On discrete Morse semi-flow

東北大学大学院理学研究科 数学専攻 堀畑和弘(Kazuhiro HORIHATA)

Mathematical Institute Tohoku University

1 Introduction.

Set d and D be positive integers greater than 1. Let \mathbb{B}^d and \mathbb{S}^D be the unit ball centered at the origin in \mathbb{R}^d , the unit sphere \mathbb{S}^D in \mathbb{R}^{D+1} and T a positive number. Give Q by $(0,T) \times \mathbb{B}^d$. This article studies a certain time-difference space-differential system; We call the solution to it "Discrete Morse Semiflow", which is abbreviated to "DMS". This system enables us discuss at least two important problems in Geometric evolutional problems: Heat flows for harmonic mappings and mean curvature motion. To explain DMS, we introduce a several notation: Let h be a positive number and N_T be [T/h]+1. We put $t_n:=nh$ $(n=0,\ldots,N_T)$ and set $k_0=(1-h/(16T)\log(1/h))$. $\chi(t)\in C^\infty$ with

$$\chi(t) := \begin{cases} t & t \leq 2, \\ 3 & t > 4, \end{cases} \tag{1.1}$$

Give a mapping $u_0 \in H^{1,2}(\mathbb{B}^d; \mathbb{S}^D)$. Then DMS is designated by a sequence of mappings $\{u_n\}(n=1,\ldots,N_T) \subset \{u \in H^{1,2}(\mathbb{B}^d; \mathbb{S}^D); u-u_0 \in \mathring{H}^{1,2}(\mathbb{B}^d; \mathbb{R}^{D+1})\}$ of the solution of the following difference-differential systems:

$$\frac{u_n - u_{n-1}}{h} - \Delta u_n + \frac{k_n}{\sqrt[4]{h}} \dot{\chi} ((|u_n|^2 - 1)^2) (|u_n|^2 - 1) u_n = 0 \quad (1.2)$$
in \mathbb{B}^d ,
$$u_n = u_0 \quad \text{on} \quad \partial \mathbb{B}^d. \quad (1.3)$$

An interpolational convention $u_{\bar{h}}(t,x)$ and $u_h(t,x)$ (t>0) respectively indicates

$$u_{\bar{h}}(t,x) := u_n(x)$$
 for $t_{n-1} < t \le t_n$, $u_h(t,x) := \frac{t - t_{n-1}}{h} u_n(x) + \frac{t_n - t}{h} u_{n-1}(x)$ for $t_{n-1} < t \le t_n$.

Note $\partial u_h/\partial t(t,x) = (u_n(x) - u_{n-1}(x))/h$ for $t_{n-1} < t < t_n$. When no confusion may arise, we say a pair of functions $u_{\bar{h}}$ and u_h to be DMS; $u_{\bar{h}}$ and u_h satisfy

$$u_{\bar{h}} \in L^{\infty}(0, T; H^{1,2}(\mathbb{B}^d; \mathbb{S}^D)), \qquad (1.4)$$

$$\int_{\mathbb{B}^d} \left(\langle \frac{\partial u_h}{\partial t}, \phi \rangle + \langle \nabla u_{\bar{h}}, \nabla \phi \rangle \right) dx = -\frac{k_{\bar{h}}}{\sqrt[4]{\bar{h}}} \int_{\mathbb{B}^d} \left(|u_{\bar{h}}|^2 - 1 \right) \langle u_{\bar{h}}, \phi \rangle dx \qquad (1.5)$$

for all
$$\phi \in C_0^{\infty}(\mathbb{B}^d; \mathbb{R}^{D+1})$$
,

$$u_{\bar{h}}(t,x) - u_0(x) \in \overset{\circ}{H}^{1,2}(\mathbb{B}^d; \mathbb{R}^{D+1})$$
 for every $t \ (0 \le t \le N_T h),$
 $\lim_{h \searrow 0} ||u_h(t,\circ) - u_0(\circ)||_{L^2(\mathbb{B}^d)} = 0.$ (1.6)

I addict to DMS: We show that DMS satisfies a maximal principle, a few global energy inequalities, a monotonicity inequality for the scaled energy and finally a reverse Poincaré inequality. By using the inequalities above, we prove that DMS converges to a heat flow for harmonic mappings and discuss a partial regularity result on it. Here for any given mapping $u_0 \in H^{1,2}(\mathbb{B}^d; \mathbb{S}^D)$, we call $u \in L^{\infty}(0, T; H^{1,2}(\mathbb{B}^d; \mathbb{S}^D)) \cap H^{1,2}(0, T; L^2(\mathbb{B}^d; \mathbb{S}^D))$ a heat flow for harmonic mappings provided

$$\frac{\partial u}{\partial t} = \Delta u + |\nabla u|^2 u \quad \text{in } Q,
 u(0, x) = u_0(x) \quad \text{in } \{0\} \times \mathbb{B}^d,
 u(t, x) = u_0(x) \quad \text{in } (0, T) \times \partial \mathbb{B}^d.$$
(1.7)

The following fact is well-known

Remark 1 (1.7) is equivalent to

$$\frac{\partial u}{\partial t} \wedge u - \Delta u \wedge u = 0 \quad \text{in} \quad \left(C_0^{\infty}(Q; \mathbb{R}^{D+1}) \right)^*, \tag{1.8}$$

$$|u| = 1 \qquad \text{in a.e } z \in Q. \tag{1.9}$$

The parabolic system holds in the following weak sense:

$$\int_{Q} \left(\langle \frac{\partial u}{\partial t}, \phi \rangle + \langle \nabla u, \nabla \phi \rangle - \langle u, \phi \rangle |\nabla u|^{2} \right) dz = 0 \text{ for any } \phi \in C_{0}^{\infty}(Q; \mathbb{R}^{D+1}),$$

$$(1.10)$$

$$u(t, x) - u_{0}(x) \in \overset{\circ}{H}^{1,2}(\mathbb{B}^{d}; \mathbb{R}^{D+1}) \qquad \text{for almost every } t \in (0, T),$$

$$(1.11)$$

$$\lim_{t \to +0} u(t, \circ) = u_{0}(\circ) \qquad \text{in } L^{2}(\mathbb{B}^{d}; \mathbb{R}^{D+1}).$$

$$(1.12)$$

My main result of this article is

Theorem 1 (Partial Regularity) There exists a heat flow for harmonic mappings and it is smooth on a relative open set in Q whose compliment has 0 d-dimensional Hausdorff measure with respect to the parabolic metric.

The proof of Theorem 1 can be performed by combining Theorem 8 with Theorem 9.

2 DMS.

In this chapter, we state a discrete maximal principle and a few global energy-estimates. Thereafter we establish a monotonicity inequality for the scaled energies and a reverse Poincaré inequality, which are the main technical tools of this sort of study. The first is

Theorem 2 (Discrete maximal Principle) Each of DMS $\{u_n\}$ $(n = 1, ..., N_T)$ implies

$$|u_n| \leq 1$$
 for all point $x \in \mathbb{B}^d$.

