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In this note, I want to give an exposition of some recent developments
on the Kihler subman垣化 $\mathrm{l}\mathrm{d}\mathrm{s}$ in a quaternionic Kihler manifold, due mainly
to D.V.Alekseevsky and S.Marchiafava [1], [2] and N.Ejiri and the author
[5], [11]. I expect interesting interplay of K\"ahler geometry and quaternionic
K\"ahler geometry.

1 Basic definitions

Let $(M^{4n},\tilde{g}, Q)$ be a quaternion K\"ahler man垣化 $1\mathrm{d}$ with the quaternionic
K\"ahler structure $(\tilde{g}, Q\tilde)$ , that is , $g\sim$ is the Riemannian metric on $\tilde{M}$ and $\tilde{Q}$

is a rank 3 subbundle of End $T\tilde{M}$ which satisfies the following conditions:

(a) For each $p\in\tilde{M}$ , there is a neighborhood $U$ of $p$ over which there exists
a local frame field $\{\tilde{I}, \tilde{J},\tilde{K}\}$ of $\tilde{Q}$ satisfying

$\tilde{I}^{2}=\tilde{J}^{2}=\tilde{K}^{2}=-\mathrm{i}\mathrm{d}$ , $\tilde{I}\tilde{J}=-\tilde{J}\tilde{I}=\tilde{K}$ ,
$\tilde{J}\tilde{K}=-\tilde{K}\tilde{J}=\tilde{I}$ , $\tilde{K}I\sim=-\tilde{I}\tilde{K}=$ ,J.

(b) For any element $L\in\tilde{Q}_{p}$ , $g\sim p$ is invariant by $L$ , i.e., $\tilde{g}_{p}(Lu, v)$ $+\tilde{g}_{p}(u, Lv)$ $=$

$0$ for $u$ , $v\in T_{p}\tilde{M}$ , $p\in\tilde{M}$
‘

(c) The vector bundle $\tilde{Q}$ is parallel in End $T\tilde{M}$ with respect to the Rie-
mannian connection $\tilde{\nabla}$ associated with $\tilde{g}$ .

K\"ahler structure $(\tilde{g}, Q)$ , that is, $g\sim$ is the Riemannian metric on $M$ and $Q$

is arank 3subbundle of End $T\tilde{M}$ which satisfies the following conditions:

(a) For each $p\in M,$ there is aneighborhood $U$ of $p$ over which there exists
alocal frame field $\{\tilde{I},\tilde{J},\tilde{K}\}$ of $Q\sim$ satisfying

$\tilde{I}^{2}=\tilde{J}^{2}=\tilde{K}^{2}=-\mathrm{i}\mathrm{d}$ , $\tilde{I}\tilde{J}=-\tilde{J}\tilde{I}=\tilde{K}$

$\tilde{J}\tilde{K}=-\tilde{K}\tilde{J}=\tilde{I}$ . $\tilde{K}\tilde{I}=-\tilde{I}\tilde{K}=.\tilde{J}$ .

(b) For any element $L\in Q_{p},\tilde{g}_{p}$ is invariant by $L$ , i.e., $g\sim p(Lu, v)+\tilde{g}_{p}(u, Lv)=$

$0$ for $u$ , $v\in T_{p}\tilde{M}$ , $p\in\tilde{M}$
‘

(c) The vector bundle $Q$ is parallel in End $TM$ with respect to the Rie-
mannian connection $\nabla\sim$ associated with $g\sim$ .

In this note we assume that the dimension of $M4n$ is not less than 8 and
that $\tilde{M}^{4n}$ has nonvanishing scalar curvature. A submanifold $M^{2m}$ of $\tilde{M}$

is said to be almost Hermitian if there exists a section $\tilde{I}$ of the bundle
$\tilde{Q}|_{M}$ such that (1) $\tilde{I}^{2}=-\mathrm{i}\mathrm{d}$ , (2) $\tilde{I}TM=TM$ (cf. $\mathrm{D}.\mathrm{V}$ .Alekseevsky and
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S.Marchiafava [1] $)$ . We denote by I the almost complex structure on $M$

