 2.12, we see that the scheme $W$ is a variety of $\triangle$ ( $W$, Aw(x)) $=0$ and of
degree 3.

By the structure theorem on the projective varieties of $\triangle$-genus zero (cf. [6] or more classically [12]),
the singular locus Sing(W) of $W$ is a linear space and the variety $W$ is the generalized projective cone
over a non-singular projective variety $M$ (this can be obtained by a generic linear space section of $W$

which does not meet the linear space Sing(Wl ) of $\triangle$-genus zero with the vertex at their singular locus.
Since $dim(W)=2,$ we have only two cases : (3-1) $dim(Sing(W))=-1$ (namely $W$ is non-singular) and
the non-singular variety $M$ is $W$ itself; or (3-2) $dim(Sing(W))$ $=0$ (namely Sing(W) $=\{p_{0}\}$ ) and the
non-singular variety $M$ is a rational normal cubic curve.
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Moreover, the structure theorem says that in the case of (3-1) above, the polarized variety $(W, O_{W}(1))$

is a rational scroll $(\mathrm{P}(E), O_{\mathrm{P}(E)}(1))$ , where the vector bundle $E$ is the one over a rational curve $B=\mathrm{P}^{1}(\mathbb{C})$

and of the form: $E\cong O_{\mathrm{P}^{1}(\mathrm{C})}(2)\oplus O_{\mathrm{P}^{1}(\mathbb{C})}(1)$ , the ample line bundle $o_{\mathrm{P}(E)}(1)$ is the relative tautological
line bundle of the projective bundle $\mathrm{P}(E)arrow B$ determined from the ample vector bundle $E$ . In te rns
of rational ruled surfaces, this variety $W$ is isomorphic to $\Sigma_{1}$ , a rational ruled surface of degree 1 and is
embedded by a linear system 2$f+C_{1}|$ .

On the other hand, in the case of (3-2), the blow-up $q$ : $\overline{W}arrow W\subseteq P$ of the variety $W$ at the vertex $p_{0}$

is obtained by $\overline{W}\cong \mathrm{P}(O_{1\mathrm{I}^{\nu 1}(\mathbb{C})}(3)\oplus O_{\mathrm{P}^{1}(\mathrm{C})})$ and by a natural homomorphism $\oplus^{5}\mathit{0}_{\mathrm{P}^{1}(\mathbb{C})}arrow O_{1\mathrm{P}^{1}(\mathrm{C})}(3)\oplus O_{1\mathrm{P}^{1}(\mathrm{C})}$

on a rational curve $B=\mathrm{P}^{1}(\mathbb{C})$ . This variety $W$ is isomorphic to $\Sigma_{3}$ , a rational ruled surface of degree 3
and the morphism $q$ : $\overline{W}arrow W\subseteq P$ is given by a linear system $3f+C_{3}|$ .

Let us summarize these two cases in the following Table 3 and proceed to study how the curve $X$ is
embedded in $W$ in each case.

Case No. $dim(S^{\cdot}g(W))$ $\overline{W}$ or $\mathrm{Y}$

$1\mathrm{i}1$ ear system (morph.)
(3-1) -1 (on-sing) $W\cong$ $\Sigma_{1}$ $|2f+C_{1}|$ (embedding)
(3-2) 0 $\overline{W}\cong$

$\mathrm{g}_{3}$
$|3f+C_{3}|$

Table 3: Cases of $(W, O_{W(}’1))$

\ldots The Case (3-1)

