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On discrete Morse semi-flow

RALKRFARFBEE AR MFEER BEMEMA (Kazuhiro HORIHATA)
Mathematical Institute Tohoku University

1 Introduction.

Set d and D be positive integers greater than 1. Let B? and SP be
the unit ball centered at the origin in R, the unit sphere SP in RP*!
and T a positive number. Give @ by (0,T) xB¢. This article studies a
certain time-difference space-differential system; We call the solution to it
“Discrete Morse Semiflow”, which is abbreviated to “DMS”. This system
enables us discuss at least two important problems in Geometric evolu-
tional problems: Heat flows for harmonic mappings and mean curvature
motion. To explain DMS, we introduce a several notation: Let A be a
positive number and Nr be [T/h]+ 1. We put t, := nh (n =0,..., Nr)
and set kg = (1 — h/(16T)log(1/h)). x(t) € C with

t t <2
x(t) = { s o4 (L1)

Give a mapping uo € HY?(B% SP). Then DMS is designated by a se-
quence of mappings {u,}(n =1,...,Ny) C {u € H?(B%4SP); u—wup €
H"? (B4 RP*1)} of the solution of the following difference-differential sys-
tems:

Uy, '—hun—l - Du, + %X((IunP _ 1)2) (lun‘z _ l)un -0 (1'2)

in B¢

un = ug on OB (1.3)
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An interpolational convention wy(t,z) and up(t,z) (t > 0) respectively

indicates
U,;‘,’(t,.’B) = ’U;n(.’l?) for th-1 <1t < t,,
t—t,_ th—t
up(t,z) = hn lun(il?) + nh Un-1(T) for t,_1 <t<t,.

Note Oup/0t(t,z) = (un(z) — up—1(z))/h for t,_; < t < t,. When no
confusion may arise, we say a pair of functions uj and uy to be DMS; u;,
and uy, satisfy

up € L®(0,T; H-*(B%SP)), (1.4)
[ (Goor + (v, 98)) o = 2 [ (usl? - 1) 1
" i (1.5)

for all ¢ € C3°(B% RP*1),
up(t,z) — up(z) € }}1’2(]8‘1; RP*Y) for every t (0 < t < Nrh),
,lli{f(l)lluh(t, °) — uo(0)||2@ey = O. (1.6)

I addict to DMS: We show that DMS satisfies a maximal principle, a few
global energy inequalities, a monotonicity inequality for the scaled energy
and finally a reverse Poincaré inequality. By using the inequalities above,
we prove that DMS converges to a heat flow for harmonic mappings and
discuss a partial regularity result on it. Here for any given mapping ug €
HY2(B% SP), we callu € L>(0,T; H-*(B%; SP)) N HY2(0, T; L*(B% SP))
a heat flow for harmonic mappings provided

ou

5 = Au + |Vu*u in Q, (1.7)
u(0,z) = up(x) in {0} x BY,
u(t,z) = uo(x) in (0,T) x 6B

The following fact is well-known

Remark 1 (1.7) is equivalent to

%;ﬁ Au—DuAu=0 in (CP(QRPH)), (1.8)

lu] =1 in ae z€Q. (1.9)
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The parabolic system holds in the following weak sense:

/((g—z,@ + (Vu, Vo) — (u, ¢)|Vu]2) dz = Ofor any ¢ € C°(Q; RPHY),
Q

(1.10)
u(t,z) — ug(z) € ﬁ1’2(Bd;RD+1) for almost every t € (0,7),
(1.11)
tlig&ou(t,o) = ug(o) ‘ in L%(B%RPH).
(1.12)

My main result of this article is

Theorem 1 (Partial Regularity) There exists a heat flow for harmonic
mappings and it is smooth on a relative open set in Q whose compliment
has 0 d-dimensional Hausdorff measure with respect to the parabolic met-
ric.

The proof of Theorem 1 can be performed by combining Theorem 8 with
Theorem 9.