induced from $\tilde{I}$ . Evidently $(M, I)$ with the induced metric $g$ is an almost
Hermitian manifold. If $(M, g, I)$ is Kahler, we call it a Kdhler submanifold
of a quaternionic Kahler manifold $\tilde{M}\Gamma$ An almost Hermitian submanifold
$M$ together with a section $\tilde{I}$ of $\tilde{Q}|_{M}$ is said to be totally complex if at each
point $p\in M$ we have $LTpM[perp] T_{p}M$ , for each $L\in\tilde{Q}_{p}$ with $\tilde{g}(L,\tilde{I}_{p})=0$ (cf.
S.Funabashi [6] $)$ . Alekseevsky and Marchiafava studied the integrability and
the Kihlerity conditions for almost Hermitian submanifolds. In particular
they proved the following.

Theorem 1.1 ([1] Theorem 1.12) In a quaternionic K\"ahler manifold $(\tilde{M}^{4n}, \mathit{9},\tilde{Q})$

with nonvanishing scalar curvature, a $2m(m\geq 2)$ -dimensional almost Her-
mitian submanifold $M^{2m}$ is Kdhler if and only if it is totally complex.

Let $(\tilde{M}^{4n},\overline{g},\tilde{Q})$ be a quaternionic Kihler manifold with nonvanishing scalar
curvature and $M^{2m}$ be a $2m(m\geq 2)$ -dimensional Kdhler submanifold of
$\tilde{M}$ together with a section $\tilde{I}$ of $\tilde{Q}|_{M}$ . By the above theorem it is totally
complex. Then the bundle $\tilde{Q}|_{M}$ has the following decomposition:

(1.1) $\tilde{Q}|_{M}=\mathbb{R}\tilde{I}+Q^{l}$ ,

where $Q’$ is defined by $Q_{p}’=\{L\in\tilde{Q}_{p}|\tilde{g}(L,\tilde{I}_{p})=0\}$ at each point $p\in M.$

The following is a key fact.

Proposition 1.2 ([10] Lemma 2.10) Under the assumption above, the sec-
tion $\tilde{I}$ of $\tilde{Q}|_{M}$ and the vector subbundle $Q’$ are parallel with respect to the
induced connection $\tilde{\nabla}$ on $\tilde{Q}|_{M}$ .

At each point $p\in M,$ we define a complex structure I on the fibre $Q_{p}’$ by
$IL=\tilde{I}L$ for $L\in Q_{p}’$ . Hence $Q’$ becomes a complex line bundle over $M$ .
Moreover the induced connection $\tilde{\nabla}$ is complex linear on $Q’$ The curvature
form $R’$ of the connection $\tilde{\nabla}$ on $Q’$ is given by

(1.1) $R’(x, y)=- \frac{\tilde{\tau}}{4n(n+2)}\Omega(x, y)$ I,

where $\tilde{\tau}$ is the scalar curvature of $\tilde{M}$ and $\Omega(x, y)=g(Ix, y)$ for $x$ , $y\in T_{p}$M.
In particular the curvature $R’$ is of degree (1.1) Then there is a unique
holomorphic line bundle structure in $Q’$ such that a (local) holomorphic
section $L$ is defined by $\tilde{\mathit{7}}_{IX}L$ $=I\tilde{\nabla}_{X}L$ for arry vector field $X$ .

The normal bundle $T^{[perp]}M$ is a complex vector bundle with the complex
strucutre I induced fro$\mathrm{m}$

$\tilde{I}$ which satisfies $\nabla_{X}^{[perp]}I=0,$ where $\nabla^{[perp]}$ denotes the
connection of $T^{[perp]}M$ . Let $\sigma$ be the second fundamental form of $M$ in $\tilde{M}$ . By
Proposition 2.11 and Lemma 2.13 in [10], we have the following.



