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1 Introduction

It goes without saying that many theories on differential equations contribute
to the investigation of the differential geometric problems. Inversely,we can say
that some important geometric problems give strong motivation to investigate
corresponding analytic problems and contributes to developments of (nonlin-
ear) analysis. As a typical example, we mention harmonic maps. Since the
pioneering work by J.Eells and J.H.Sampson [5] was published, harmonic maps
between Riemannian manifolds have attracted great interests of many nonlinear
analysts as well as geometers. Especially, regularity problems for weakly har-
monic maps have been one of the most attractive problems for researchers of
quadratic variational problems. Nowadays, we have many detailed results on
regularity or/and singularity of solutions of variational problems for the follow-
ing type of functionals in relation to harmonic maps:

/aag(a:)b (1) 5 g

Harmonic maps between Riemannian manifolds are defined as follows. Let
(M, g) and (N, h) be Riemannian m— and n—manifolds respectively. The energy
density of a map u : (M,g) — (N, h) is the function e(u) : M — R defined by

e(u)() = 5ldu(p)l®,

where |du| denotes the Hilbert-Schmidt norm of du(p) € Ty M ®Tu(p)N , namely
for a orthonormal basis (e, ..., em) of TpM e(u)(p) can be written as

m
Z ea “Tu(p)N (1'1>
For a bounded domain Q in M, the energy of u on Q is defined by
B ) = [ elwds
Q

where du stands for the volume element on M. Harmonic maps are defined as
solutions of the Euler-Lagrange equations of the energy functional.
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Since Finsler geometry is a natural generalization of Riemannian geometry,
from the viewpoint of differential geometry, it is very natural to expect to extend
the important notion of harmonicity to Finsler geometry. In fact, P.Centore
[4] defined the energy of a map between Finsler manifolds and introduced a
new notion of harmonicity of maps between Finsler manifolds. On the other
hand, X.Mo [15] defined harmonic maps from Finsler manifolds into Riemannian
manifolds independently and got interesting results.

It will be worth to consider Finsler geometric variational problems from the
viewpoint of applied mathematics as well. If we can consider a given variational
problem in a geometric context, sometimes we will get good suggestions and even
fine perspective for the problem. On the other hand, there are many variational
and evolution problems which can not be interpreted as Riemannian geometric
problems, and some of them can be regarded as geometric problems in Finsler
geometry. For example, many physical and biological applications of Finsler
geometry are introduced by P.L.Antonelli, R.S.Ingarten and M.Matsumoto in
[1]. We mention also that G.Bellettini and M.Paolini [3] studied a problem of
anisotropic motion in a context of Finsler geometry.

As in the Riemannian case, the regularity problem for harmonic maps be-
tween Finsler manifolds should be very interesting problem.

Now, we give the definition of Finsler manifold in accordance with [2] and
introduce the definition of the energy density of a map between Finsler manifolds
defined in [4].

Let N be a n-dimensional C* manifold and TN the tangent bundle of V.
We express each point in TN as (u, X) with u € N and X € T, N. Moreover, 0
denotes the 0—section {(u,0)} C TN when we write TN\0. A Finsler structure
of N is a function

F: TN — [0,00)
w w
(u, X) —» F(u,X)
with the following properties:
(i) Regularity: F € C*(TN \ 0).
(i1) Homogeneity:
F(u,\X) = AF(u,X) forall A > 0. (1.2)

(iii) Convexity: The Hessian matrix of F? with respect to X
16%F%(u, X)
(g, X)) = (§W>
is positive definite at every point (u, X) € TN \ 0.
We call the pair (N, F') a Finsler manifold.

Centore [4] defines the energy density of maps between Finsler manifold as
follows.



Definition 1.1 (Centore). Let (M,G) and (N, F) be Finsler manifolds, and
I M a unit ball in T, M, namely

LM ={teT,M;G(X)<1}.

For a Cl-map u: M — N, we define the energy density e(u)(z) of u at z € M
by
3 fIxM(u*F)Q(X)dX

JiomwdX

Centore showed that the above definition is consistent with the standard
one (1.1) for Riemannian cases ([4, Lemma 2}) and also that it can be regarded
as a special case of the definition given by Jost [13] for abstract cases of metric
measure spaces ([4, Theorem 5)).