Theorem 3 (Energy Estimate). For any given mapping $u_0 \in H^{1,2}(\mathbb{B}^d; \mathbb{S}^D)$, $DMS\{u_n\}$ $(n = 1, 2, ..., N_T)$ satisfies

$$\int_{\mathbb{B}^d} \left(\frac{1}{2} |\nabla u_n|^2 + \frac{k_n}{4\sqrt[4]{h}} (|u_n|^2 - 1)^2 \right) dx$$

$$\leq \frac{1}{2} \int_{\mathbb{B}^d} |\nabla u_0|^2 dx$$
 for any integer n $(n = 1, ..., N_T),$ (2.1)

$$\frac{h}{2} \sum_{n=1}^{N_T} \int_{\mathbb{R}^d} \left| \frac{u_n - u_{n-1}}{h} \right|^2 dx$$

$$+ \frac{\log(1/h)}{16T} h \sum_{n=1}^{N_T} \frac{k_{n-1}}{4\sqrt[4]{h}} \int_{\mathbb{B}^d} (|u_{n-1}|^2 - 1)^2 dx \le \frac{1}{2} \int_{\mathbb{B}^d} |\nabla u_0|^2 dx. \quad (2.2)$$

Lemma 1 (Global Pokhojaev Identity). *DMS* u_n $(n = 1, 2, ..., N_T)$ have the following property:

$$\frac{1}{2} \int_{\partial \mathbb{B}^d} \left| \frac{\partial u_n}{\partial |x|} \right|^2 d\mathcal{H}_x^{d-1}
+ \frac{d-2}{2} \int_{\mathbb{B}^d} |\nabla u_n| \, dx + \frac{dk_n}{4\sqrt[4]{h}} \int_{\mathbb{B}^d} (|u_n|^2 - 1)^2 \, dx
= \frac{1}{2} \int_{\partial \mathbb{B}^d} |\nabla_{\tan} u_0|^2 \, d\mathcal{H}_x^{d-1} + \int_{\mathbb{B}^d} \langle \frac{u_n - u_{n-1}}{h}, \langle x, \nabla \rangle u_n \rangle \, dx.$$
(2.3)

Corollary 1 (The first derivatives estimates at $\partial \mathbb{B}^d$).

$$\frac{1}{2} \int_{h}^{T} dt \int_{\mathbb{B}^{d}} \left| \frac{\partial u_{\bar{h}}}{\partial |x|} \right|^{2} d\mathcal{H}_{x}^{d-1}$$

$$\leq 2T \int_{\mathbb{B}^{d}} |\nabla_{\tan} u_{0}|^{2} d\mathcal{H}_{x}^{d-1} + 2(T+1) \int_{\mathbb{R}^{d}} |\nabla u_{0}|^{2} dx. \tag{2.4}$$

Corollary 2 (The rate of the convergence). If $\triangle u_0 \in L^{p_0}(\mathbb{B}^d; \mathbb{R}^{D+1})$ for some $p_0 > 1$,

$$\int_{\mathbb{R}^d} |\nabla (u_1 - u_0)|^2 dx \le 2^{1 - 2/p_0'} ||\nabla u_0||_{L^2(\mathbb{B}^d)}^{2/p_0'} ||\Delta u_0||_{L^{p_0}(\mathbb{B}^d)} \cdot h^{1 - 1/p_0}, \quad (2.5)$$

holds with $1/p_0 + 1/p'_0 = 1$.

Remark 2 The typical example of map from \mathbb{B}^d to $\mathbb{S}^{d-1} \subset \mathbb{R}^d$ may be the equator map given by x/|x|. If $u_0(x) = x/|x|$, then $\Delta u_0 \in L^{q_0}(\mathbb{B}^d)$ as long as $1 < q_0 < d/2$. We refer to F.Bethuel and X.Zheng [1]. Namely the assumption on L^{p_0} -integrability about Δu_0 is just peril.

Lemma 2 (Higher Order Differential Estimates). $DMS u_n (n = 1, 2, ..., N_T)$ satisfies

$$h \sum_{n=2}^{N_T} \int_{\mathbb{B}^d} |\triangle(u_n - u_{n-1})|^2 dx$$

$$\leq C h^{3/2} \int_{\mathbb{B}^d} |\nabla u_0|^2 dx + \frac{1}{2} \int_{\mathbb{B}^d} |\nabla(u_1 - u_0)|^2 dx. \tag{2.6}$$

Now, we are in the position to state a monotonicity inequality for the scaled energy; For $z_0 = (t_{n_0}, x_0) \in Q$ and a positive number R, the scaled energy is denoted by

$$E_{h}(R; z_{0}) := \frac{1}{2R^{d}} \int_{t_{n_{0}}-\theta_{0}(2R)^{2}}^{t_{n_{0}}-\theta_{0}R^{2}} dt \int_{\mathbb{B}^{d}} \left(|\nabla u_{h}|^{2} + \frac{k_{\bar{h}}}{2\sqrt[4]{h}} (|u_{h}|^{2} - 1)^{2} \right) \times \exp\left(\frac{|x - x_{0}|^{2}}{4(t - t_{n_{0}})}\right) dx.$$

$$(2.7)$$

Lemma 3 (Monotonicity for the Scaled Energy). For any point $z_0 = (t_{n_0}, x_0)$ and any positive number R,

$$\frac{dE_{h}}{dR}(R;z_{0}) \geq -\frac{1}{R^{d-1}} \int_{t_{n_{0}}-\theta_{0}(2R)^{2}}^{t_{n_{0}}-\theta_{0}R^{2}} \frac{t-t_{n_{0}}}{R^{2}} dt \int_{\mathbb{B}^{d}} \times \left| \frac{\partial u_{h}}{\partial t} + \left\langle \frac{x-x_{0}}{2(t-t_{n_{0}})}, \nabla \right\rangle u_{h} \right|^{2} \exp\left(\frac{|x-x_{0}|^{2}}{4(t-t_{n_{0}})}\right) dx + \frac{1}{2R^{d+1}} \int_{t_{n_{0}}-\theta_{0}(2R)^{2}}^{t_{n_{0}}-\theta_{0}R^{2}} \frac{k_{\bar{h}}dt}{\sqrt[4]{h}} \int_{\mathbb{B}^{d}} (|u_{h}|^{2}-1)^{2} \exp\left(\frac{|x-x_{0}|}{4(t-t_{n_{0}})}\right) dx - C_{M}(R, R_{0}; h). \tag{2.8}$$

where

$$C_{\mathbf{M}}(R, R_0; h) := C_{\mathbf{M},1} + C_{\mathbf{M},2}$$

$$C_{\mathbf{M},1} := \frac{CR}{\operatorname{dist}^{d+1}(x_0, \partial \mathbb{B}^d)} \left(\int_{\mathbb{B}^d} |\nabla u_0|^2 dx + \int_{\partial \mathbb{B}^d} |\nabla_{\tan} u_0|^2 d\mathcal{H}_x^{d-1} \right),$$

$$C_{\mathbf{M},2} := -C||\nabla (u_1 - u_0)||_{L^2(\mathbb{B}^d)} ||\nabla u_0||_{L^2(\mathbb{B}^d)} + \frac{C\sqrt[4]{h}}{R^{d+1}} ||\nabla u_0||_{L^2(\mathbb{B}^d)}.$$

Hereafter we state a point-wise estimate and the inequality of "a hybrid type". The latter part of the chapter will be devoted to saying these inequalities. We supposed θ_0, θ_1 and R be positive numbers with

$$0 < \theta_0 < 1, \ 1 < \theta_1, \ R > 0, \ \max\left(\frac{2\theta_1}{3}, 2\right) < \frac{\theta_0 R^2}{h},$$
 (2.9)

and we set

$$N_1 := \left[\frac{\theta_0 R^2}{h} \right], \ \ N_2 := \left[\frac{\theta_0 (2R)^2}{h} \right].$$

We must remark that all N_i (i = 1, 2, 3, 4) are positive integers by assumption (2.9).