3

Lemma 1.3 At each point $p\in M,$ we have
(1) $\sigma(Ix, y)=\sigma(x, Iy)=I\sigma(x, y)$ for $x$ , $y\in T_{p}M$ ,
(2) $\tilde{g}(\sigma(x, y),$ $Lz)=\tilde{g}(\sigma(x, z)$ , $Ly)$ for $L\in Q_{p}’$ , $x$ , $y$ , $z\in T_{p}$M‘

2 Natural lifts to the twistor space.

We recall the theory of twistor spaces of quaternionic K\"ahler manifolds,
which is an important ingrudient for the study of quaternionic Kihler man-
ifolds. The rwistor space $\tilde{\mathcal{Z}}$ of a quaternionic K\"ahler manifold $(\tilde{M}^{4n},\tilde{g},\tilde{Q})$

is defined by $\mathrm{g}$ $=\{\tilde{I}\in\tilde{Q}|\tilde{I}^{2}=-\mathrm{i}\mathrm{d}\}$ . We normalize the fibre metric $\langle$ , $\rangle$ of
the bundle $\tilde{Q}$ such that a local canonical basis $\{\tilde{I},\tilde{J},\tilde{K}\}$ is an orthonormal
basis, putting $\langle$ , $)$ $= \frac{1}{4n}\tilde{g}$ Then the fibre $\tilde{\mathcal{Z}}_{p}$ of $\tilde{\mathcal{Z}}$ at $p\in\tilde{M}$ is given by

$\tilde{\mathcal{Z}}_{p}=\{I\sim\in\tilde{Q}_{p}|\tilde{I}^{2}=-\mathrm{i}\mathrm{d}\}$ $=\{\tilde{I}\in\tilde{Q}_{p}|\langle\tilde{I},\tilde{I}\rangle=1\}$ .

Hence the natural projection $\tilde{\pi}$ : $\tilde{\mathcal{Z}}arrow\tilde{M}$ is an $S^{2}$ bundle over $\mathrm{J}\tilde{\prime}I$ . Sinc$\mathrm{e}$

$\tilde{\mathcal{Z}}$

is a parallel fibre subbundle in $\tilde{Q}$ with respect to the Riemannian connection
$\tilde{\nabla}$ , the tangerit bundle $T\tilde{\mathcal{Z}}$ is decomposed to the direct sum

(2.1) $T\tilde{\mathcal{Z}}=\mathcal{V}+l$ ,

where $\mathcal{V}$ is the vertical distribution tangent to the fibres of $\overline{\pi}$ and 7{ is the
supplementary horizontal distribution defined by the Riemannian connec-
tion. The twistor space 2 has a natural complex structure such that the
distribution $\mathrm{H}$ is a holomporphic contact structure ( S.Salamon $[8],\mathrm{s}\mathrm{c}\mathrm{e}$ also
Besse Chapter 14 [3] $)$ . Moreover $\tilde{\mathcal{Z}}$ of a quaternionic Kihler manifold $\tilde{M}$

of positive scalar curvature admits a Einstein-Kihler metric.
From now on we assume that a quaternionic Kihler manifold $(\tilde{M}^{4n},\tilde{g},\tilde{Q})$

is of postive scalar curvature. Let $M^{2m}$ be an almost Hermitian submanifold
of $\tilde{M}$ together with a section $\tilde{I}$ of $\tilde{Q}|_{M}$ . Then the map $ME$ $p\vdash+\tilde{I}_{p}\in\tilde{\mathcal{Z}}_{p}$ is
a section of the bundle $\tilde{\mathcal{Z}}|_{M}$ over $M1$ The submanifold $\tilde{I}(M)$ of $\tilde{\mathcal{Z}}$ is called
the natural lift of an almost Hermitian submanifold (D.V.Alekseevsky and
S.Marchiafava [2] $)$ .

Theorem 2.1 ([2]) A $2m(m\geq 2)$ -dirnensional almost He rmitian subman-
ifold $\mathrm{y}^{2m}$ of $\tilde{M}$ is Kahler if and only if its natural lift $\tilde{I}(M)$ is a complex
submanifold of 2 which is an integral submanifold of the holomorphic con-
tact structure $\mathcal{H}$ . In particular the natural lift $I(M^{2n})$ of a half dimensional
Kahler submanifold $M^{2n}$ of $\mathrm{J}\tilde{I}^{4n}$

is a Legendrian submanifold of the rwistor
space Z. Conversely, any Legendrian submanifold $N$ of 2 defines a half
dimensional K\"ahler submanifold $M=\tilde{\pi}(N)$ of $\tilde{M}$ .



