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Existence Results for Some Quasilinear Elliptic Equations
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1 Introduction

This paper is concerned with the following quasilinear elliptic equations involving critical
Sobolev exponents:

{ ~Ayu — pVO(z) - Vu|VulP~2 = da(z)[ul?u + K(z)|u[%v in Q,

(QE) u=20 on 01,

where Ayu = div(|VulP~2Vu) with 1 <p < N, p < ¢ < p* := Np/(N —p) and A € R.
Here 2 C RY is an unbounded domain such that Q := RM\ UL, @;, where w; is an
open and connected set with smooth boundary. If U¥ ,w; # (), we impose zero Dirichlet
boundary condition on the boundary 0Q of Q. If U*_ w; = 0, then the homogenous
boundary condition is not required. In (QE) #(z), a(z) and K (z) are positive (or non-
negative) functions. Our aim is to look for solutions tending to zero as |z| — .

When p = 2, 0(z) = gl|z[*, a(z) = K(z) = 1 and Q = RY, (QE) is written as the
following semilinear elliptic equation

—Au — %:v - Vu = Au+ [uf%u in RY (1.1)

with ¢ > 2. Escobedo-Kavian [11] have shown that

(i) if ¢ < 2* = 2N/(N —2), (1.1) admits a solution if and only if A < N/2,

(ii) if ¢ = 2*, (1.1) admits a solution if and only if A € (N/4,N/2) for N > 4,
where N/2 is the first eigenvalue of —~A — 1z -V on R¥ (see [11, Theorem 4.10]). As a
more general case than (1.1), we will study the solvability of (QE). We also study the
range of A for which (QE) admits a solution.

Equation (QE) is also written in the following divergence form:

—div(eP?’@ | VulP2Vu) = AeP?@q(z) [ulP2u + @D K (2)|ulf?u in Q; (1.2)

so that the associated weak formulation is given by

/ ) VP2V - Vip dz = / e (da(o)luf Pu+ K(@)lul u)pds  (13)
Q Q

for all ¢ € C$°(£2). From (1.3), it is natural to introduce some Sobolev spaces with weight
function eP?(®),
We first consider (QE) with ¢ < p*. We assume that § € C?(Q2) is a non-negative
function which satisfies
(6.1) there exists a constant ¢y > 0 such that Af > ¢ for all z € (Q,
(A1) (6.2) there exists a point o €  such that (z — zo) - V8 > 0 for all z € €,

(6.3) [(p— 1)A +|VO?]|VOP2 — +00 as |z] = oo
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One can easily check that 6(z) = |z|? fulfills (Al). For such function 6, we introduce
weighted Sobolev spaces LP(9,(2) and W'*(6,Q) as follows:

LP(8,9Q) = {u € L”(Q)I /Qe”g(z”u\pdz < +oo}, (1.4)
ww%any={uewﬁnmyéwmmmw+mmwwz<+m}. (1.5)

Let a(z) be a non-negative function satisfying
(B1) a(z) € L"(Q) for some r € (N/p, o0].
Correspondingly to W1?(6,Q), define

A= inf {/e”a(z){VuF’da://e”a(z)a(a:)|ulpdx}.
ueWhr(8,0)\{0} Q Q

From (A1) and (B1), one can show that A; is positive (see Lemma 2.2). It is easy to see
that A, is the first eigenvalue for the following eigenvalue problem;

—Ayu — pVO(z) - Vu|VulP? = da(z)[ulf?u in  Q,
u=0 on Of2.

Let K(z) be a positive function such that
(C1) V(z) =P @K (x) € L'(Q) with r € (p*/(p* — q), 00].
We next define a weak solution of (QE): u is called a weak solution of (QE) if it satisfies
(1.3) for every ¢ € W'?(6,Q).

Theorem 1.1 (case ¢ < p* [18]). Assume (A1), (B1) and (C1). Then (QE) admits a
non-trivial weak solution u* € WhH?(9,9Q) for every A < Ar.