2 DMS.

In this chapter, we state a discrete maximal principle and a few global
energy-estimates. Thereafter we establish a monotonicity inequality for
the scaled energies and a reverse Poincaré inequality, which are the main
techinical tools of this sort of study. The first is

Theorem 2 (Discrete maximal Principle) Each of DMS {u,} (n=1,...,Np)
implies
lun] < 1 for all point z € B?.

Theorem 3 (Energy Estimate). For any given mappinguo € H-?(B%;SP),
DMS {u,} (n=1,2,..., Nr) satisfies

/(%IVunlz + 4%(!%[2 — 1)2) dz

Bd
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/|Vu0|2 dz for any integer n (n =1,...,Nyp), (2.1)

—unl
dz

gt/ % ks s e, 1 ,
+ 6T hz_;4\4/i_7, (Jtn—1]> = 1) dz < §/|VU0| dz. (2.2)
n= Bé

Bd

Lemma 1 (Global Pokhojaev Identity). DMS u, (n = 1,2,...,Ny)
have the following property:
S| dHE!

; /
2 0|z|

oB4
a-2 / IV

Be

1 -
= 5 [ NuswaPard + [ o i 23

oBd Bd

2
Oou,,

(lunf? = 1)* da

Corollary 1 (The first derivatives estimates at 9B%).

1T
5/az,e/
h Bd

<2 / |Vianuo|? dHE™Y + 2(T +1) / |Vuo|? da. (2.4)

2
Ou;,

Oup d-1
]| 4

Corollary 2 (The rate of the convergence). If Auy € LPo(B% RP+) for
some py > 1,

[ 1900 = wo)de < 245 Tugl 224, | Aol - B, (25)

holds with 1/py + 1/py = 1.
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Remark 2 The typical ezample of map from B? to S* ' C R? may be
the equator map given by z/|z|. If ug(z) = z/|z|, then Aug € L®(B?) as
long as 1 < qo < d/2. We refer to F.Bethuel and X.Zheng [1]. Namely
the assumption on LP-integrability about Aug is just peril.

Lemma 2 (Higher Order Differential Estimates). DMSu, (n = 1,2,..., Nt)
satisifies

Nr
Y / Ay — 1) da
=25

e / Vuol do + / IVt — )| d. (2.6)
B4 Bd

Now, we are in the position to state a monotonicity inequality for the

scaled energy; For zp = (tn,,20) € @ and a positive number R, the
scaled energy is denoted by

tng—6o R2

En(R; 20) = 2—1% / dt/(|Vuh|2 + 2’\jjﬁ(|uh|2 - 1)2)

tny—00(2R)? B4

x exp(:i—ft—__w?:%) dz. (2.7)

Lemma 3 (Monotonicity for the Scaled Energy). For any point zg =
(tne, Zo) and any positive number R,

tng—bo R2

dEy, 1 t — i,
E(R; z0) 2 T Ri1 / R? - dt_/
tng—00(2R)? B4
Ouy, T — Xo 2 lz — zo?
et} LT = Tl Vg
T T Gg T Ve eXp(4(t - tno)) T
tno——BQRz

1 krdt 9 2 |z — x|
b ] et (=)
B

tng —00(2R)2
— Cum(R, Ro; h). (2.8)
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where

CM(R,RQ;h). = CM,] + CM,2

CR
C = V 2d + / Va,n ZdH:—l)J
ML QistT (g, OBY) (/ Vol dz [Visatio
Bd OBd

Cvh
Cma = —ClIV(ur ~ wo)llz2w)|[Vuoll2@e) + Sz [ Vol la@e)-

Hereafter we state a point-wise estimate and the inequality of “a hybrid
type”. The latter part of the chapter will be devoted to saying these
inequalities. We supposed 6y, 6; and R be positive numbers with

2
0<f <1 1<86, R>O0, max(2—§i2) < H‘f , (2.9)
and we set
6o R? 6,(2R)?
N1 = [oh ], N2 = l:—g(—h—)-]

We must remark that all N; (i = 1,2,3,4) are positive integers by as-
sumption (2.9).