Legendrian submanifolds of $(\tilde{\mathcal{Z}}, \mathrm{Z})$ are constructed locally as follows: By
the holomorphic Darboux theorem, there exist local complex coordinates
$u,p_{1}$ , , $p_{n}$ , $q^{1}$ , , $q^{n}$ such that the holomorphic contact structure $\mathcal{H}$ is
given by the kernel of a holomorphic 1-form du– $E\mathit{7}_{=1}p_{i}dq’$ . In term of
these coordinates, a Legendrian submanifold locally has the form:

$u=f(q^{1}, , q^{n}),p_{i}= \frac{\partial f}{\partial q^{i}}(q^{1}, \cdot , q^{n})$ , $(i=1, , n)$ ,

where $f$ is a holomorphic function called a generating function of the Legen-
drian submanifold. These Legendrian submanifolds project onto half dimen-
sional Kahler submanifolds in a quaternionic Kahler manifold $\tilde{M}$ . This is a
natural generalization of the Bryant’s famous construction of superminimal
surfaces in $S^{4}=\mathrm{H}P^{1}([4])$ .

We consider another natural lift. For a $2m(m\geq 2)$ dimensional Kahler
submanifold $M^{2m}$ of $\tilde{M}$ , we recall the orthogonal decomposition $\tilde{Q}|_{M}=$

$\mathbb{R}\tilde{I}+Q’$ We put $\mathcal{Z}$ $=Q’\cap\tilde{\mathcal{Z}}|$ y.Then the natural projection yr : $\mathcal{Z}arrow M$ is
an $S^{1}$ -bundle over $M$ . It may be viewed as a kind of tube along the natural
lift $\tilde{I}(M)$ Let $\hat{f}$ : $\mathcal{Z}arrow\tilde{\mathcal{Z}}$ and $f$ : $Marrow\tilde{M}$ be inclusion maps. Then We
have a commutative diagram:

(2.2)
$(\mathcal{Z}k)\pi \mathrm{j}arrow\hat{f}(\tilde{\mathcal{Z}},\tilde{k})\downarrow\tilde{\pi}$

$(M, g)arrow^{f}(\tilde{M}\tilde{g}))$

Our observation is the following.

Theorem 2.2 ([5]) The space 2 is a totally real and minimal submanifold
of the twistor space $\mathrm{g}$ . In particular the space 2 of a half dimensional
Kihler submanifold $M^{2n}$ of $\tilde{M}^{4n}$ is a minimal Lagrangian submanifold of
$\tilde{\mathcal{Z}}$ .

We remark that Proposition 1.2 is a key fact for Theorems 2.1 and 2.2.

We denote by a and $\hat{\sigma}$ the second fundamental forms of the submanifolds
$M$ in $\tilde{M}$ and 2 in $\tilde{Z}$ , respectively. Then the following holds.

Proposition 2.3 For each z $\in \mathcal{Z}$ , the image of $\hat{\sigma}$ is contained in the hori-
zontal subspace $7\{_{z}$ . Moreover we have

$\tilde{\pi}_{*}\hat{\sigma}(X,$Y) $=\sigma(\pi_{*}X, \pi_{*}Y)$ for X, Y $\in T_{z}\mathcal{Z}$ .
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This Proposition implies that if $M^{2m}$ is a $2m(m\geq 2)$ -dimensional totally
geodesic K\"ahler submanifold of $\tilde{M}$ , then $\mathcal{Z}$ is a totally geodesic submanifold
of $\tilde{\mathcal{Z}}$ .

Example 2.1 M.Takeuchi [9] studied a complete totally complex totally
geodesic submanifold $M^{2n}$ of a quaternionic symmetric space $\tilde{M}^{4n}$ of com-
pact type or non-compact type. He called such a pair $(\tilde{M}, M)$ a TCG-pair
and classified TCG-pairs. He also studied the twistor space $\tilde{\mathcal{Z}}$ of $\tilde{M}$ a$\mathrm{n}\mathrm{d}$

constructed the diagram as in (2.2) for a TCG-pair $(\tilde{M}, M)$ . In this case,
he showed that a natural lift 2 of $M$ is given by the set of fixed points of
an anti-holomorphic involution of $\tilde{\mathcal{Z}}$ . We give here the tabl$\mathrm{e}$ for classical
TCG-pairs of compact type due to [9].