Theorem 4 (A Point-wise Estimate) There exists a positive number ϵ_0 depending only on d_i such that if $w_{\bar{h}}$ satisfies

$$\int_{t_{n_1-2N_1}}^{t_{n_1}} dt \int_{B_{2R}(x_0)} (1 - \langle u_{\bar{h}}, K \rangle) dx < \epsilon_0$$
 (2.10)

for any cylinder $Q_{2R,2N_1h}(t_{n_1},x_0)$ (:= $(t_{n_1-2N_1},t_{n_1}) \times B_{2R}(x_0)$) $\subset\subset Q_{n_1}(t_{n_1},x_0)$

$$|\{z \in Q_{2R,N_1h}(t_{n_1},x_0) ; \langle u_{\bar{h}},K \rangle \leq 1 - \delta_0\}|$$

$$\leq C \frac{h \log(1/h)}{\delta_0^3} \int_{\mathbb{R}^d} |\nabla u_0|^2 dx$$
(2.11)

with $n_1 = n_0 + N_2 - N_1$ and K is any vector in \mathbb{R}^{D+1} .

We must remark that all N_i (i = 1, 2, 3, 4) are positive integers by assumption (2.9).

Theorem 5 (Discrete Hybrid Inequality) DMS $u_{\bar{h}}$ and u_h have the following inequality: There exists positive constant C_H depending only on d such that for any numbers θ_0, θ_1, R satisfying the condition (2.9), for any cylinders $(t_{n_0}, t_{n_0+N_2}) \times B_{2R}(x_0) \subset\subset Q$,

$$\int_{t_{n_{0}}+N_{2}-N_{1}}^{t_{n_{0}}+N_{2}} dt \int_{B_{R}(x_{0})} \left(\frac{1}{2}|\nabla u_{\bar{h}}|^{2} + \frac{k_{\bar{h}}}{4\sqrt[4]{\bar{h}}}(|u_{\bar{h}}|^{2} - 1)^{2} + \frac{\theta_{0}R^{2}}{2} \left|\frac{\partial u_{h}}{\partial t}\right|^{2}\right) dx \\
+ \frac{\theta_{0}R^{2}}{10} \int_{B_{R}(x_{0})} \left(\frac{1}{2}|\nabla u_{\bar{h}}|^{2} + \frac{k_{\bar{h}}}{4\sqrt[4]{\bar{h}}}(|u_{\bar{h}}|^{2} - 1)^{2}\right) dx \\
\leq C_{H} \max \left(\left(1 - \frac{\theta_{1}}{N_{1}}\right)^{N_{1}}, \theta_{0}, \delta(\epsilon_{0})\right) \qquad (2.12)$$

$$\times \int_{t_{n_{0}+N_{2}-3N_{1}-1}}^{t_{n_{0}+N_{2}}} dt \int_{B_{2R}(x_{0})} \left(\frac{1}{2}|\nabla u_{\bar{h}}|^{2} + \frac{k_{\bar{h}}}{4\sqrt[4]{\bar{h}}}(|u_{\bar{h}}|^{2} - 1)^{2} + \frac{\theta_{0}R^{2}}{2} \left|\frac{\partial u_{h}}{\partial t}\right|^{2}\right) dx \\
+ \left(1 + \theta_{0} + \frac{1}{\theta_{0}}\right) \frac{C_{H}}{\log(1/\theta_{1})^{2}R^{2}} \int_{t_{n_{0}+N_{2}-3N_{1}}}^{t_{n_{0}+N_{2}}} dt \int_{B_{3R/2}(x_{0})} |u_{\bar{h}} - K|^{2} dx \\
+ O(h).$$

where $R_0 = \min(\sqrt{t_{n_0}}/2\theta_0, \operatorname{dist}(x_0, \partial \mathbb{B}^d))$, ϵ_0 is a certain positive constant appeared in Theorem 4, respectively and $\delta_0(\epsilon_0) = \epsilon_0^{1/d \cdot 1/(1+2/d)(1+4/d)}$.

Remark 3 If one takes θ_1 being sufficiently large and θ_0 , ϵ_0 being sufficiently small, then the coefficient of the first term on the right-hand side above is small.

3 Heat Flows for Harmonic Mapping.

This chapter establishes the existence and a partial regularity on a heat flow for harmonic mappings that are obtained as the limit of DMS. The existence theorem is a slight modification of Y.Chen [3] and see also L.C.Evans [5, p.48, 5.A.1] and J.Shatah [9]. On the other hand the regularity result will be established by means of a blow-up technique. For

the blow-up technique used here, we refer to R.Hardt, D.Kinderlehler and F.H.Lin [7] and R.Schöen and K.Uhlenbeck [11]. First of all we mention two convergence theorems directly derived from Theorem 2 and Theorem 3:

Theorem 6 (Convergence) There exists a subsequence $\{u_{\bar{h}_k}\}$, $\{u_{h_k}\}$ (k = 1, 2, ...) of $\{u_{\bar{h}}\}$, $\{u_h\}$ (h > 0) respectively and a mapping $u \in L^{\infty}(0, T; H^{1,2}(\mathbb{B}^d; \mathbb{S}^D))$ $\cap H^{1,2}(0, T; L^2(\mathbb{B}^d; \mathbb{S}^D))$ such that $u_{\bar{h}_k}$ and u_h respectively converges weakly
* and weakly to u in $L^{\infty}(0, T; H^{1,2}(\mathbb{B}^d; \mathbb{R}^{D+1}))$ and $H^{1,2}(0, T; L^2(\mathbb{B}^d; \mathbb{R}^{D+1}))$, so does $u_{\bar{h}_k}$ strongly to u in $L^2(Q)$ and $u_{\bar{h}_k}$ point-wisely to u as $k \nearrow \infty$.

Theorem 6 enables us state the following existence theorem:

Theorem 7 (Existence) Each of DMS: $u_{\bar{h}}$ and u_h respectively converges to a heat flow for harmonic mappings u in $L^{\infty}(0,T;H^{1,2}(\mathbb{B}^d;\mathbb{R}^{D+1}))$ and $H^{1,2}(0,T;L^2(\mathbb{B}^d;\mathbb{R}^{D+1}))$ as $h \searrow 0$ (modulo a subsequence of h).