Now we assume that the variety $W$ is isomorphic to the ruled surface $\Sigma_{1}$ and embedded into $P$ by the
linear system $|2f+C_{1}|$ . Since $X\in|uf+vC_{1}|$ for some integer $u$ $\mathrm{t}^{\mathrm{t}}$ the fact: $deg(X)=4$ and the Lemma
2.2 (2.2.3), we have : $(u, v)=(3,1)$ or $(2, 2)$ . Let us take a blow-down morphism $b$ :II $arrow \mathrm{P}^{2}(\mathbb{C})=Y$ of
contracting the exceptional curve $C_{1}$ to a point $p\in Y.$ Then the pull-back : $b^{*}O_{\mathrm{P}^{\underline{\circ}}(\mathbb{C})}(1)$ of the tautological
ample line bundle of the projective plane $Y$ corresponds to the linear system $|f+C_{1}$ $|$ . Thus, if the curve
$X\in|3f+C_{1}|$ , applying the projection formula to the curve $X$ with respect to the morphism $b$ , and the
computation : $X.(f+C_{1})=3$ , $X.C_{1}=2$ show that the the curve $X$ comes from a singular irreducible
and reduced cubic plane curve passing through the point $p$ . Considering that 3$f+C_{1}=(2f+C_{1})+f,$
namely a sum of the ample divisor 2$f+C_{1}$ and an (effective) nef divisor $f$ , we see that the curve $X$ is a
nef divisor (an ample divisor).

By the similar argument, if the curve $X\in|2f+2C_{1}|$ , we see that the curve $X$ comes from a non-
singular conic which does not pass through the point $p$ . To see the curve $X$ is a nef divisor (N.B. not
ample e.g. $X.C_{1}=0$), we have only to apply the projection formula to a test curve with respect to the
morphism $b$ since $X\in|/\mathrm{t}’ O_{\mathrm{P}}\circ\sim(\mathbb{C})(2)|$ .

\ldots The Case (3-2)

Next we consider the case :the $\mathrm{b}\mathrm{l}\mathrm{o}\mathrm{w}\underline{- \mathrm{u}}\mathrm{p}\overline{W}$ of the variety $W$ at the vertex $p_{0}$ is isomorphic to the
ruled surface $\Sigma_{3}$ and the morphism $q$ : $Warrow W\subset P$ is given by the linear system $|3f+C_{3}|$ . Now,
taking the strict transform $q^{-1}(X)$ of the curve $X$ via the morphism $q$ , we seek the integers $u$ and $v$ such
that $q^{-1}(X)\in|uf+vC_{3}|$ . Then the condition $deg(X)=4$ means $q^{-1}(X).(3f+C_{3})=4.$ Since the
curve $q^{-1}(X)$ is irreducible, we can apply Lemma 2.2 (2.2.3) to this case and get $(\iota x, \tau))=(4,1)$ . Then
X.C3 $=(4f+C_{3}).C_{3}=4-$ $3$ $=1,$ which shows the curve $X$ passes simply through the vertex $p_{0}$ .

4 Existence
Now let us show the existence of the three cases above and summarize the classification of the case

c0dimiW)=2 we have already done.
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Proposition 3.6 Let $X$ be a non-degenerate quartic norrmal curve in $P=\mathrm{P}^{4}(\mathbb{C})=$ Proj(S) and $Wa$

pregeometric shell of $X$ with codim(W) $=2.$ Then $W$ is reduced and irreducible and a variety of A-genus
zero. The homogeneous coordinate ring $R_{W}$ of $W$ has a minimal graded $S$ -free resolution $\mathrm{F}_{W}$,. with the
$Tor$-Betti numbers $(3, 2_{\backslash }0)$ . There are three possible cases satisfying these properties as in Table 4.

Case No. $d.m(S^{\cdot}/(W))$ $W$ or $W$
$l$

. ear $sytem(mo h.)$ $X$ or $q^{-\mathrm{I}}(X)\in-$llnear system
(3-1-1) -1 (on-s. $g$) $\cong\Sigma_{1}$ $|\mathit{2}f+C\mathrm{l}$ $|$ (embeddi $g$) $X\in|37$ $+C_{1}|$ (ample)
(3-1-2) -1 $(0-\cdot. g)$ $W\cong\Sigma_{1}$ $|2f+C\mathrm{l}$ $|(emb\overline{edd}. g)$ $X\in|2f+2C_{1}|$ ($nef$, not ample)
(3-2) –0 $–\cong\Sigma$ $|3f+C_{3}|$ $q^{\overline{-1}}(X)\in|4f+C_{3}|$

Table 4: Cases of a surface W and a curve $X$

Conversely, there exist a non-singular projective surface $W$ and a non-singular projective curve $X$ on $W$

which satisfy the conditions in Table 4 above. Moreover, once if the surface $W$ and the curve $X$ on $W$

are given as in Table 4 above, then the surface $W$ is always a pregeometric shell of the curve $X$ (cf. also
\S 4 $\cdot$ ).