Next we will study (QE) in case ¢ = p* by assuming, in addition to (A1) and (B1),
that

(A2) there exists ap > 0 such that |V8(z)| = aglz — zo| + 0|z — o))
and
(B2) there exists s € [p — 2,p) such that a(z) = |z — zo|™ + o(|z — To|™*)

as | — zo| = 0. It follows from (B1) and (B2) that r, s must satisfy rs < N. We also
put the following condition on positive function K (z) € C(Q):

im V(z) =0.

1
jz| o0

(C2) Viz) = e(”"")e(”’)K(z) satisfies V(zg) = ||V ||~ () and

Theorem 1.2 (case ¢ = p* [19]). Let N > p*> — s(p — 1). Assume (Al), (B1), (B2) and
(C2). Then (QE) admits at least one non-trivial weak solution u” € WiP(0,Q) for every
1) A€ (0:’\1) ZfS € (p_ 27p);
i) A€ (Ao, \1) if s=p—2,
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where o1
N — T
agp< p) A if N>3p-2,
Ao = p-1
0 — N—p p—l
Oéop(—_1> if N=3p—2
with

Z — |yi2 d ’yl—(p_m d
oy L+ e DNV /) fon [T+ [yple-Dn =2

Remark 1.1. It is not obvious whether \; is greater than Ag or not. If |ja(z)||L~(q)
(r # oo) is sufficiently small, then A; is greater than Ag. In this situation, (QE) with
g = p* has a non-trivial solution u* € Wh?(6,Q) for any A € (Ao, A1).

Remark 1.2. Let p=2and N >4 —s. If r = 00 and ||a(z)||p~(q) < 2cs/ayN, then we
can show that (QE) with ¢ = 2* admits at least one non-trivial solution u* € W#(6, Q)
for every A € (agN, ;).

Remark 1.3. By using the technique of Egnell [10] that (QE) has no positive solution
in Wb?(6, Q) for every A > A;.

It is easily shown that weak solutions of (QE) are critical points of the following
functional

Ig(u) := l/(3"'9(””)(|Vui” — Aa(z)|uff)dz — l/ef"""(z)K(:z:)Iu]"d:v. (1.6)
PJa qJq

To seek for critical points of Iy, we first prepare some properties of weighted Sobolev
spaces L?(6,§) and W1P(#,Q) in Section 2. These spaces are, in a sense, generalization
of function spaces introduced by Escobedo-Kavian [11]. They have discussed L?(#) and
WLP(#) for p = 2 under slightly weaker conditions on 6 (see Proposition 1.12 of [11]).We
also refer to Kawashima [14] and Muramoto-Naito-Yoshida [17] in the special case § =
alz|?. Similarly to [11], we will prove the compactness of some Sobolev’s embedding
Whr(9,Q) into LP(6,Q) under (Al).

Our analysis for Theorem 1.1 and 1.2 is based on the Moutain Pass Theorem. In case
g < p*, the idea of the proof of Theorem 1.1 is standard (see author’s paper [18, Section
3]). We will mainly exhibit the strategy of the proof of Theorem 1.2 in this page.

In general, the embedding W,”(Q) C LP"(Q) is not compact for general @ C RV,
In order to resolve this point, Lions [15, 16] has studied some behavior of sequences
pn = |Vun|Pdz and vy, = |un,|P dz, where {un} is a weakly convergent sequence in
DY (RY). From his method, one can find useful information on these sequences at some
local points. On the other hand, some author have introduced the idea for these behaviors
at infinity in the affirmative sense. They are, for example, Ben-Naoum, Troestler and
Willem [4], Bianch, Chabrowski and Szulkin [5] and Chabrowski [7]. In Section 3, we
will study the behavior of sequences T, := €?*®)|Vu,, [Pdz and 7, := e?®® K (z)|um |’ dz
corresponding to the functional Jy. We also clarify the relationship between (fim, V) and
(Foms V).