Proof of Theorem 7. Since $\nabla u_{\bar{h}}$ and $\partial_t u_h$ is uniform bounded in $L^{\infty}(0,T;L^2(\mathbb{B}^d;\mathbb{R}^{D+1}))$ and $L^2(0,T;L^2(\mathbb{B}^d;\mathbb{R}^{D+1}))$ respectively, and a subsequence of $u_{\bar{h}}$ and u_h also converges weakly-* and weakly to a map u in $L^{\infty}(0,T;H^{1,2}(\mathbb{B}^d;\mathbb{R}^{D+1}))$ and $H^{1,2}(0,T;L^2(\mathbb{B}^d;\mathbb{R}^{D+1}))$ respectively, strongly in $L^2(\mathbb{B}^d;\mathbb{R}^{D+1}), |u_{\bar{h}}| \leq 1$, almost everywhere in Q as $h \searrow 0$; We show that the map u is indeed a heat flow for harmonic mappings. Since $u_{\bar{h}}$ and u_h satisfy

$$\frac{\partial u_h}{\partial t} - \Delta u_{\bar{h}} = \frac{k_{\bar{h}}}{\sqrt[4]{h}} (1 - |u_{\bar{h}}|^2) u_{\bar{h}},$$

by taking a wedge product, we have

$$\left(\frac{\partial u_h}{\partial t} \wedge u_{\bar{h}} - \Delta u_{\bar{h}}\right) \wedge u_{\bar{h}} = 0 \quad \text{in} \quad \left(C_0^{\infty}(Q; \mathbb{R}^{D+1})\right)^*. \tag{3.1}$$

Thus by virtue of $u \in L^{\infty}(0,T;H^{1,2}(\mathbb{B}^d;\mathbb{S}^D)) \cap H^{1,2}(0,T;L^2(\mathbb{B}^d;\mathbb{S}^D))$, Remark 1, Theorem 6, we observe that u satisfies (1.10), (1.11) and (1.12), i.e. u is a heat flow for harmonic mappings

Remark 4 In the following, we fix a subsequences $\{h_k\}$ (k = 1, 2, 3, ...) of $\{h\}$ (h > 0) that makes DMS converge to a heat flow for harmonic mappings u.

Definition 1 Fix a point $z_0 = (t_0, x_0) \in Q$. We indicate \mathcal{M} by the following rescaled Radon measure:

$$\mathcal{M}^{\downarrow}\left(Q_{R}(z_{0})\right) \; := \; \frac{\liminf_{h_{k} \searrow 0}}{2\theta_{0}R^{d}} \int\limits_{Q_{R}(z_{0})} \left(\left|\nabla u_{\bar{h}_{k}}\right|^{2} \, + \, \frac{k_{\bar{h}}}{2\sqrt[4]{\bar{h}_{k}}} (|u_{\bar{h}_{k}}|^{2} \, - \, 1)^{2} \, + \, \theta_{0}R^{2} \left|\frac{\partial u_{h_{k}}}{\partial t}\right|^{2}\right) \, dz,$$

for any positive number θ_0 and any cylinder $Q_R(z_0) \subset\subset Q$.

Remark 5 (Measured Hybrid Inequality) Assume that $u_{\bar{h}_k}$ and u_{h_k} respectively converges weakly-* and weakly in $L^{\infty}(0,T;H^{1,2}(\mathbb{B}^d;\mathbb{R}^{D+1}))$ and $H^{1,2}(0,T;L^2(\mathbb{B}^d;\mathbb{R}^{D+1}))$ to a heat flow for harmonic mappings $u \in L^{\infty}(0,T;H^{1,2}(\mathbb{B}^d;\mathbb{R}^{D+1})) \cap H^{1,2}(0,T;L^2(\mathbb{B}^d;\mathbb{R}^{D+1}))$ as $h_k \searrow 0$. Then take the pass to the limit $h_k \searrow 0$ in (2.12) to infer the following: For any positive θ_2 , there exists a positive constant C_{HM} depending only on d, θ_2 such that

$$\mathcal{M}^{\uparrow}\left(Q_R(z_0)\right) \leq \theta_2 \mathcal{M}^{\uparrow}\left(Q_{2R}(z_0)\right) + C_{HM} \int_{Q_{2R}(z_0)} |u - K|^2 dz$$
 (3.2)

holds for any vector $K \in \mathbb{R}^{D+1}$ and $Q_R(z_0) \subset Q_{2R}(z_0) \subset Q$ with $z_0 = (t_0, x_0)$ and $Q_{2R}(z_0) = (t_0 - \theta_0(2R)^2, t_0) \times B_{2R}(x_0)$.

In the similar way as in L.Simon [10, Lemma 2, p31], we can assert the following reverse Ponicaré inequality:

Corollary 3 (Reverse Poincaré inequality). The rescaled Radon measure implies the reverse Poincaré inequality: whenever $Q_{4R} \subset\subset Q$,

$$R^{d+2}\mathcal{M}^{,}(Q_R(z_0)) \leq C_{PO} \int_{Q_{4R}(z_0)} |u - K|^2 dz$$
 (3.3)

holds, where C_{PO} is a certain positive constant depending only on θ_2 and d.

<u>Proof of Corollary 3.</u> Let

and then take any cylinder $Q_{\sigma}(z)$ with $Q_{\sigma}(z) \subset Q_{2R}(z_0)$. Notice that such a cylinder can be covered by cylinders $Q_{\sigma/4}(z_i)$ (i = 1, 2, 3, ..., S)

with $z_i \in Q_{\sigma}(z)$ and $Q_{\sigma}(z_i) \subset Q_{2R}(z_0)$. We can evidently bound the number S by a fixed constant depending only on d. Recall (3.2); Then

$$\sigma^{d+2}\mathcal{M}^{+}(Q_{\sigma}(z)) \leq 4^{d+2}\sum_{i=1}^{S}\left(\frac{\sigma}{4}\right)^{d+2}\mathcal{M}^{+}(Q_{\sigma/4}(z_{i}))$$

$$\leq 4^{d+2}\theta_{2}\left(\frac{\sigma}{2}\right)^{d+2}\mathcal{M}^{+}(Q_{\sigma/2}(z_{i}))$$

$$+ 4^{d+2}C_{\mathrm{MH}}\sum_{i=1}^{S}\int_{Q_{2\sigma}(z_{i})}|u-K|^{2}dz$$

$$\leq 4^{d+2}S\theta_{2}M + 4^{d+2}C_{\mathrm{MH}}S\int_{Q_{4R}(z_{0})}|u-K|^{2}dz.$$

Taking "sup" on the right-hand side above, we have

$$M \le 4^{d+2} S\theta_2 M + 4^{d+2} SC_{MH} S \int_{Q_{4R}(z_0)} |u - K|^2 dz,$$

whereupon $\theta_2 = 1/(24^{d+2}S)$, we infer

$$R^{d+2}\mathcal{M}^{\bullet}(Q_R(z_0)) \leq 24^{d+2}SC_{MH} \int_{Q_{4R}(z_0)} |u - K|^2 dz.$$
 (3.4)

We can state one of the main assertions:

Theorem 8 (Energy Improvement) For some positive numbers ϵ_0 , θ_0 and θ_1 , the following holds: for any positive number R and point $z_0 = (t_0, x_0)$ and any measure \mathcal{M} , for any cylinder $Q_R(z_0)$ (=: $(t_0 - \theta_0 R^2, t_0) \times B_R(x_0)$) $\subset Q$,

$$\mathcal{M}^{\uparrow}\left(Q_{R}(z_{0})\right) < \epsilon_{0}^{2} \text{ implies}$$

$$\mathcal{M}^{\uparrow}\left(Q_{\theta_{1}R}(z_{0})\right) < \frac{1}{2}\mathcal{M}^{\uparrow}\left(Q_{R}(z_{0})\right). \tag{3.5}$$

<u>Proof of Theorem 8.</u> The proof can be proceeded by a contradiction: If the statement would be false, then for any positive number θ_1 less than 1/2, there would exist sequences of positive numbers R_i , of points $z_i =$

 $(t_i, x_i) \subset Q$, of measures \mathcal{M}_i and of heat flow for harmonic mappings u_i (i = 1, 2, ...) such that for any θ_0 with $Q_{R_i}(z_i) \subset Q$,

$$\mathcal{M}_{i}^{\uparrow}\left(Q_{R_{i}}(z_{i})\right) =: \epsilon_{i}^{2} < \frac{1}{i},$$
 (3.6)

but
$$\mathcal{M}_{i}^{+}\left(Q_{\theta_{1}R_{i}}(z_{i})\right) \geq \frac{\epsilon_{i}^{2}}{2}.$$
 (3.7)