Theorem 4 (A Point-wise Estimate) There exists a positive number €
depending only on d,t such that if wy, satisfies

1
][ dt ][ (1 - (up, K))dz < € (2.10)
tni-2Ny  Bar(o)

for any cylinder Qapanh(tn,, o) (:= (tny—2Ny,tn,) X Bar(zg)) CC Q,
then
|{z € Q2R,N1h(tn17x0); <U'7w K) <1- 50}'
hlog(1/h
< C—%/Wuﬁdm (2.11)
o

with n; = ng + Ny — Ny and K is any vector in RP+1.
We must remark that all N; (i = 1,2,3,4) are positive integers by as-
sumption (2.9).



Theorem 5 (Discrete Hybrid Inequality) DMS uj, and uy, have the fol-
lowing inequality: There exists positive constant Cy depending only on d
such that for any numbers 6y, 0y, R satisfying the condition (2.9), for any

cylinders (tny, tng+n,) X Bar(zo) CC Q,
2
) dz

00R2 1 12 kﬁ 12 2
+ 10 / (§|Vuh| + 4\4/5(|uh| - 1) dzx

Br(zo)

< Cgmax ((1 - %) Nl, 60,5(60)) (2.12)

tng + Ny 2
1 ks, R
dt / (iqu,-f e (e 1)2 + —22——

Buh

ot

4vh

tn0+N2 - N; BR(.’L’D)

1

(o g - o

tno +Ng —3N7 —1 an(zo)

1 ca
+ (1+00+ 0—)—”—— / dt /lug—Kde
0

log(1/6,)° 2

tng + Ng — 3N, Bar/a(wo)

+ O(h).

where Ry = min(y/T,, /20, dist(zy, IB?)), € is a certain positive constant
1/d-1/(14+2/d)(1+4/d)
0 .

appeared in Theorem 4, respectively and do(€eg) = €
Remark 3 If one takes 6, being sufficiently large and 0y, €y being suffi-
ciently small, then the coefficient of the first term on the right-hand side
above is small.

3 Heat Flows for Harmonic Mapping.

This chapter establishes the existence and a partial regularity on a
heat flow for harmonic mappings that are obtained as the limit of DMS.
The existence theorem is a slight modification of Y.Chen [3] and see
also L.C.Evans [5, p.48, 5.A.1] and J.Shatah [9]. On the other hand the
regularity result will be established by means of a blow-up technique. For
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the blow-up technique used here, we refer to R.Hardt, D.Kinderlehler and
F.H.Lin [7] and R.Schden and K.Uhlenbeck [11]. First of all we mention
two convergence theorems directly derived from Theorem 2 and Theorem
3:

Theorem 6 (Convergence) There exists a subsequence {ug, }, {un,} (k =
1,2,...) of {uz}, {un} (h > 0) respectively and a mappingu € L>®(0,T; H*(B%; SP))
N HY2 (0, T; L*(B% SP)) such that uy, and uy respectively converges weakly-
* and weakly to u in L®(0,T; H**(B?; RP+1))
and H"? (0, T; L*(B?; RP*)), so does uy, strongly to w in L*(Q) and
uy, point-wisely to u as k /" co.

Theorem 6 enables us state the following existence theorem:

Theorem 7 (Existence) Each of DMS: u;, and uy, respectively converges
to a heat flow for harmonic mappings u in L®(0,T; H-?(B¢; RP+1)) and
HY2 (0,T ; L*(B% RP*1)) as h \, O(modulo a subsequence of A).