Being based on these preparations, we will apply a standard variational argument to
Iy with ¢ = p* in Section 4. To assure Palais-Smale condition, it is sufficient to show that
the energy level associated to Iy must be below a certain critical level. We estimate this
energy level by using a special function defined by Talenti [23] in Section 5.
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2 Preliminary and some notations corresponding to weighted
Sobolev spaces

To solve (QE), we introduce some notations corresponding to weighted Sobolev spaces.
For 1 < p < oo, let LP(Q) and LP(RY™) denote the Lebesgue spaces with norms
|- lp.o and || - ||, respectively. Let W, *(Q2) and W P(R") be the usual Sobolev spaces

whose norms are defined by |[ul|7 ¢ = llulf o + [|Vullb o and |[ullf, = {[ull} + |[Vu|],
respectively. Denote by D'?(RY) is the completion of C°(R”Y) with respect to norm
lull pro@ny = |[Vullp.

Let # € C?*(f)) be a non-negative function satisfying (Al). For such 6, we define
LP(0,Q) and W'P(6,9) by (1.4) and (1.5), respectively. The norm of L?(0,(2) is defined

by
|ullpo,0 = /epg(z) ulPdz ’
“p 2 { o | }

We also define [jull} o0 = llulbyq + IVull} 5o It is easy to sce that Wir(6,0Q) is a
Banach space with norm || - “LP,B,Q If @ = R, we simply write LP(f) and W'?(6) in
place of LP(§, RY) and W'P(9, R"), respectively. The norms corresponding to L?(f) and
WP(6) are written as || - |56 := || - llpory and || - |lipe := || - ll1,p,0,rY, TESPECtively.

Lemma 2.1. Assume (Al). Then there ezists a positive constant C which depends on p,
N, 8 and 2, such that

¢ [+ [von)upds < [ & (Tups 2.1)
Q 0

for all u € WLP(6,0).

Lemma 2.2. Assume (A1) and q € [p,p*]. Then there ezists ¢ > 0 such that |[ulq90 <
cllullipoq for all u € WhP(8,Q). Moreover the embedding W'?(0,Q) C L4(0,Q) is com-
pact for q € [p,p*).

Lemma 2.3. Assume (Al). Then W'?(6,Q) is a reflezive Banach space for every m > 0.

Esspecially for the case ¢ = p*, we introduce the following quotient:

p(x) u P _ epg(w ulz)P
/Qe Vu(z) P A/Q a(@)lu(z)Pdz

Qako(u) = 7o (2.2)
(f epe(‘”)K(mHu(x)lp'da:)p ’
Q
From the definition of V (z), one can express [, e?@ K (z)|ulf dz = [, V(z)-e*"*@ |u|"" dz.
So due to (B1) and (C2), @ik : WHP(, Q) — R is well defined for every )\ € R. Define

Sxke(Q) = EW“’ on)\{O} Qxr x0(u).

In this case, there is a close relationship between seeking critical points of Iy and seeking
a minimizer of S) k() in case ¢ = p* (see Section 5). Furthermore
)p/p' }

£ Q) = inf P\ u|Pd f
00(8) uewl,g(;,m\{o}{/ne |Vul z/( A
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This is the special case A = 0, and V(z) = 1 for Sy (). Note that S5 ,(f2) is the best
constant corresponding to the embedding WP(9,Q) C LP (4,Q). In case @ = R" we
denote Sy k6 := Sake(RY) and g4 := S5 4(RY), respectively.

Finally, define Sy(€2) as follows;

" p/p*
So(Q):= inf { / VulPdz / ( / ul” d) }
ueW,yP(2)\{0} Q 0

We simply write Sy instead of Sy(R™). Talenti [23] has shown that Sy is attained by

1
[ + |z — zo|p/(e-D](N-p)/p

ve(z) = (2.3)

for any € > 0 and 1, € RV.