By rescaling

$$z=(t,x)
ightarrow ar{z}=(ar{t},ar{x}) = igg(rac{t-t_i}{ heta_0 R_i^2},rac{x-x_i}{R_i}igg),$$

without a loss of generality, we can rewrite (3.6) and (3.7) as

$$\mathcal{M}_{i} \left(Q_{1}(0) \right) = \epsilon_{i}^{2} < \frac{1}{i}, \tag{3.8}$$

but
$$\mathcal{M}_{i}\left(Q_{\theta_{1}}(0)\right) > \frac{\epsilon_{i}^{2}}{2}.$$
 (3.9)

By using the rescaling $\bar{z} = ((t - t_i)/\theta_0 R_i^2, (x - x_i)/R_i)$ and a positive number r, (3.2) becomes

$$\mathcal{M}_{i}(Q_{\theta_{1}}(0)) \leq C \int_{Q_{2\theta_{1}}(0)} |u_{i} - u_{i,Q_{2\theta_{1}}}|^{2} d\bar{z}.$$
 (3.10)

Set
$$v_i(\bar{z}) := \frac{1}{\epsilon_i}(u_i(\bar{z}) - u_{i,Q_1})$$
 for any r with $\theta_1 \le r \le \frac{1}{2}$.

By assumption (3.6), a subsequence of v_i converges weakly to a mapping $v_{\infty} \in L^2(0,T;H^{1,2}(B_1(0);\mathbb{R}^{D+1})) \cap H^{1,2}(0,T;L^2(B_1(0);\mathbb{R}^{D+1}))$ as $i \nearrow \infty$ (modulo a subsequence of i). In addition, since v_i satisfies the systems:

$$\frac{1}{\theta_0} \frac{\partial v_i}{\partial \bar{t}} - \Delta v_i = \epsilon_i |\nabla v_i|^2 u_i$$

in the sense of $(C_0^{\infty}(Q_1(0); \mathbb{R}^{D+1}))^*$, by using L.C.Evans [E1, p.39, Theorem 3] and noting (3.6) again, we find that v_{∞} is the solution of

$$\frac{1}{\theta_0} \frac{\partial v_{\infty}}{\partial \bar{t}} - \Delta v_{\infty} = 0, \tag{3.11}$$

in the classical sense. From the gradient estimate on the solution of the equation (3.11) by S.Campanato [2] and the Rellich-Kondrachev theorem,

it follows that ess $\sup_{\bar{z} \in Q_{\theta_1}(0)} (|\nabla v_{\infty}| + |\partial v_{\infty}/\partial t|) \leq C||\nabla v_{\infty}||_{L^2(Q_1(0))}$ and v_i converges strongly to v_{∞} in $L^2(Q_1(0))$ as $i \nearrow \infty$. Thus

$$\int_{Q_{2\theta_1}} |v_i|^2 d\bar{z} \leq 2 \int_{Q_{2\theta_1}} |v_\infty|^2 d\bar{z} + 2 \int_{Q_{2\theta_1}} |v_i - v_\infty|^2 d\bar{z} \leq Cr^2,
\int_{Q_{2\theta_1}} |u_i - u_{i,Q_{2\theta_1}}|^2 d\bar{z} \leq \epsilon_i^2 \int_{Q_{2\theta_1}} |v_i|^2 d\bar{z} \leq 2C\theta_1^2 \epsilon_i^2,$$

holds if i is sufficiently large possibly depending on θ_1 . Consequently we infer

$$\mathcal{M}_{i} \left(Q_{\theta_{1}}(0,0) \right) \leq C\theta_{1}\epsilon_{i}^{2}. \tag{3.12}$$

If we choose $C\theta_1 < 1/2$, which is $\mathcal{M}^{+}(Q_{\theta_1}(0)) < \epsilon_i^2/2$, then we find that this is a contradiction of our choice.

Theorem 9 (Singular Set) Let ϵ_0 be the positive number appeared in Theorem 8. Define

$$\mathbf{sing} := \bigcap_{R>0} \{ z_0 \in Q \; ; \; \mathcal{M}^{\bullet} \big(P_R(z_0) \big) \geq \epsilon_0 \}, \tag{3.13}$$

with $P_R(z_0) = (t_0 - \theta_0 R^2, t_0 + \theta_0 R^2) \times B_R(x_0)$. Then **sing** is a relatively closed set and

$$\mathcal{H}^{(d)}(\mathbf{sing}) = 0. \tag{3.14}$$

<u>Proof of Theorem 9.</u> **sing** is a relatively closed set. Indeed, if $z_0 \in \overline{\text{sing}} \cap Q$, some sequence $z_{\nu} = (t_{\nu}, x_{\nu}) \in \text{sing} \cap Q$ ($\nu = 1, 2, ...$) implies $z_{\nu} \to z_0$ as $\nu \nearrow \infty$, i.e. for any positive δ , there exists a positive number ν_{δ} such that $\text{dist}(z_{\nu}, z_0) \leq \delta$ holds for any positive integer $\nu \geq \nu_{\delta}$. From definition on **sing**, for any $R > \delta$ and any points z_{ν} ($\nu = \nu_{\delta}, \nu_{\delta} + 1, ...$), we obtain

$$\epsilon_0 \leq \frac{\liminf_{h_k \searrow 0}}{2\theta_2 (R - \delta)^d} \times \int_{P_{R - \delta}(t_{\nu}, x_{\nu})} \left(|\nabla u_{\bar{h}_k}|^2 + \frac{k_{\bar{h}_k}}{2\sqrt[4]{\bar{h}_k}} \left(|u_{\bar{h}_k}|^2 - 1 \right)^2 + \theta_0 (R - \delta)^2 \left| \frac{\partial u_{h_k}}{\partial t} \right|^2 \right) dz$$

$$\leq \frac{\liminf_{h\searrow 0}}{2\theta_{2}(R-\delta)^{d}} \int_{P_{R}(z_{0})} \left(|\nabla u_{\bar{h}_{k}}|^{2} + \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{\bar{h}_{k}}} (|u_{\bar{h}_{k}}|^{2} - 1)^{2} + \theta_{0} R^{2} \left| \frac{\partial u_{h_{k}}}{\partial t} \right|^{2} \right) dz.$$
(3.15)

By the arbitrariness of δ , passing to the limit $\delta \searrow 0$, we can say $\overline{\sin g} \cap Q$ $\subset \operatorname{sing} \cap Q$, which provides us with our first assertion. Next we estimate the size of sing in the d-dimensional Hausdorff measure with respect to the parabolic metric. Fix a positive R < 1 and set a compact set comp in Q. Let $\{P_{2R_k}(z_k)\}$ $(2R_k < R)$, be a cover of sing. Since $\overline{\sin g} \cap \operatorname{comp}$ is compact set in Q, we can assume that the cover is finite. Moreover the parabolic version of Vitali covering theorem shows that there is a disjoint finite sub-family $\{P_{R_k}(z_k)\}$, $k \in \mathcal{K}$ with

$$\operatorname{sing} \cap \operatorname{comp} \subset \bigcup_{k \in \mathcal{K}} P_{10R_k}(z_k),$$

$$2\epsilon_0 R_k^d \leq \liminf_{h_k \searrow 0} \int_{P_{R_k}(z_k)} \left(|\nabla u_{\bar{h}_k}|^2 + \frac{k_{\bar{h}_k}}{2\sqrt[4]{\bar{h}_k}} (|u_{\bar{h}_k}|^2 - 1)^2 + \theta_0 R_k^2 \left| \frac{\partial u_{h_k}}{\partial t} \right|^2 \right) dz.$$