In this paper, we consider harmonic maps from R™ into Finsler space (N, F) =
(R™, F). For such a case, by virtue of the special structure of R™ and the ho-
mogeneity of F’, we can write the energy density defined by (1.3) more simply.
Namely, for a map v : R™ — (N, F') we can define the energy density of u at
z € R™ as

e(u)(z)

(1.3)

ew)(@) = o [ F(u(z), dus - )aH™ (&), (1.4)

ZCm Sgm—1
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where H™~! denotes the (m—1)-dimensional Hausdorff measure, ¢, = H™~1(S™~1),

dug denotes the differential of u at £ and

dumf = ((duwé)lﬁ)(dum‘f)n)

il o,
dze> 177 §za '

Moreover, as usual, we define the energy of u on §2 C R™by

Eu,Q) = /Qe(u)(:c)d:c

(1.5)
1

_ /Q{%;/Sm_lﬁ(u(m),duz-g)d%m-l(g)}dx.

We consider minimizing problems for the functional E(u, ) defined by (1.5)
in the class

Hp*(Q,N) ={ue H*Q,N) ; u— f € Hy*(Q,R")}, (1.6)

where f: Q2 — N is a given L™ function. In the following, “a minimizer of E”
means “a minimizer of E in the class H}’Q(Q, N)".

As in the case that the target manifold is Riemannian, let us call a solution
of the Euler-Lagrange equation of (1.5) to be a harmonic map.

The aim of this article is to show the partial Holder regularity of energy
minimizing map u : R™ — (N, F) for the case that m = 3,4.
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2 Harmonic Map

For homogeneous functions the following theorem is known as Euler’s Theorem
(see, for example |2, Theorem 1.2.1]).

Theorem 2.1 (Euler). Let a function H : R® — R be differentiable on R”\{O},
then the following two statements are equivalent:

e H is positively homogeneous of degree r. That is

HOAX)=XNH(X) forallA>0 and X € R™. (2.1)

o The radial directional derivative of H is equal to TH. Namely

X'Hx:(X) =rH(X) forall X € R™ (2.2)

Since F?(u, X) is positively homogeneous of degree 2 with respect to X,
using Euler’s theorem, we can easily see that

F(u, X) = 5 = 2 XX (2.3)
Put
1 0°f(u,X)
his(n X) = 2 Fxax7 (24)

Each h;;(u, X) is differentiable in v € N and X € R"\ {0} and 0-homogeneous
with respect to X. The energy density and the energy of u: Q C R™ — N can
be written as follows:

e(u)(z) = % /S byl dus - §)Dau " DA™ (25)
and
E(u;Q) = /Q ! /S . hij(u, dug - €)Daut€*Dpul EPdH™ 1 (€)dx (2.6)
respectively.

Throughout the paper this article, at most the second derivatives of F?(u, X)
with respect to X appear and the first derivatives of F? are Lipschitz continuous.
Therefore, by virtue of the chain rule for for compositions of Nemitsky operators
and Sobolev maps (see, for example, [14]), every term which contains Du can
be defined as zero when Du = 0.



We can calculate the first variation of F as

O:: d_&'

E(u+ed)
e=0

_ /Q [ /S  {hig(u du- £)6°¢°

+%hw;j (u, du - £)Dyufe? €2€PYdH™ 1 () Dou’ Dy’

(2.7)

1 . ,
+§/ hie,;(u, du - £)eEPdH™ 1 (€) Dyut Dpuby’ | da,
Srn—l

for all p € C§°(€)). Here and in the sequel we write

Bhw . 5hz’£
Sg  Tie(wX) =555

Moreover, since h;; are homogeneous of degree 0, Euler’s theorem implies
that

hif,j (U, X) =

Ohyj (u,tX)

0= ot

= hij;e(u,X)Xe. (28)
On the other hand, we have

1 83F?(u, X) 1 8%F?%(u,X)
higels X) = o SXBXIGKE ~ dom oXioX0x el X (29

Therefore, the second term in the right-hand side (2.7) vanishes. Thus the weak
form of the Euler-Lagrange equation of E(u; ), is given as