3 Concentration-Compactness Principle corresponding to
weighted Sobolev spaces

Proposition 3.1. Let {u,,} be a sequence which converges to u* weakly in W'?(6) (also
converges weakly in D'P(RN)). Then there ezist at most countable index sets J, J, J*,
families A = {x;,j € J}, B ={%;,j € J}, C = {z},j € J*} of distinct points in RV,
and sets {vj, u;;5 € J}, {7,055 € J}, {vj, 1555 € J*} of positive numbers such that

(i) U = [um|P'de  — v=|uPdz+ Zz/jémj>
jed
tm = VumlPde = p > |VurPdz + ) 7 pi6e;,
et
(ii) Um = PO K(z)|up|P dr — 7 = eP?@ K (z)|u* P dz + Zﬁjfsfj,
jeJ
L, = eP®|Vu,|[Pdz — fi > @ |VurlPdz + > ;6
jeJ
(iii) vi =P 0@y | de — v =eP @ |yt P dr + Z V;iOz3,
jeJs
pr, = e?@|\Vu,,Pdr —  p* > eP'@|VurPds + Z 4503
jers

Here So(v;)P/P" < p; for all j € J, Sox,e(D;)P/P < B, for all j € J and S;;,g(u;)P/P‘ <y
for all j € J*. In particular, Y, (v;)P"", > e (@) and ZjEJ*(U;)”/”* are bounded.
P. L. Lions [15, 16] has first established an effective method in the study of varia-

tional problems involving critical Sobolev exponents. It is so called as Concentration-
Compactness Principle. It is well known that his proposition plays an important role
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when one encounters the lack of compactness due to the presence of critical Sobolev ex-
ponents. The proofs of them are also found in the monograph of Struwe [22, pp. 44-46].
Similar to their explanation, one can easily prove Proposition 3.1.

From our proposition, one can understand the behavior of weak convergent sequences
at bounded points in detail, which converges weakly in some Sobolev spaces. Roughly
speaking, these are only concerned with concentrations of a weakly convergent sequence
at local points and do not provide any information about the loss of mass at infinity.

Proposition 3.2. Let @ C RY be a general unbounded domain. Let {uy,} C W'P(0)
satisfy the conditions of Proposition 3.1. Define

Voo = lim lim P K|t P dz, fo o = lim lim €| Vu,, [Pdz,
R— o0 m—00 Q(R) ’ R—00 m—00 Q(R)

* i . T pta p*
Vien = Rhm lim / eP %un|P dz.

with UR) := QN {|z| > R}. Then

lim e”eK|um|”*d:c:/dﬁ+"ﬁoo,g, lim /e”equmlpdz:/dﬁ%—ﬁmQ,
Q m—oo fo 0 !

m—00 0

. *9
lim [ e %|up,
m—o0 0

P dg = / v + V% g
. ,
In particular,
So.k.0(Q) (Too)??" < P and 55,9(9)(1/;0,9)1)/1’- < fooq2-
Lemma 3.1. Let V(z) = e® P Y@K (z) € L*®(Q) and define V(oo) := lim V(). Then

|z|—00
Voo < V(00)V} o

4 Proof of Theorem 1.2.

Theorem 4.1. Assume (A1), (B1), (B2) and (C2). For every A < A1, any sequence
{um} satisfying

Iﬂ(um) — bGa (4'1)
Ih(up) — 0 in (W'P(8,Q))* (4.2)
contains a convergent subsequence in WhHP(0,Q), provided that

1 - . *
bo < 350 FIVliza " (= b5).

Proof. Define the functional Iz by (1.6) in Section 1. Set X = Wh?(6,Q) and define

lul o= [Vul? g0 = /ﬂ 7| Vul? da.
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By Lemma 2.1, || - ||x gives an equivalent norm with || - ||1 6,0 in X.
From (4.1) and (4.2), one can easily check that ||un|/x is a bounded sequence; so there
exists a subsequence (still denoted by {un}) such that

Uy, — U weakly in X.

We consider the natural extension of u,, and u* by setting u,, = u* = 0 in RV\Q.
Without loss of generality, we may also assume

U — u* weakly in WP (8).