From Corollary 3, we have

$$\epsilon_{0}R_{k}^{d} \leq \liminf_{h_{k} \searrow 0} \int_{P_{R_{k}}(z_{k})} \left(\left| \nabla u_{\bar{h}_{k}} \right|^{2} + \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{\bar{h}_{k}}} \left(\left| u_{\bar{h}_{k}} \right|^{2} - 1 \right)^{2} + \theta_{0}R_{k}^{2} \left| \frac{\partial u_{h_{k}}}{\partial t} \right|^{2} \right) dz$$

$$\leq \frac{C_{PO}}{R_{k}^{2}} \int_{P_{2R_{k}}(z_{k})} \left| u - u_{P_{2R_{k}}(z_{k})} \right|^{2} dz$$

$$\leq C \int_{P_{2R_{k}}(z_{k})} \left(\left| \nabla u \right|^{2} + \theta_{0}R_{k}^{2} \left| \frac{\partial u}{\partial t} \right|^{2} \right) dz. \tag{3.16}$$

Thus we obtain

$$\sum_{k=1}^K (10R_k)^d \leq C \bigcup_{k=1}^K \int_{P_{2R_k}(z_k)} \left(|\nabla u|^2 + \theta_0 R_k^2 \left| \frac{\partial u}{\partial t} \right|^2 \right) dz.$$

From

$$\sum_{k=1}^{K} (10R_k)^{d+2} \leq CR^2 \int\limits_{Q} \left(|\nabla u|^2 + \left| \frac{\partial u}{\partial t} \right|^2 \right) dz$$

and the absolute continuity of the Lebesgue integral, we conclude

$$\mathcal{H}^{(d)}(\mathbf{sing} \cap \mathbf{comp}) \leq C \lim_{R \searrow 0} \sum_{k=1}^{K} (10R_k)^d = 0.$$
 (3.17)

If we set $\operatorname{comp}_n := \{z \in Q : \operatorname{dist}(z, \mathbb{C}Q) \geq 1/n\} \ (n = 1, 2, \ldots), \text{ by } \lim_{n \to \infty} \mathcal{H}^{(d)}(\operatorname{sing} \cap \operatorname{comp}_n) = \mathcal{H}^{(d)}(\operatorname{sing}), \text{ we cane deduce our assertion.}$

Theorem 10 (Recursive Inequality) The heat flow for harmonic mapping u is Hölder continuous on $Q \setminus sing$.

<u>Proof of Theorem 10.</u> Fix a point $z_0 = (t_0, x_0) \in Q \setminus \text{sing}$ and choose R so that $\mathcal{M}(P_R(z_0)) < \epsilon_0$ with some θ_0 possibly depending on z_0 and R. Because Q/sing is an open set, there exists some $P_{R_0}(z_0)$ so that

$$\mathcal{M}^{+}\left(P_{R}(\bar{z}_{0})\right) < \epsilon_{0}$$

for all point $\bar{z}_0 \in P_{R_0}(z_0)$. Then by Theorem 8, we obtain

$$\mathcal{M}^{\uparrow}\left(P_r(\bar{z}_0)\right) \leq C\left(\frac{r}{R}\right)^{\alpha_0} \mathcal{M}^{\uparrow}\left(P_R(\bar{z}_0)\right)$$
 (3.18)

for any positive number r > 0 with $\alpha_0 = \log 2/\log (1/\theta_1)$. This leads to our claim. \square

We next collect a few properties of the heat flow for harmonic mappings obtained by the perturbation of DMS:

Corollary 4 From (2.2) in Theorem 3, we obtain

$$\limsup_{h_{k} \searrow 0} \int_{Q} \frac{k_{\bar{h}_{k}}}{\sqrt[4]{\bar{h}_{k}}} (|u_{\bar{h}_{k}}|^{2} - 1)^{2} dz = \limsup_{h_{k} \searrow 0} \frac{1}{\log 1/h_{k}} = 0.$$
 (3.19)

From Lemma 4, we infer that there is a positive number ϵ_0 such that for any positive number ϵ less than ϵ_0 if the heat flow for harmonic mappings u satisfies

$$\int_{Q_{2R}} |u - u_{Q_{4R}}|^2 dz < \epsilon,$$

for any cylinder $Q_{2R}(z_0) \subset\subset Q$, then we infer

$$\limsup_{h_k \searrow 0} \sup_{Q_R(z_0)} |u_{\bar{h}_k} - u_{\bar{h}_k, Q_{2R}}|^2 < C(\epsilon),$$

where $C(\epsilon)$ is a positive number satisfying $C(\epsilon) \searrow 0$ as $\epsilon_0 \searrow 0$.

Finally, we close this section by showing the strong convergence of $u_{\bar{h}_k}$ to a heat flow for harmonic mappings u in $H^{1,2}_{loc}$ -topology as $h_k \searrow 0$;

Theorem 11 (Strong Convergencity of Gradients) The gradients of $u_{\bar{h}_k}$ converges strongly to the gradients of u in $L^2_{loc}(Q)$.

<u>Proof of Theorem 11.</u> Fix two compact sets $\mathbf{comp} \subset \mathbf{comp}_1 \subset Q$, which are compactly contained each other. Take the difference between (1.10) and (1.5), for a map $\phi \in C_0^{\infty}(\mathbf{comp}_1; \mathbb{R}^{D+1})$, then we obtain

$$\int_{\mathbf{comp_1}} \left\langle \frac{\partial}{\partial t} (u_{h_k} - u), \phi \right\rangle dz + \int_{\mathbf{comp_1}} \left\langle \nabla (u_{\bar{h}_k} - u), \nabla \phi \right\rangle dz$$

$$= -\int_{\mathbf{comp_1}} |\nabla u|^2 \langle u, \phi \rangle dz + \int_{\mathbf{comp_1}} \frac{k_{\bar{h}_k}}{\sqrt[4]{\bar{h}_k}} (1 - |u_{\bar{h}_k}|^2) \langle u_{\bar{h}_k}, \phi \rangle dz. \quad (3.20)$$

Substituting ϕ for $(u_{h_k} - u)\eta_1$, we obtain

$$\int_{\mathbf{comp_1}} |\nabla (u_{\bar{h}_k} - u)|^2 \eta_1 \, dz \leq \int_{\mathbf{comp_1}} \left(\left| \frac{\partial u_{h_k}}{\partial t} \right| + \left| \frac{\partial u}{\partial t} \right| \right) |u_{h_k} - u| \, dz$$

$$+ \int_{\mathbf{comp_1}} (|\nabla u_{h_k}| + |\nabla u|) |u_{h_k} - u| |\nabla \eta| \, dz$$

$$+ \int_{\mathbf{comp_1}} |\nabla u|^2 |u_{h_k} - u| \, dz$$

$$+ \int_{\mathbf{comp_1}} \frac{k_{\bar{h}_k}}{\sqrt[4]{\bar{h}_k}} (1 - |u_{\bar{h}_k}|^2) |u_{h_k} - u| \, dz, \tag{3.21}$$

where η_1 is a smooth function with the support of \mathbf{comp}_1 and $\eta_1 = 1$ in \mathbf{comp} .