$\overline{MM^{\cdot}}$
$\mathrm{C}P^{n}$ $\mathrm{H}P^{n}$

$(Q_{p}(\mathrm{C})\cross Q_{q}(\mathrm{C}))/\mathrm{Z}_{2}$ $\tilde{G}_{4,p+q}(\mathrm{R})$

$G_{2,m}(\mathrm{C})$ $\tilde{G}_{4,2m}(\mathrm{R})$

$\mathrm{C}P^{p}\cross \mathrm{C}P^{q}$
$G_{2,p+q}(\mathrm{C})$

$G_{2,n}(\mathrm{R})$ $G_{2.n}(\mathrm{C})$

Notations in the table.
$\mathrm{C}P^{n}$ : n- dimensional complex projective space
$\mathrm{H}P^{n}$ : n- dimensional quaternion projective space
$Q_{p}(\mathrm{C})$ : Complex hyperquadric of dimension $p$

$\tilde{G}_{p,q}(\mathrm{R})$ : Grassmann manifold of oriented $p$-subspaces in $\mathrm{R}^{p+q}$

$G_{p,q}(\mathrm{F})$ : Grassmann manifold of $p$-subspaces in $\mathrm{F}^{p+q}$

Here we remark that the definition of a totally complex submanifold
in Takeuchi [9] is slightly different ffom our one in this note. D $\mathrm{u}\mathrm{e}$ to hi$\mathrm{s}$

definition, the section $\tilde{I}$ of $\tilde{Q}|_{M}$ is locally defined on a neighborhood of each
point not necessarily globally defined (see also [10]).

3 Parallel Kahler submanifolds-
This section is devoted to a Kihler (and hence totally complex) submanifold
$M^{2n}$ of a quaternionic K\"ahler manifold $\tilde{M}^{4n}$ with parall$\mathrm{e}1$ second fundamen-
tal form. Shortly we call it a parallel Kahler submanifold. First we show
examples.



Example 3.1 The author [10] studied totally complex submanifolds with
parallel second fundamental form in a quaternion projective space $\mathrm{H}P^{n}$ and
classified them.They are locally congruent to one of the following:

(1) $\mathrm{C}P^{n}\mathrm{c}arrow \mathrm{H}P^{n}$ (totally geodesic)

(2) $Sp(3)/U(3)\mathrm{c}arrow \mathrm{H}P^{6}$

(3) $SU(6)/S(U(3)\cross U(3))arrow\neq\neq \mathrm{H}P^{9}$

(4) SO(l2)/U(6) $\mathrm{c}arrow \mathrm{H}P^{15}$

(5) $E_{7}/E_{6}$ . $T^{1}(arrow \mathrm{H}P^{27}$

(6) $\mathrm{C}P^{1}(\tilde{c})\cross \mathrm{C}P^{1}(\tilde{c}/2)\mathrm{c}arrow \mathrm{H}P^{2}$

(7) $\mathrm{C}P^{1}(\tilde{c})\cross \mathrm{C}P^{1}(\tilde{c})\cross \mathrm{C}P^{1}(\tilde{c})\mathrm{c}arrow \mathrm{H}P^{3}$

(8) $\mathrm{C}P^{1}(\tilde{c})\cross 5O(n +1)/SO(2)$ SO $(n-1)$ $arrow+\mathrm{H}P^{n}$ $(n\geq 4)$ ,

where $\mathrm{H}P^{n}$ has the scalar curvature An(n $J$ $2$ ) $\mathrm{c}$ and $\mathrm{C}P^{1}(\tilde{c})$ is of constant
curvature $\tilde{c}$ . Their immersions in the above are given in [10].