Proof of Theorem 7. Since Vug and 8;uy, is uniform bounded in L*(0, T'; L?(B®

; RPH1)) and L2(0, T; L?(B%; RP+!)) respectively, and a subsequence of uj,

and uy, also converges weakly-* and weakly to a map u in L= (0, T; H12(B¢; RP+1))
and H2(0, T; L? (B¢; RP*1)) respectively, strongly in L?(B% RP+), Juz| <

1, almost everywhere in () as h \, 0; We show that the map u is indeed

a heat flow for harmonic mappings. Since uz and uy, satisfy

6uh ks,
-~ Bur = {4/—%(1 ~ [ual*)us,
by taking a wedge product, we have
Oh o A ) A =0 2 (Q; RPH))*
g Aup — Aug ) Aug =0 in (CP(Q;RP))™ (3.1)

Thus by virtue of u € L*(0,T; H»*(B%; SP)) n H? (0, T; L*(B?; S”)),
Remark 1, Theorem 6, we observe that u satisfies (1.10), (1.11) and (1.12),
i.e. u is a heat flow for harmonic mappings

Remark 4 In the following, we fiz a subsequences {ht} (k=1,2,3,...)
of {h} (h > 0) that makes DMS converge to a heat flow for harmonic
mappings u.
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Definition 1 Fiz a point zp = (to,z0) € Q. We indicate M by the
following rescaled Radon measure:

lim inf kr Sun I
M (Qr(z0)) = —'2—90‘%5}2 / (IVu;‘,,J2 + 2\4/';3;([1&}1,‘,]2 — 1)? + 6o R? ——6:" ) dz,

Qr(20)

for any positive number 6y and any cylinder Qr(20) CC Q.

Remark 5 (Measured Hybrid Inequality) Assume that uj, and up, re-
spectively converges weakly-* and weakly in L>®(0, T; H**(B%; RP*1)) and

H2(0,T; L*(B% RP*)) to a heat flow for harmonic mappings u €
L>(0,T; HYA(B?; RP+1)) n HY? (0,T; L?(B%; RP*+Y)) as hy \, 0. Then
take the pass to the limit hy, \, 0 in (2.12) to infer the following: For any
positive by, there exists a positive constant Cry depending only on d, 6
such that

W (QR(ZQ)) S 92M') (QQR(ZO)) + CHM f lu - K|2 dz (32)
Qz2r(20)

holds for any vector K € RP*! and Qr(20) C Qar(20) CC Q with 29 =
(to, z0) and Q2r(20) = (to — 60(2R)?, to) X Bar(zo).

In the similar way as in L.Simon [10, Lemma 2, p31], we can assert the
following reverse Ponicaré inequality:

Corollary 3 (Reverse Poincaré inequality). The rescaled Radon measure
implies the reverse Poincaré inequality: whenever Qur CC Q,

R*208 (Qn(z)) < Cro ][ u — K[2dz (3.3)
Q4r(z0)

holds, where Cpg is a certain positive constant depending only on 0, and
d.

Proof of Corollary 3. Let

M = sup ot 2pt (Q,(2))
{Qd’ (3)3Q0 (Z)CQzR(zO)}

and then take any cylinder Q,(2) with Q,(2) C Q2r(20). Notice that
such a cylinder can be covered by cylinders Q,/4(2) (¢ = 1,2,3,...,5)
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with 2z, € Q,(2) and Q,(2;) C Q2r(2). We can evidently bound the
number S by a fixed constant depending only on d. Recall (3.2); Then

i @) < 473 (5) 74 @t
d+2
< 4%+2g, (5) M (Qoy2(2:))

+ 4420y Z / lu — K|*dz

Q2a (zi

< 4972860, M + 442 CyuS / lu — K|*dz.
Qar(20)

Taking “sup”on the right-hand side above, we have
M < 4%7286,M + 4%+2SCyuS / lu — K|?dz,
Qar(zo0)
whereupon 6; = 1/(249+25), we infer
R20t (Qr(z0) < 24™2SChm / u— KPde.  (3.4)
Q4r(z0)

We can state one of the main assertions:

Theorem 8 (Energy Improvement) For some positive numbers €, o
and 0y, the following holds: for any positive number R and point zy =
(to, zo) and any measure M, for any cylinder Qr(20) (=: (to—6oR?, tp) X
Bg(z0))CC Q,

» (QR(z0)> < € implies
M Qo)) < 59 (Qnleo)). (3.5)

Proof of Theorem 8. The proof can be proceeded by a contradiction: If
the statement would be false, then for any positive number 6; less than
1/2, there would exist sequences of positive numbers R;, of points z; =




(t;,z;) C Q, of measures Mt; and of heat flow for harmonic mappings
u; (¢ =1,2,...) such that for any 6y with Qg,(2;) CC Q,

1
M (Qn(a) = & < 3, (3.6)

?

€2
but Mt (lem(zi)) > 3. (3.7)
By rescaling
_ - _ t— ti r—T;
z=(t,z) —» 2=(,%) = (EO_R:?—’ 2 ),
without a loss of generality, we can rewrite (3.6) and (3.7) as
1

M (@i(0)) = € < " (3.8)

2

€
but At (le (0)) > 2. (3.9)

By using the rescaling z = ((¢t — t;)/00R?, (x — z;)/R;) and a positive
number 7, (3.2) becomes

m (Q()l(o)) <C f Iui - “i,Q291|2 dz. (310)
Q?Ol(o)

1 1
Set v;(2) = e—(u,(z) — u;,) forany r with 6, <r < 5

By assumption (3.6), a subsequence of v; converges weakly to a mapping
Voo € L2(0,T; HY2(B;(0); RP*H1)) n HY2(0, T; LA(B1(0); RP*1)) asi / oo
(modulo a subsequence of 7). In addition, since v; satisfies the systems:

1 0u

6o Ot
in the sense of (C$°(Q1(0); RP*+1))*, by using L.C.Evans [E1, p.39, The-
orem 3| and noting (3.6) again, we find that v, is the solution of

- A’Ui = éi|VUi|2ui

1 ov
—_Z® _ A = 3.11
in the classical sense. From the gradient estimate on the solution of the

equation (3.11) by S.Campanato [2] and the Rellich-Kondrachev theorem,
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it follows that ess - sup (|VUeo| + |00 /0t]) < C||VUso||12(0,(0)) and v;
Z€Qs,(0)
converges strongly to v, in L2(Q;(0)) as 2 / oo. Thus

7[|Ui|2d2 < 2 7[ Voo |2 dZ + 27[]'1),- — Ue|?dz < Cr2,
Q20

Q20, Q2,
s — gy [PdZ < € ][ w2dz < 2062,

1','-

Q26 Q20,

holds if 7 is sufficiently large possibly depending on ;. Consequently we
infer

M (Qe:(0,0)) < Coiel. (3.12)

If we choose Cf; < 1/2, which is & (Qg, (0)) < €2/2, then we find that
this is a contradiction of our choice.

Theorem 9 (Singular Set) Let ¢y be the positive number appeared in
Theorem 8. Define

sing :== ({2 € Q; # (Pr(2)) > e}, (3.13)
R>0
with Pp(z0) = (to — B R?, to + 6o R?) x Bg(zg). Then sing is a relatively
closed set and
HY (sing) = 0. (3.14)

Proof of Theorem 9. sing is a relatively closed set. Indeed, if z €
sing N (), some sequence z, = (t,,z,) € singNQ (v =1,2,...) implies

2, — zgas v / o0, i.e. for any positive 6, there exists a positive number
vs such that dist(z,,25) < & holds for any positive integer v > vs. From
definition on sing, for any R > ¢ and any points z, (v = vs,v5 + 1,...),

we obtain
lim infp, o
2
dz

© = 50,(R - 6)d

auhk
ot

X / (]Vu,;k|2 + 2?%1: (Jug, |* — 1)2 + Gp(R - 6)?

Pr_s (t",zv)



611, hi
ot

2
) dz.