By using Schwarz's inequality and recalling the energy inequality (2.1) and (2.2) in Theorem 3 and the strong convergencity of $u_{\bar{h}_k}$: Theorem 6, we can easily estimate the 1st, the 2nd and the 3rd terms on the right-hand side in (3.21). We estimate the last term of the right-hand side in (3.21). Since $\mathcal{H}^{(d)}(\mathbf{sing}) = 0$ and $\mathbf{sing} \cap \mathbf{comp}$ is compact, from definition of Hausdorff measure, for any positive number ϵ , there exists a positive number R_{ϵ} less than $R_{\epsilon} < R_0$ (= dist(comp, $\partial \mathbf{comp}_1$)) and a finite cover

of sing: $\{Q_{R_i}(z_i)\}\ (i=1,2,\ldots,K_1)$ with $R_i < R_\epsilon$ such that

$$egin{aligned} \mathbf{sing} &\subset igcup_{i=1}^{K_1} Q_{R_i}(z_i), \quad \mathcal{H}^{(d)}(\mathbf{sing}) \ \leq \ \sum_{i=1}^{K_1} R_i^d \, + \, \epsilon, \ \mathcal{M}^{oldsymbol{\cdot}}\left(Q_{R_i}(z_i)
ight) \ \leq \ C R^{lpha_0}. \end{aligned}$$

We decompose the last term as follows:

$$\int_{\text{comp}_{1}} \frac{k_{\bar{h}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) |u_{h_{k}} - u| dz$$

$$\leq \int_{\bigcup_{i=1}^{K_{1}} Q_{R_{i}}(z_{i})} \frac{k_{\bar{h}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) |u_{h_{k}} - u| dz$$

$$+ \int_{\text{comp}_{1} \setminus \bigcup_{i=1}^{K_{1}} Q_{R_{i}}(z_{i})} \frac{k_{\bar{h}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) |u_{h_{k}} - u| dz. \tag{3.22}$$

Moreover there exists a finite cover $\{Q_{R_j}\}$ $(j=1,2,\ldots K_2)$ with $z_i \in \mathbf{comp}_1 \setminus \bigcup_{i=1}^{K_1} Q_{R_i}(z_i)$, because it is compact; we can proceed to estimate (3.22) as follows:

$$\begin{split} &\int\limits_{\text{comp}_{1}} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) |u_{h_{k}} - u| \, dz \\ &\leq \int\limits_{\cup_{i=1}^{K_{1}} Q_{R_{i}}(z_{i})} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) |u_{h_{k}} - u| \, dz \\ &+ \int\limits_{\cup_{i=1}^{K_{2}} Q_{R_{j}}(z_{j})} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) |u_{h_{k}} - u| \, dz \\ &\leq 2 \int\limits_{\cup_{i=1}^{K_{1}} Q_{R_{i}}(z_{i})} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) |u_{h_{k}} - u| \, dz \\ &+ \int\limits_{\cup_{i=1}^{K_{2}} Q_{R_{j}}(z_{j})} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) |u_{h_{k}} - u_{h_{k}}Q_{R_{j}}(z_{j})| \, dz \\ &+ \int\limits_{\cup_{i=1}^{K_{2}} Q_{R_{j}}(z_{j})} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) |u_{Q_{R_{j}}(z_{j})} - u_{h_{k}}Q_{R_{j}}(z_{j})| \, dz \end{split}$$

$$+ \int_{\bigcup_{i=1}^{K_2} Q_{R_j}(z_j)} \frac{k_{\bar{h}_k}}{2\sqrt[4]{h_k}} (1 - |u_{\bar{h}_k}|^2) |u - u_{Q_{R_j}(z_j)}| dz.$$
 (3.23)

From now on, we estimate the each term of (3.23). First, we majorize the 1st term as follows: Recall (1.5) as $h = h_k$ and substitute $u_{\bar{h}_k}\eta_i$ for ϕ in (1.5) where η_i is smooth function having only x -variable with the compact support in $B_{2R_i}(x_i)$ satisfying

$$\eta_i = \begin{cases} 1 & \text{in } B_{R_i}(x_i), \\ 0 & \text{outside } B_{2R_i}(x_i) \end{cases}$$

to obtain

$$\int_{Q_{R_{i}}(z_{i})} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) dz$$

$$\leq \int_{Q_{2R_{i}}(z_{i})} (|\nabla u_{\bar{h}_{k}}|^{2} + \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (|u_{\bar{h}_{k}}|^{2} - 1)^{2}) dz$$

$$+ \left| \int_{Q_{2R_{i}}(z_{i})} (\langle \frac{\partial u_{h_{k}}}{\partial t}, u_{h_{k}} \rangle + \frac{1}{2} \langle \nabla |u_{\bar{h}_{k}}|^{2}, \nabla \eta_{1} \rangle) dz \right|. \tag{3.24}$$

From Lemma 3, for $R_0 = 1/2 \operatorname{dist} (\mathbf{comp}, \partial \mathbf{comp}_1)$, we obtain

$$\int_{Q_{R_{i}}(z_{i})} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{\bar{h}_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) dz \leq CR_{i}^{d} \int_{Q} (|\nabla u_{\bar{h}_{k}}|^{2} + \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{\bar{h}_{k}}} (|u_{\bar{h}_{k}}|^{2} - 1)^{2}) dz
+ \left| \int_{Q_{2R_{i}}(z_{i})} (\langle \frac{\partial u_{h_{k}}}{\partial t}, u_{h_{k}} \rangle \eta_{1} - \frac{1}{2} \langle |u_{\bar{h}_{k}}|^{2}, \Delta \eta_{1} \rangle) dz \right|.$$
(3.25)

That is, noting that $\partial u_{h_k}/\partial t$ and $u_{\bar{h}_k}$ converges weakly to $\partial u/\partial t$ and strongly to u as $k \nearrow \infty$, respectively and |u| = 1, a.e,

$$\begin{split} & \limsup_{h_k \searrow 0} \int\limits_{\bigcup_{i=1}^{K_1} Q_{R_i}(z_i)} \frac{k_{\bar{h}_k}}{2\sqrt[4]{\bar{h}_k}} (1 - |u_{\bar{h}_k}|^2) \, dz \, \leq \, C R_i^d \\ & + \sum_{i=1}^{K_1} \limsup_{h_k \searrow 0} \left| \int\limits_{Q_{2R_i}(z_i)} \left(\langle \frac{\partial u_{h_k}}{\partial t}, u_{h_k} \rangle \eta_1 \, - \, \frac{1}{2} \langle |u_{\bar{h}_k}|^2, \triangle \eta_1 \rangle \right) \, dz \right| \end{split}$$

$$\leq C\mathcal{H}^{(d)}(\mathbf{sing}) + \epsilon = \epsilon.$$
 (3.26)