We show a classification of Kahler submanifolds $M^{2n}$ of a quaternionic
Kahler manifold $\tilde{M}^{4n}$ with parallel non zero second fundamental form $\sigma$ due
to Alekseevsky and Marchiafava [1].

Let $(\tilde{M}^{4n},\tilde{g},\tilde{Q})$ be a quaternionic Kihler manifold with nonvanishing
scalar curvature and $M^{2n}$ $\mathrm{b}\mathrm{e}_{J}$ a $2n$-dimensional Kahler (and hence totally
complex) submanifold of $\tilde{M}^{4n}$ . We use the notations in section 1. At each
point $p\in M,$ for non zero $L\in Q_{p}’L$ is a complex anti-linear isomorphism
of $T_{p}M$ to $T_{p}^{[perp]}M$ since $LI=-IL$. For $L\in Q_{p}’$ , we define a trilinear form
$\psi(L)$ on $T_{p}M$ by putting

$\psi(L)(x, y, z)=\tilde{g}(cy(x, y)$ , $Lz)$ for $x$ , $y$ , $z\in T_{p}M$ .

Then by Lemma 1.3 (2), $\psi(L)$ is a symmetric trilinear form. Thus we obtain
a bundle homomorphism $\psi$ : $Q’arrow S^{3}(T^{*}M)$ of real vector bundles. We
calculate the covariant derivative $(\overline{\nabla}_{V}\psi)(L)=\nabla_{V}(\psi(L))-\psi(\tilde{\nabla}_{V}L)$ , where
$\nabla$ and $\tilde{\nabla}$ denote the Riemannian connection of the Kihler manifold $(M, g)$

and the induced connection on $Q’$ . Then we have

(3.1) $(\overline{\nabla}_{v}\psi)(L)(x, y, z)=\tilde{g}((\nabla v\sigma) (x, y)$ : $Lz$ ).

We denote by $TM^{\mathrm{C}}=TM^{+}+TM^{-}$ the decomposition of the complex-
ified tangent bundle into $\pm\sqrt{-1}$-eigenspaces with respect to the complex
structure I on $M$ and by $T^{*}M^{\mathrm{C}}=T^{*}M^{+}+T^{*}M^{-}$ the dual decomposition



of the cotangent bundle. We extend $\psi(L)$ complex linearly to $S^{3}(T^{*}M^{\mathrm{C}})$ .
By Lemma 1.3 (1), there exists a $\phi(L)\in S^{3}(T^{*}M^{+})$ such that

$\mathrm{i}\mathrm{p}(L)=\phi(L)+\overline{\phi(L)}\in S^{3}(T^{*}M^{+})+S^{3}(T^{*}M^{-})$ .

The bundle homomorphism $\phi$ : $Q’arrow S^{3}(T^{*}M^{+})$ is complex anti-linear,
that is, $\phi(IL)=-\sqrt{-1}ft(L)$ . Let us denote by $\overline{Q}$ ’ the complex line bundle
obtained from $Q’$ by taking the opposite complex structure $\overline{I},\mathrm{i}.\mathrm{e}.,\overline{I}=-I$ .
Then $\phi$ : $\overline{Q}’arrow S^{3}(T^{*}M^{+})$ is a bundle homomorphism of complex vector
bundles.

The induced connection $\tilde{\nabla}$ is complex linear on $\overline{Q}’,\mathrm{t}\mathrm{o}\mathrm{o}$ and the curvature
form $R’$ of the connection $\tilde{\nabla}$ on $\overline{Q}’$ is given by

(3.1) $7?’(x, y)= \frac{\tilde{\tau}}{4n(n+2)}\Omega(x, y)\overline{I}$ .