(3.15)

liminfp\ o 9 9 2 2
L AN - —
< SR / (]th] \/_k(luhk| 1)" + 6oR

Pp(z0)

By the arbitrariness of §, passing to the limit § \, 0, we can say singNQ
C sing N Q, which provides us with our first assertion. Next we estimate
the size of sing in the d-dimensional Hausdorff measure with respect to
the parabolic metric. Fix a positive R < 1 and set a compact set comp
in Q. Let {Pag,(2x)} (2Rx < R), be a cover of sing. Since singNcomp
is compact set in (), we can assume that the cover is finite. Moreover the
parabolic version of Vitali covering theorem shows that there is a disjoint
finite sub-family {Pg, (2¢)}, k € K with

sing Ncomp C U Puor, (21),

kek
2 kz, 2 2 2 | OUn, ?
2¢0RE < hmlnf Vg, [* + X3 (Jug,|* — 1) + 6oR; 5t dz.
PRk(zk) k
From Corollary 3, we have
. 2
RS < hmmf / (quhk|2 57’%_('“7"“'2 —1)* + oR? ag:k ) dz
Pr, (21) *
Cpo
< R—z / lu — quk(zk)fz dz
Pyp, (2k)
9 2 ou|?
<C |Vul® + 6o R; 5 dz. (3.16)
Popy (2x)
Thus we obtain
K K
0
> (10Ry)¢ < U / (lvu|2+0oR2 31: )dz.
k=1 *=1p, s (k)

From

du
B

2
)dz

K
Z(loRk)d+2 < CR? / (|Vu|2 +
k=1 Q

191
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and the absolute continuity of the Lebesgue integral, we conclude
K
(d) s < . d _
H'¥(sing N comp) < C}l%{‘r%) g(lORk) 0. (3.17)

If we set comp,, = {z € Q; dist(2,0Q) > 1/n} (n = 1,2,...), by
lim, 0o H@ (singNcomp,) = H? (sing), we cane deduce our assertion.

Theorem 10 (Recursive Inequality) The heat flow for harmonic map-
ping u is Holder continuous on @ \ sing.

Proof of Theorem 10. Fix a point z9 = (ty,2o) € Q \ sing and choose
R so that M (Pg(2)) < € with some 6, possibly depending on z, and
R. Because @)/sing is an open set, there exists some Pg,(2p) so that

»t (PR(ZO)) < €

for all point Zy € Pg,(2). Then by Theorem 8, we obtain
r
R
for any positive number r > 0 with ay = log2/log (1/6;). This leads to
our claim. []

We next collect a few properties of the heat flow for harmonic mappings
obtained by the perturbation of DMS:

M (P(z) < C () # (Palz) (3.18)

Corollary 4 From (2.2) in Theorem 8, we obtain

k;_
limsup/ e (g, |* - 1)2dz = limsup = 0. (3.19)

R \O ] v hi mN0  10g 1/hy

From Lemma 4, we infer that there is a positive number ey such that for
any positive number € less than €q if the heat flow for harmonic mappings
u satisfies

][ lu — ugPdz < ¢

Q2r
for any cylinder Qa2r(20) CC Q, then we infer

limsup sup |up, — uz, 0,12 < Cle),
N0 Qniz0) k k: Q2R

where C(€) is a positive number satisfying C(e) \, 0 as € \, 0.



Finally, we close this section by showing the strong convergence of uj,
to a heat flow for harmonic mappings u in Hﬁ)’f -topology as h; \, 0;

Theorem 11 (Strong Convergencity of Gradients) The gradients of uy,
converges strongly to the gradients of u in L2 (Q).