Next we estimate the 2nd and the 4th term on the right-hand side: First recall that since $z_i \in Q \setminus \text{sing}$, by using Corollary 4 and Theorem 10, we obtain

$$\lim_{h_{k} \searrow 0} \int_{\bigcup_{j=1}^{K_{2}} Q_{R_{j}}(z_{j})} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) |u_{h_{k}} - u| dz$$

$$\leq \lim_{h_{k} \searrow 0} \int_{\bigcup_{j=1}^{K_{2}} \widehat{Q}_{R_{j}}(z_{j})} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) |u_{h_{k}} - u_{h_{k}Q_{R_{i}}(z_{i})} | dz$$

$$\leq \sum_{j=1}^{K_{2}} \limsup_{h_{k} \searrow 0} \int_{\widehat{Q}_{R_{j}}(z_{j})} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) dz \sup_{z \in \widehat{Q}_{R_{j}}(z_{j})} |u_{h_{k}} - u_{h_{k}Q_{R_{i}}(z_{i})}|$$

$$\leq C(R^{\alpha_{0}}) \limsup_{h_{k} \searrow 0} \int_{\bigcup_{j=1}^{K_{2}} \widehat{Q}_{R_{j}}(z_{j})} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) dz, \qquad (3.27)$$

$$\lim_{h_{k} \searrow 0} \int_{\bigcup_{j=1}^{K_{2}} Q_{R_{j}}(z_{j})} (1 - |u_{\bar{h}_{k}}|^{2}) |u - u_{Q_{R_{j}}(z_{j})} |dz$$

$$\leq \sum_{i=1}^{K_{2}} \limsup_{h_{k} \searrow 0} \int_{\widehat{Q}_{R_{j}}(z_{j})} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) dz \sup_{z \in \widehat{Q}_{R_{j}}(z_{j})} |u - u_{Q_{R_{j}}(z_{i})}|$$

$$\leq C(R^{\alpha_{0}}) \limsup_{h_{k} \searrow 0} \int_{\widehat{Q}_{R_{j}}(z_{j})} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) dz, \qquad (3.28)$$

where we set $\widehat{Q}_{R_1}(z_1) = Q_{R_1}(z_1)$, $\widehat{Q}_{R_j}(z_j) = Q_{R_j}(z_j) \setminus \bigcup_{i=1}^{j-1} Q_{R_i}(z_i)$ $(j = 2, 3, \dots K_2)$. If we now estimate $\int\limits_{\bigcup_{j=1}^{K_2} Q_{R_j}(z_j)} k_{\bar{h}_k}/2\sqrt[4]{h_k} \ (1 - |u_{\bar{h}_k}|^2) \ dz$ in

the same way as before, we find

$$\limsup_{h_{k} \searrow 0} \int_{\bigcup_{j=1}^{K_{2}} Q_{R_{j}}(z_{j})} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) |u - u_{Q_{R_{j}}(z_{j})}| dz$$

$$\leq C \int_{Q} \left(|\nabla u_{\bar{h}_{k}}|^{2} + \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h}} (|u_{\bar{h}_{k}}|^{2} - 1)^{2} \right) dz \leq C. \tag{3.29}$$

Finally, we estimate the 3rd term on the right-hand side:

$$\limsup_{h_{k} \searrow 0} \int_{\bigcup_{j=1}^{K_{2}} Q_{R_{j}}(z_{j})} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) |u_{\bar{h}_{k}} - u_{\bar{h}_{k}} Q_{R_{j}}(z_{j})| dz$$

$$\leq \limsup_{h_{k} \searrow 0} \int_{\text{comp}} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{h_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) dz$$

$$\times \max_{j} \limsup_{h_{k} \searrow 0} \frac{1}{|Q_{R_{j}}|} \int_{Q_{R_{j}}(z_{j})} |u_{\bar{h}_{k}} - u| dz = 0.$$
(3.30)

By applying (3.29) into (3.27) and (3.28) and gathering the estimates of (3.26), (3.27), (3.28) and (3.30), we arrive at

$$\limsup_{h_k \searrow 0} \int_{\text{comp}} \frac{k_{\bar{h}_k}}{2\sqrt[4]{h_k}} (1 - |u_{\bar{h}_k}|^2) dz \leq C\epsilon + C(R^{\alpha_0}).$$

Let $\epsilon \searrow 0$ and recall $C(R^{\alpha_0}) \searrow 0$ as $\epsilon \searrow 0$ to deduce our claim:

$$\limsup_{h_{k} \searrow 0} \int_{\text{comp}} \frac{k_{\bar{h}_{k}}}{2\sqrt[4]{\bar{h}_{k}}} (1 - |u_{\bar{h}_{k}}|^{2}) dz = 0,$$

which implies

$$\limsup_{h_k \searrow 0} \int_{\mathbf{comp}} |\nabla (u_{\bar{h}_k} - u)|^2 dz = 0.$$

4 Final Remarks.

We will mention a few open problems that we should research from now: The 1st is a so-called Federer's dimension reduction argument (For the Federer's dimension reduction argument, we refer to R.Schöen and K.Uhlenbeck [11])

Conjecture 1 $\mathcal{H}^{(d-1)}(\text{sing}) < \infty$.

Note that the estimate above is sharp in the sense that for any fixed time t>0, any mapping $u(t,\cdot):\mathbb{B}^3\to\mathbb{S}^2$ i.e $d=3,\,D=2$ must have as least

one point singularity and "the time" has two-dimension in the parabolic metric.

Next we are drawn into the regularity on the singular set:

Problem 1 sing is rectifiable set.

Author believes that once we can show the above, we also arrive

Problem 2 Let $(s,a) \in Q$ be a singular point of the heat flow for harmonic mappings; There exists a matrix $R \in O(3)$ (may be independent of (t,x), but possibly depending on a) such that the heat flow for harmonic mappings u behaves R(x-a)/|x-a| around the singular points a at each time slice s.

These will be proved by establishing the parabolic analogue of L.Simon [10]. We do emphasis that a monotonicity for scaled energy is crucially made the best of his theory.

参考文献

- [1] Bethuel, F., Zheng, X.: Density of smooth functions between two manifolds in Sobolev spaces, 60–75, J.Funct. Anal, 80 (1988).
- [2] Campanato, S.: L^p regularity for weak solutions of parabolic systems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7 (1980), no. 1, 65–85.
- [3] Chen, Y.: The weak solutions to the evolution problems of harmonic maps, Math. Z. **201** (1989), no. 1, 69–74.
- [4] Chen, Y., Struwe, M.: Existence and partial regularity results for the heat flow for harmonic maps, Math. Z. **201** (1989), no. 1, 83–103.
- [5] Evans, L.C.: Weak Converge Methods for Nonlinear Partial Differential Equations, The American Mathematical Society Conference Board of the Mathematical Sciences, Regional Conference series in Mathematics, 74 (1988).

- [6] Federer, H.: Geometric Measure Theory, Springer Verlag, (1969).
- [7] Hardt, R., Kinderlehrer, D., Lin, F.-H.: Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys. **105** (1986), no. 4, 547–570.
- [8] Ladyžhenskaya, O.A., Solonnikov, V.A., Ural'ceva, N.N.: Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs. **23** (1968), American Mathematical Society, Providence R.I.
- [9] Shatah, J.: Weak solutions and development of singularities in the SU(2) σ -model Comm. Pure. Appl. math. 40 (1988), 459–469.
- [10] Simon, L.: Theorems on regularity and singularity of energy minimizing maps, Lectures in Mathematics ETH Zürich (1996), Birkhäuser.
- [11] Schoen, R.S., Uhlenbeck, K.: A regularity theory for harmonic maps, J. Differential Geom. 17 (1982), no. 2, 307–335.
- [12] Schoen, R.S., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (1983), no. 2, 253–268.