Proof. It is enough to show the existence part of the claim above. If we do not assume the condition of
“pregeometric shells”,, Lemma 2.2 (2.2.3) shows the existences of pairs of a non-singular projective curve
and a non-singular projective surface: $X\subset W$ in $P=\mathrm{P}^{4}(\mathbb{C})$ as in Table 4. Then, the curve $X$ is a curve
of degree 4 and the surface $W$ is of degree 3. By this construction, the surface $W$ is a linearly normal, i.e.
a natural map $H^{0}(P, O_{\mathrm{P}}(1))arrow H^{0}(W, O_{W}(1))$ is surjective. On the non-degeneracy of $X$ , using Table
4, we can check it easily by computing $H^{0}(W, I_{X/W}(H))\cong H^{0}(W, O_{W}(-X+H))$ $=0$ (if $W\cong\Sigma_{1}$ ) or
$H^{0}(\overline{7\overline{V}}, I_{q}1(X)/\tilde{W}(q^{*}H))\cong H^{0}(\overline{W}, O_{\overline{W}}(-q^{-1}(X)+q^{*}H))=0$ (if $\overline{W}\cong$ E3). This also shows the linear
normality of the rational curve $X$ (adjunction formula and Lemma 2.2 (2.2.4)).

Let us show that the surface $W$ is a pregeometric shell of $X$ in these three cases. In every case, both
the surface $W$ and the curve $X$ are varieties of $\triangle$-genera zero. Now we refer to the book [6] and apply
its results: (4.12) Corollary and the argument of (5.1), which imply that both varieties $X$ and $W$ are
with metically Cohen-Macaulay. Then the result of [5] shows that the homogeneous coordinate rings $R_{W}$

has 2-lincar minimal graded $S$-free resolution. Applying Proposition 2.5 (2.5.8), we see that the surface
It is a pregeometric shell of $X$ . $\mathrm{I}$

The argu nent in the proof of Proposition 3.6 brings also the following useful result.

Corollary 3.7 Let $V\subset W$ be closed subschemes of $P=\mathrm{P}^{N}(\mathbb{C})$ . Assume that the scheme $V$ is non-
deqcneratc and the scherne $W$ is linearly normal and of a variety of $\triangle$ -genus zero. Then the variety $W$

is a pregeometric shell of $V$ .

Corollary 3.8 Let $V\subset P=\mathrm{P}^{N}(\mathbb{C})$ be a non-degenerate, linearly no rmal closed subvariety of codimen-
sion $r$ and of $\triangle$ -genus zero. Then, there is a chain of varieties:

$V=W_{0}\subset W_{1}\subset W_{2}\subset\cdots\subset W_{k}\subset\cdots\subset W_{r}=P,$

where the variety $W_{k}$ $(k=0,1, \cdots, r)$ is a pregeometric shell of $V$ with $cod_{i}m(W_{k}, P)$ $=r-k.$

Proof. Starting from the variety $V$ , we first construct inductively a chain of varieties $\{W_{k}\}_{k=0}^{r}$ with
$\triangle$-genus zero. As an induction hypothesis, we assume that we have a chain of varieties :
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$V=W_{0}\subset W_{1}\subset\cdots\subset W_{k_{0}}$ ,

where all the varieties $W_{k}$ $(k= 0, 1, \cdots, k_{0})$ are varieties of $\triangle$-genus zero. Then we take a nonsingular
point $x$ of the variety $W_{k_{0}}$. and set $W_{k_{0}+1}$. to be a one point chordal variety $Cd(x, \mathrm{W}\mathrm{k}\mathrm{O})$ with the vertex
$x$ . Then it is easy to see that the variety $W_{k_{\mathrm{O}}+1}$ is also of A-genus zero. Thus we obtain a chain of the
varieties $\{W_{k}\}_{k=0}^{r}$ with $\triangle$-genus zero. Then we apply COrOllary3.7 to each pair $V\subset W_{k}$ and get what
we wanted.