0= L Usm_l hij (u, du - £)E*EPAH™ 1 (€) Dou' Dy’

(2.10)
+%/ hie,j(u,du-§)§°‘§Bdﬁm_1(E)DauiDﬂuecpj} dz.
Sm-—1
If u is of class C?, by integration by parts, we get that
0= / [‘/ haj (u, du - €)EXEPH™ 1 (€) Dp Dau'?
Q gm-1
~ [ huselundu OEEPETIH™ D Dy D'
Sm—l
(2.11)

— /Sm_l hij,e(u, du - §)£“§ﬁde'1(§)DauiDgulcpj

1

+3 / hie,;(u, du - g)g“gﬁdﬂm"l(g)DauiDﬁu%j] dz.
Sm-—l

m
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where
N1 18 1
Uik 1= 15 (hajk = hjk,s + fks,5)
Also in the above equation, the second term vanishes by (2.8) and (2.9). Writing

| L1
Yk = h”ﬁ (hsjk — Pjk,s + hks,j) (2.12)

we obtain from (2.11)
/ [— / hig (u, du - €)€*€°dH™ 1 (§) Dg Dau'y?
Q Sm=1

"/ hoj (u, du - €) ke, du - €)62€°dH™ (€) Dau* Dyl | do 213)
Srn,—l

= 0.

Thus we have the Euler-Lagrange equation of the energy:

( {/ hij(u,duvg)ﬁafﬁd?{m”l(ﬁ)}DgDaui
Sm—l

e [ holndu ntludu eean(©) ) Do Dyt
Sm— 1

< (2.14)
=0 for j=1,..,n.

or

Du(z) = 0.

\

Now, let us call a smooth solution of (2.14) a harmonic map from R™ into a
Finsler manifold (N, F').Compare (2.14) with the standard equation of harmonic
maps from R™ into a Riemannian manifold.

Example. When (N, F') = (R", F') with Minkowskian structure F' (i.e. F(u,X)
does not depend on u), the identity map from R" to (R®, F) is a harmonic map.
Remark that Mo [15] showed harmonicity of identity map from a Minkowskian
space to R",

In the following we discuss partial regularity of energy minimizing maps from
a Euclidean space R™ into a Finsler space (N, F) = (R™, F).
3 Partial C%-regularity

In the sequel, we always suppose that (hi;(u, X)) satisfies the following condi-
tions:



(h-1) For some concave increasing function w with w(0) = 0 we have
|hij (w, X) = hij (v, X)| < w(u — o) (3.1)
for all u,v, X € R".
(h-2) There exists a positive constant Ag such that

o 2 X)) ..
i g7 = S et s e (3.2

for all u, X,€ € R™.

Under these assumptions, by the result due to M.Giaquinta and E.Giusti [9,
Theorem 5.1], it is known that every minimizer of (1.5) has Holder-continuous
first derivatives on some open subset Q¢ C € such that £L™(Q\ Q) = 0, where
L™ denotes the m—dimensional Lebesgue measure. In contrast, in [10], they
also proved that if the target manifold is Riemannian the (m — 3)-dimensional
Hausdorff measure of the singular set of every minimizer is equal to 0. We
also mention that, as V.Sverdk and X.Yan [16] showed, even if the functional
depends only on Du and m = 3, we can not expect everywhere C1*-regularity
in general.

In this section, we show the following partial C%®-regularity result for the
case that m < 4.

Theorem 3.1 ([17]). Assume thatm < 4 and that hi;(u, X) satisfies (3.1) and
(8.2). Then a minimizer u of E(u;Q) is Holder continuous on an open subset
Qo C Q such that H™=275(2\ Qp) = 0.

Proof. Let z¢ € €1 be a arbitrarily fixed point and R > 0 a fixed number
such that Bg = Br(zo) C Bar(zo) CC Q. Moreover, in the following we use
the following notation:

up = 1—1—5}3 5 udz, (3.3)
we = ((5),) - (@ L) o9
f@P) = [ hywP-eeanm ) (3:5)
Let v € H»?(B,R") be a solution of the minimizing problem:
Eo(v) := / af‘jﬁ (uR, dv) Dav* Dgv? dz — min.,
5 (3.6)

v—u e Hy*(B,R™).