Proof of Theorem 11. Fix two compact sets comp C comp,; C @, which
are compactly contained each other. Take the difference between (1.10)
and (1.5), for a map ¢ € C°(comp,; RP*+1), then we obtain

/<8t Up, — Uu),P)dz + /(V(u,—lk——u),Vq&)dz

comp; comp,;

_ / Vul(u, 8) dz + \/_(1 — g, ) up,, @) dz. (3.20)

comp, comp,

Substituting ¢ for (un, — u)m, we obtain

[, - wpma < [ (1% 15 1) un, ~ ulds

comp, comp,
+ [ (Vunl + [9ub fun, — |Vl dz
comp,; .
+ / (Vul?|un, — uldz
comp,;
it Ak 3.21
+ m(l - Iuhkl )luhk - uld% ( . )
comp,

where 7; is a smooth function with the support of comp, and 7; = 1 in
comp.

By using Schwarz’s inequality and recalling the energy inequality (2.1)
and (2.2) in Theorem 3 and the strong convergencity of uj; : Theorem 6,
we can easily estimate the 1st, the 2nd and the 3rd terms on the right-
hand side in (3.21). We estimate the last term of the right-hand side in
(3.21). Since H(9(sing) = 0 and singNcomp is compact, from definition
of Hausdorff measure, for any positive number ¢, there exists a positive
number R, less than R, < Ry (= dist{comp, dcomp, )) and a finite cover
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of sing: {Qr,(z)} (1=1,2,...,K;) with R; < R, such that

K1 Kl
sing C UQRi(zi), H D (sing) < ZR}’I + €,
M (Qr,(2)) < CR™.

We decompose the last term as follows:

kx
/ FR (1~ fu P un, — uldz

2Yhi

comp;
< [ o= P, - ulds

Ufil]_QRi(z‘t)

kﬁ 2
+ — (1 — Jug Up, — uldz. 3.22
[ g Pl —w (3:22)
comp, \U{, Qr (=)

Moreover there exists a finite cover {Qg,} (j = 1,2,... K3) with 2 €
comp, \ U, Qr, (%), because it is compact; we can proceed to estimate

(3.22) as follows:

ki
/ OEe (1 g, ) lun, — uldz

2/ hg
comp,
< [ - Dl - s
- 2/ hy, k
U.,‘K=11QH,L~(Zi)

v f 'f;u g, [P lun, — ul 2

Uf(ﬁlQRj(zj)
kr,
<z [Tl Pl s
U;'K_—_llQRi(za)
Fhe_ 1 d
+ -2—:_\/}71;( - luhkl )}Uhk uthRj(zj)I Z
UflileRj(zj)
+ i, 1 |d
2\‘,l/h—k( - luhkl )IU’QR (z) — uthRj(zj) z

K
Ui=QIQRj (25)
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ks,
+ / ;k_(l - |uhk| M — UQRj(Zj)ldz‘ (3.23)
Ui 2 QR (=)

From now on, we estimate the each term of (3.23). First, we majorize
the 1st term as follows: Recall (1.5) as h = hy and substitute ug, 7; for
¢ in (1.5) where 7; is smooth function having only z -variable with the
compact support in Bap,(z;) satisfying

1 in Bg,(x;),
=
0  outside Bsg ()

to obtain

/ ’“\7_(1 fug, ) dz

QR,-(Z'z)
k
< [ (VP g - 1) ds
Qz2r; ()
ou 1
+ / ((#"—,uhk) + a(VluEkF,Vm)) dz|. (3.24)
2R, (2i)

From Lemma 3, for Ry = 1/2dist (comp, Ocomp, ), we obtain

ky, kg,
[ 5=t - s < CRfQ/(IVu,;kIz + o(lun, P — 17) ds

Qr; (=)

(9’ulh 1
H [ (g umdm = ltun, am) . (3.25)
2Ri(z’5)
That is, noting that duy,/0t and uj, converges weakly to du/0t and
strongly to u as k /" o0, respectively and |u| =1, a.e,

kr,

lim su k(1 — |uz |*)dz < CR?

mewp [ 51~ g ) ds < OR;
Uf—_}lQR,;(zi)

K

, Oup, 1
+ thsup / ((—a-g—,umm - -2-(|uﬁk|2,A7)1)) dz

=1 PeN0
2R; (21')
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< CHY(sing) + ¢ = (3.26)