Q4 Explicit Examples.
Ill this section, using homogeneous coordinates explicitly, we give an example of a pregeometric shell of
codimension two for the rational quartic curve $X$ , which appeared as one of the three cases in the list of
PrOpOsitiOn3.6. On explicit examples of the rest two cases, see [23]. The equations for $X$ and so on are
the same as in the first part of the previous section.

Example 4.1 (The Case:(3-1-1)) Taking $Y=\mathrm{P}^{2}(\mathbb{C})=$ Proj(Cl $[U_{0},$ $U_{1}$ , $U_{2}]$ ), we get a surface $W$ as
the blow-up of $Y$ at the center $p_{1}=[1$ : 0:0$]$ . The embedding of $W$ by the linear system $|2f+C_{1}|$ , namely
the linear system coming from the conies passing through the point $p_{1}$ , is given by [ $Z_{0}$ : $Z_{1}$ : $Z_{\mathit{2}}$ : $Z_{3}$ .
$Z_{4}]=$ [UOU2 : UOU2 : $U_{1}^{2}$ : $U_{1}U_{2}$ : $U_{2}^{2}$ ]. The equations of $W$ are : $Z_{1}Z_{2}-Z_{0}Z_{3}=0$ , $Z_{1}Z_{3}-Z_{0}Z_{4}=0.$

$Z_{3}^{2}-iS$

:
Z2Z4 $=0.$ Then a minimal graded $S$ -free resolution of the homogeneous coordinate ring $R_{\mathcal{W}}$ of $W$

$\mathrm{F}_{\mathfrak{l}V}$. O $arrow$ S $\underline{\Psi 1}\oplus^{3}S(-2)$
$\varphi$- $\oplus 2S(-3)$ $arrow 0,$

where the maps $\psi_{i}$ (i $=1,$ 2) are described by the matrices:

t&l $=$ [ $Z_{1}Z_{2}$ –ZOZ3 $Z_{1}Z_{3}$ –ZOZ4 $Z_{3}^{2}-Z_{2}Z_{4}$ ]

$/\mathrm{j})_{2}=\{\begin{array}{ll}-Z_{3} Z_{4}Z_{2} -Z_{3}-Z_{0} Z_{1}\end{array}\}$

The curve $X$ comes from a curve $[U_{0} : U_{1} : U_{2}]=[T_{0}^{3} : T_{0}T_{1}^{2} : T_{1}^{3}]iY$ , namely a singular cubic
$U_{1}^{3}-U_{0}U_{2}^{2}=0$ with a cusp at the point $p_{1}=[1$ : 0:0$]$ .

The $Tor$ injectivity condition can be confirmed by using a homomorphism of complexes:

$\mathrm{F}_{X}$. $\mathrm{O}arrow S\underline{\varphi_{1}}\oplus^{6}S(-2)\underline{\varphi_{2}}\oplus^{8}S(-3)\underline{\varphi_{3}}\oplus^{3}S(-4)arrow 0$

$||$ $\uparrow\nu_{1}$ $\uparrow U2$

$\mathrm{F}_{W}$ . $0arrow$ S $\underline{\psi_{1}}\oplus^{3}S(-2)\underline{\psi_{2}}\oplus^{2}\mathrm{S}(-3)$ $arrow$ 0,

where the rnatnces for the maps $\nu_{i}(i=1,2)$ are:where the matrices for the maps $\nu_{i}(i=1,2)$ are:
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$\nu_{1}=$ $\{\begin{array}{lll}0 0 01 0 00 0 00 1 00 0 00 0 1\end{array}\}$ $\nu_{2}=|00000001$ $00000001$
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