So we can apply the concentration-compactness principle defined in Section 3.
First, by using (4.1) and (4.2), we can estimate the values of coefficients defined in the
statements of Propositions 3.1-3.2 as follows.

Lemma 4.1. Ji, g = Voo = 0.

Lemma 4.2. Let {un} be a sequence satisfying (4.1) and (4.2). Then A = {z;,j € J},
B = {7;,j € J} and C = {z},j € J*} in Proposition 3.1 are finite sets. In particular,
Hj =U; > Sév/pHVH;(z"p)/p for every j € J.

Secondly, from the fact that {u,,} is a weakly convergent sequence in X, we can derive
following two Lemmas.

Lemma 4.3. Let {un,} be a sequence which converges to u* weakly in W'P(6,Q). If
V(z) = PP V@K (z) € L™(Q), then there exists a subsequence {um,} C {um}, still
denoted by {un}, such that

(1) P K () |t [P 2y — eP?@ K (z)|u* P "%u* weakly in LN/?(6,Q)
and
(i) e’ @) () [um [P 2um — e”*@a(z)|u*|P2u* weakly in LF (4,Q)

with 1/p+1/p' = 1.
Proof. The proof is similar to Drabek-Huang [9, Proposition 2.3]. O

Lemma 4.4. Assume (Al), (B1) and (C1). Suppose u,, — u* weakly in W"?(6,Q) and
e’V K (z)|um[P" dz — PO K (z)|u" P dz + 3,570z, in the weak*-sense of measures. If
J is a finite set, then there ezists a subsequence {un, } C {um}, still denoted by {um},
such that for each 1 <i < N;

o8 Olm o) O

5 5 a.e. on £,
z; T . (4.3)
e?(®) |V, |p—2%1i'11 — P@)| g y* |2 (Zz; weakly in L (6,9)

L3 i

with 1/p+1/p' = 1.
Proof. We follow the idea of Xiping [24, Theorem 3.1] to show (4.3). O
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We continue the proof of Theorem 5.1. Here (4.2) implies (Jg(um),p)x — 0 as m —
+o00. That is,

/ @ |Vu,, P2V, - Védr — / e?’ @ (Aa(z) |um P2ty + K (2)|um [P " *tm)ddz — 0
0 0

for all ¢ € WP(#,Q). Hence it follows from Lemmas 4.3-4.5 that
A" — pVB(z) - VTP = da(a)lu P + K@)t

in X*; so that Ij(u*) = 0.
For any o > 0, there exists m > 0 enough large so that

1 .
by + 0 > Ig(upm) = . / e’ @ (| Vum|P — Aa(z)|um[P)dz — Z%/ e’ @ K ()|t |P" d.
0 Q

Letting lim in above inequality, it follows from Propositions 3.1-3.2 and Lemmas 4.2-4.3

m— o0
that )
be +o0 > lim Iy(upm) = Hm Tp(um) — =(p(u*),u")x
m—oC m—o0 p
> L /e”“)K( DPde+ -3 B - =7,
___N p‘#J p*.—‘J (44)
JeJ
>—/ PO K (z)|u*|P da:-i—Zbg
jeJ

Since by < bj, then we have 7; = 0 for all j € J from (4.4). This implies

/e”g(z K(z )|um}p dz ——>/e”9 z)|u* |” dz
0

as m — oo.
Finally from the idea of Dinca-Jebelean-Mawhin [8], we can conclude that [[Vun|lx —
|Vu*||x. So one can see u, — u* in X. Thus I, satisfies Palais-Smale condition. O

5 Estimate of mini-max level by

By Theorem 5.1, the proof of Theorem 1.2 will be complete if we can show

. L onp —(N-p)/p
o 1 5.1
bo = inf max Io(7() < 55 "IV I3 51)

where I : [0,1] — W'2(6, Q) is a set of continuous paths which connect 0 and u satisfying
Is(u) < 0. Indeed, we can show the existence of solutions of (QE) by the using Mountain
Pass Theorem (e.g., see author’s paper [18, Section 3]).