173
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To get H?*2-regularity of a minimizer v, we consider the following equation for
the difference quotient

| {4r (De(a+ hes)) = Apg (Do)} )} Da?dz =0 Yo e Hy*(Q),
R

where

A(P) = aff (un, P)PLP) = [ F(ur, POAH™(6),
aA(P) g

03

Since Ap: are Lipschitz continuous, we can use the chain rule and get

1
/ {/ Apipé((l — t)Du(z) + tDu(z + he"))dt} ThDgu! Dop'dz = 0,
a Jo “
where 7/ = (Y(z + he?) — (z))/h and

. Apipi(P) if P#0
Api pi(P) = PaFg ,
&%() {0 if P=0.

Note that (1 — ¢t)Du(z) + tDu(z + he”) = 0 possibly at one value of ¢ except
that Du(z) = Du(z -+ he?) = 0. This implies that, if 7/*Du # 0,

(Ao‘ﬁ : (/ Ap, P;((l — t)Du(z) + tDu(z + he"))dt)
is coercive. Namely
Aaﬁﬁz 55 > v||€|2 V¢ e R™, for some v > 0.
Thus we can get a Caccioppoli-type estimate and proceed as in the usual cases
to get H?2-regularity of v (see for example pp.33-34 in [7]). Now, since v is in
the class H%2, we can see that Duv is also a weak solution of an elliptic equation.

Therefore, Caccioppoli’s inequality holds not only for v but also for Dv, namely
for any r € (0, R] we have

/ |Dv|?dz < = R2 lv — A\1|%dz  for any \; € R™, (3.7
By B,

/ |D?v|?dx < o / |Dv — M\p|?dz  for any Ap € R™™. (3.8)
B
5
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Combining above inequalities for » = R with Sobolev’s inequality and writing
2. =2m/(m+2) (i.e. (2.)* = 2), we get

/ | Dv|%dz < —0—25/ lv — vg|?dr < -9%- {/ | D%y z‘dm}zm‘
B_};_ R Br R Br

e N,
o]

voby

T

[

T

Q,

S)
~———

™

IA

@)

o
——
\‘\

t
m ——

v/

(4

>

QL

8
—

=

%)
w
x

[\ T

{][B 1D2vl2dm} < C7{][B ]D2U|2*dx}l/2'. (3.10)
g R

Since 2, < 2, using the local version of Gehring’s inequality due to M.Giaquinta
and G.Modica [11, Proposition 5.1}, we obtain from (3.9) and (3.10) the reverse
Holder inequalities for Dv and D?v:

’ 12
{][ Dv|pd:r} < cg {][ ]Dv|2d:c} , (3.11)
Bg Br
7

P 1/2
{][ Dzv\pdz} < ¢ {][ jD%Fda:} (3.12)
B'}gl Br
for some p > 2.

Let n be a function of the class C§°(Bg/2) which satisfies 1 > n > 0,7 =1
in Bg/4 and |Dn| < c10(m)/R. Then, applying Sobolev’s inequality to nDv, we
get

D[l Lot (Brp) S cr(MDMDV)| Lo (Br,s)

c1o , (3.13)
7 1D 2sBr)2) + c12l| D0l Lo(Bg,2)-
Combining (3.13) with (3.11), (3.12) and (3.8), we obtain
| DVl Le* (Br,4) < c13R™ Y || Dol L2(8R), (3.14)

where c;3 does not depend on v and R.
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Now, put 6 =1 — m=2- . Since p > 2, § > 0 for m < 4. Using (3.14)
and Morrey-type estimate, we get for p < R/4

IA

IN

<

1/2
{p‘m_z‘s/ lv — v,,]zd:r}
B,

[o(z) — vly)|

Br,a T — y|5
c1a(l +R6)HD'UHL;;'(BR/4) (cf. (7.43) in [12].)

l_mm
ci15R 1-5+%

IDUHLQ(BR)

ClsRl_%——(sHDUHLz(BR).