We can see this formula comparing with (1.2). Similarly to $Q’$ , there cx-
ists a unique holomorphic line bundle structure on $\overline{Q}^{l}$ compatible with the
connection V. If the submanifold $M$ satisfies the equation of Codazzi type,
that is, $(\overline{\nabla}_{x}\sigma)(y, z)=(\overline{\nabla}_{y}\sigma)(x, z)$ , then $\phi$ : $\overline{Q}’arrow S^{3}(T^{*}M^{+})$ is a holomor-
phic bundle homomorphism of holomorphic vector bundles. This is proved
by using (3.1). Now we assume that the Kihler submanifold $M^{2n}$ of $\tilde{M}^{4n}$

has parallel non zero second fundamental form $\sigma$ . Then $\phi$ vanishes nowhere
and by (3.1) we have $\overline{\nabla}\phi=0$ From this, it follows that $Q=\phi(\overline{Q}’)$ is
a holomorphic line subbundle of $S^{3}(T^{*}M^{+})$ which is parallel with respect
to the Riemannian connection V. Moreover the curvature form $R^{Q}$ of the
connection $\nabla^{Q}$ on $Q$ induced by the the Riemannian connection $\nabla$ is given
by

(3.3) $R^{Q}=i \frac{\tilde{\tau}}{4n(n+2)}\Omega(x, y)$ .

Consequently we obtain a nice observation due to Alekseevsky and IVIarchi-
afava ([1] Proposition 3.1).

Proposition 3.1 Let $M^{2n}$ be a parallel Kahler submanifold of a quater-
nionic Kiihler manifold $\tilde{M}^{4n}$ with scalar curvature $\tilde{\tau}\neq 0.$ If it is not totally
geodesic, then on $M$ there is a parallel holomorphic line subbundle $Q$ of
$\mathrm{S}^{3}(T^{*}M^{+})$ such that the curvature form of the connection $\mathit{7}^{Q}$ on $Q$ induced
by the the Riemannian connection $\nabla$ is given by (3.3).

Alekseevsky and Marchiafava called a parallel holomorphic line subbundle
$Q\subset 53(T^{*}M^{+})$ with curvature form (3.3) a parallel cubic line subbundle of
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type $\iota/$ , $\nu=\frac{\tilde{\tau}}{4n(n+2)}$ . They tried to classify Kihler manifolds which admit
parallel cubic line subbundles and proved the following surprising result.

Theorem 3.2 ([1] Theorem 3.14) Let $M^{2n}(n\geq 2)$ be a simply connected
complete Kdhler manifold which admits a parallel cubic line subbrrnclle of
type $\nu$ . If $\nu>0,$ then $M^{2n}$ $is$ one of compact Hermitian symmetric spaces
described in Example 3.1 $(\mathit{2})\sim(\mathit{8})$ . If $\nu<0_{f}$ then $M^{2n}$ $is$ one of the
noncompact dual spaces of the symmetric spaces in the case of $\nu$ $>0.$

As we have already shown in Example 3.1, all of compact Hermitian symmet-
ric spaces $M^{2n}$ which appeared in the classification above admit realization
as non totally geodesic parallel Kahler submanifolds of the quaternion pr0-

jective space HP71. Alekseevsky and Marchiafava posed the similar problem
of realization of $M^{2n}$ as parallel Kahler submanifolds of the other quater-
nionic K\"ahler manifolds.

4 Einstein-K\"ahler submanifolds

In this section we characterize Kihler submanifolds in Example 3.1 under
some curvature conditions. We obtained the following results ([11]).

Theorem 4.1 Let $M$ be a $2n$ -dimensional Einstein-Kiihler submanifold in
$\mathrm{H}P^{n}(n\geq 2)$ . Then it has parallel second fundamental form and in part,ic-
ular is locally cong ruent to one of (1), $(\mathit{2}),(\mathit{3}),(\mathit{4}),(\mathit{5})$ , and (7) in Example
3.1.

Theorem 4.2 Let $M$ be a $2n$ -dimensional locally reducible Kahler subman-
ifold in $\mathrm{H}P^{n}(n\geq 2)$ . Then it has parallel second fundamental form and in
particular is locally congruent to one of (6), (7), and (8) in the Example 3.1,

Corollary 4.3 Let $M$ be a $2n$ -dimensional Kihler sttbmanifoltl tnith parallel
Ricci tensor in $\mathrm{H}P^{n}(n\geq 2)$ . Then it has parallel second fundamental form
and in particular is locally congruent to one of Kihler submanifolds in the
Example 3.1.

Can we replace our assumptions in the above by a weaker one, for ex-
ample , a Kihler submanifold with constant scalar curvature?
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