There is a close relationship between critical points of Iy and a minimizer of @ k.,
defined in (2.2). For example, Struwe {22, pp.177-178] gives us the relationship between
ba and S,\’K’Q(Q).
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Lemma 5.1. Define Sy g 6(Q) := inf{@Qx x,p(u);u € WHP(0,2)\{0}}. Then

o — _1_ N/p
bp = gelgtrg[giclfo(v(t)) = N(SA,K,B(Q)) : (5.2)

It follows from Lemma 4.1 that (5.1) is equivalent to
Sra() < SollVlloan P (5.3)

So we will show (5.3) instead of (5.1).

Let B, (z) be a cut-off funtion and define w, (z) := e~*@v,(z)P,(z) where v, is a special
function defined by (2.3). We may assume dist(z,?) > 3 without loss of generality. We
observe that w, € W'?(6,Q) for all ¢ > 0. By using the technique of Brezis-Nirenberg
[6], we can obtain the following Lemma.

Lemma 5.2. Let s € (p— 2,p) and N > p? — s(p — 1). Then there ezists € = €(A) > 0
such that Qxko(we) < SollVIIAa "™ for every A > 0.

Lemma 5.3. Let s = p—2 and N > 3p — 2. There exist Ay = Ao(p, N) > 0, defined
in Theorem 1.2, such that if A > Xy, there exists € = e(\) > 0 satisfying @ ko(w:) <

SollV{Iodn PN,

6 Related problem corresponding to (QE)

Consider with the following quasilinear elliptic equation

{ ~Ayu — pVo(z) - Vu|Vul~? = Aa(z)|u]%u + K(z)|u/?u in Q, 6.1)

u=10 on 0f},

where 1 < p< N,1<y<p<gq<p :=Np/(N—-p)and Q C RY is an unbounded
domain with smooth boundary 0. Note that equation (QE) is a special case of (6.1)
with v = p.

If we put 8(z) = 0, (6.1) is written as

{ ~Ayu = da(z)|u]"2u+ K(z)|u|*%u in Q,

u=1_0 on ON. (6.2)

This problem (6.2) is first studied by Ambrosetti-Brezis-Cerami [2] in case p = 2, a(z) =
K(z) =1 and  C R" is bounded. They have shown the multiplicity of solutions of (6.2)
by using supersolution-subsolution method and variational method. After their work,
many authors have studied to clarify the structure of solutions of (6.2). See, e.g., Alves-
Goncalves-Miyagaki [1], Ambrosetti-Garcia Azorero-Peral Alonso [3], Garcia Azorero-
Peral Alonso [12] and Huang (13].

We are interested with case 8(x) # 0 in (6.1). We put assumptions on a(z) as follows:

(B3) b(z) := e®M=)qg(z) € L7(Q) for some r € (p*/(p* — ), p/ (0 — V)]
(B4) there exists s > {p(N —2) —y(N —p)}/p such that b(z) = |z|~*+o(|z|™*) as |z| — 0.

Then we can get the following theorems in case p = 2.
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Theorem 6.1 (case ¢ < 2* [20]). Assume (Al), (B3) and (C1). Then (6.1) admits at
least two positive solutions u*,u, € WH2(0,Q) for sufficiently small A > 0.

Theorem 6.2 (case ¢ = 2* [20]). Let N(y—1) > 2y —s. Assume (Al), (B3), (B4) and
(C2). Then (6.1) admits at least two positive solutions u*,u, € WH*(8,9Q) for sufficiently
small A > 0.

Remark 6.1. In view of [2], the author guesses that (6.1) has the following properties

i) there exsits A > 0 such that (6.1) has at least two positive solutions
u*, u, € WHP(8,Q) for every A € (0, A),

ii) (6.1) has a positive solution u* € W'?(8,Q) for every A = A,

iii) (6.1) has no positive solutions for A > A.

iv) The minimal solution of (6.1) converges to zero as y — p.

However, we do not have proofs for the above properties.
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