On the other hand, from (3.7) we have

p—m—25+2/j8 |DUJ2dIE < C”p—-m—%/ l,U —’Upfzd$.
p/2

B,

Combining (3.15) and (3.16), we get

p—m+2—26 / ‘D'U[le' < ClBR—m+2—~25 / ID'Ul2d1U

for all p < R/8.

B, Br

(3.15)

(3.16)

(3.17)

Let w = u —v. We can estimate [ |Dw|?dz proceeding as in [9] to see

/BR | Dw|?dx

-3
< cig {w(czoRz_m/ |Du|2da:)} / | Du|?dz.
Br Bz2r
Using (3.17) and (3.18), we obtain the following estimate:

/ | Duf2dz
Bp(zo)

< / tDv|2da:+/ |Dw|*dx
B, (zo) B, (zo)

< en ((

jou] RS

X / | Dul?dz.
Bar(zo)

m—2+28 -3
) +w| CRY™ / |\ Dufdz
Br(zo)

(3.18)
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Now, we can use [9, Lemma 2.2] to get partial CY%>_regularity of u. Namely, for

any a € (0,6), by virtue of [9, Lemma 2.2], we can take ¢ > 0 sufficiently small
so that

p—m+2—2a/ ‘DUPCZIL' < oo
By(zo)

for any zp in

Qo = {z € O;liminf R"m+2/ |Du|?dz < €}.
R—0 Br(z)

This implies that u € C%*(Q) and that H™?7¢(Q2\Qo) = 0. (See, for example,
'[7, p-43] and {7, Theorem 6.2}). a

References

(1] P.L. Antonelli, R.S.Ingarten and M.Matsumoto, The theory of sprays and

Finsler spaces with applications in physics and biology, Kluwer Academic
Publishers Group, 1993.

[2] D. Bao, S.-S. Chern and Z. Shen, An introduction to Riemann-Finsler
geometry, Springer Verlag, 2000.

(3] G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the
context of Finsler geometry, Hokkaido Math. J. 25 (1996), 537-566.

[4] Tlinois J. Math. 45 (2001) 1331-1345. P.Centore, Finsler Laplacians and
minimal-energy maps, Internat. J. Math. 11 (2000), 1-13.

[5] J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds,
Amer. J. Math. 86 (1964), 109-160.

(6] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Non-
linear Elliptic Systems, (Ann. of Math. Stud. 105) Princeton Univ. Press,
1983.

(7] M. Giaquinta, Introduction to Regularity Theory for Nonlinear Elliptic
Systems, (Lectures in Mathematics ETH Ziirich) Birkhéuser Verlag, 1993.

[8] M. Giaquinta and E. Giusti, On the regularity of the minima of variational
integrals, Acta Math. 148 (1982), 31-46.

[9] M. Giaquinta and E. Giusti, Differentiability of minima of non-
differentiable functionals, Invent. Math. 72 (1983), 285-298.

[10] M. Giaquinta and E. Giusti, The singular set of the minima of certain
quadratic functionals, Ann. Sc. Norm. Sup. Pisa 9 (1984), 45-55.

[11] M. Giaquinta and G. Modica, Regularity results for some classes of higher
order nonlinear elliptic systems, J. fur reine und angew Math. 311/312
(1979), 145-169.



178

[12] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of
second order, (2nd edition, revised 3rd printing) Springer Verlag, 1998.

(13] J. Jost, Nonpositive curvature: Geometric and analytic aspects, (Lectures
in Mathematics ETH Ziirich) Birkhduser Verlag, 1997.

[14] M. Marcus and V. Mizel, Continuity of certain Nemitsky operators on
Sobolev spaces and the chain rule, J. Analyse Math. 28 (1975) 303-334.

(15] X. Mo, Harmonic maps from Finsler spaces, Illinois J. Math. 45 (2001)
1331-1345.

[16] V. Sverdk and X. Yan, 4 singular minimizer of a smooth strongly convez
functional in the three dimensions, Cale. Var. 10 (2000) 213-221.

[17] A. Tachikawa , A partial regularity result for harmonic maps into a Finsler
manifold, Carc. Val. Partial Differ. Equ. 15 (2003) 217-224. (Erratum.
Carc. Val. Partial Differ. Equ. 15 (2003) 225-226.)