Next we estimate the 2nd and the 4th term on the right-hand side: First
recall that since z; € @ \ sing, by using Corollary 4 and Theorem 10, we
obtain

k-
lim sup / (1= Jug, )P |un, — uldz
hie\O X
UjﬁlQRj(zj)

. ki_z 2
< hf,fi%p / 5 \“/;Tk(l = lur, [un, — Un,qp, 0l d2

Ui Qr,(2)

[N
5
=

x>

hie\O

< thsup / \/__(1 — |ug,|?) dz Sup U, — UneQng, ()]

~ 2€QR.(z;
= Qr; (25) €9n; )
ks,
< C(R*)limsu E_(1 — |ug, |?) dz, 3.27
= ( ) hk\.()p / 2\‘yh_k( I hk’) ( )

K.
Uj_—?lQRJ- (23)

R \0
U]=21QR3(ZJ)
K,
kg,

< lim sup / E(1 = |up 2)dz sup |u — ugy (s

; hi\\O R 2\/4 hk( J & ZEQR.(Z:,') Rj( )

QRj(ZJ) !
k, .

< C(R*)limsu / E_(1 — |uz, |?) dz, 3.28
< C(R™) limsup So=(l = us, [ (328)

Ko =
U_7=21 QRJ (ZJ)

where we set @Rl (21) = QR1 (21), @Hj(zj) QRJ (ZJ) \ U QR;(Zt) (.7 =

2,3,...K5). If we now estimate [ ki, /2vVhie (1 — |uz,|?) dz in
U2, Qr, (25)

the same way as before, we find

kg,
i k(1 — |luz Dy — u 23| dz
I}E\i}ép f 2\4/h_k( I hkl )I QRj( J)\

;{__leR (23)

/(|Vu,%|2 \/E(' g, |? — 1)2) dz < C. (3.29)

Q




Finally, we estimate the 3rd term on the right-hand side:

kg,

lim su / (1 - |u up, — Uf .| dz

hk\op ) \/——-( I hkl ), hi thRj(])l
Uj:ZIQRj(zj)

comp
X max lim sup —— / lup, — uldz = 0. (3.30)
J hk\o 'QRJI

Qr;(25)

By applying (3.29) into (3.27) and (3.28) and gathering the estimates
of (3.26), (3.27), (3.28) and (3.30), we arrive at

hgi\s\%p / 2\/__(1 — |ug, [?)dz < Ce + C(R™).

comp

Let € \, 0 and recall C(R*) \, 0 as € \, 0 to deduce our claim:

lim su / U dz = 0,
hk\Op 2\/— ‘ hk; )
comp
which implies
lim sup / |V (u u)|*dz = 0.
hi\O
comp

4 Final Remarks.

We will mention a few open problems that we should research from
now: The 1st is a so-called Federer’s dimension reduction argument ( For
the Federer’s dimension reduction argument, we refer to R.Schéen and
K.Uhlenbeck [11])

Conjecture 1 H@ 1 (sing) < oo.

Note that the estimate above is sharp in the sense that for any fixed time
t > 0, any mapping u(t,-) : B3 — S?i.e d = 3, D = 2 must have as least
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one point singularity and “the time”has two-dimension in the parabolic
metric.
Next we are drawn into the regularity on the singular set:

Problem 1 sing is rectifiable set.
Author believes that once we can show the above, we also arrive

Problem 2 Let (s,a) € Q be a singular point of the heat flow for har-
monic mappings; There ezists a matriz R € O(3) ( may be independent of
(t,x), but possibly depending on a ) such that the heat flow for harmonic
mappings u behaves R(xz — a)/|x — a| around the singular points a at each
time slice s.

These will be proved by establishing the parabolic analogue of L.Simon
[10]. We do emphasis that a monotonicity for scaled energy is crucially
made the best of his theory.
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