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EXISTENCE OF TIME-PERIODIC SOLUTIONS OF THE EQUATIONS
OF MAGNETO-MICROPOLAR FLUID FLOW

KE!I MATSUURA (f&VH 7))
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Tokyo, 169-8555, Japan

1. INTRODUCTION

We consider the time-periodic problem for the system of equations of magneto-micro-
polar fluid motion in a bounded domain.

Micropolar fluid was first introduced by Eringen [3], which gives a model of a viscous
fluid consisting of randomly oriented (or spherical) particles. This model describes the
behavior of various real fluids better than the classical Navier-Stokes model. For more
information, we refer the reader to [6] and [7]. Ahmadi and Shahinpoor [1] derived
the governing equations of magneto-micropolar fluids as the generalized incompressible
MHD fluids with neutral fluid seedings in the form of rigid microinclusions.

Let @ C RY (N = 2 or 3) be a container with rigid superconducting wall which a
magneto-micropolar fluid occupies. In the case where the space dimension is three, the
motion of the fluid is described by the following system of equations:

b, 1
(1) 5} — (g + x)Aw + (u - grad)u — (b - grad)b + grad (p + 56 . b) = f +2x curlw,

(2) ?9_(: — alAw — Bgrad(divw) + 4xw + (u - grad)w = g + 2x curlu,

(3) gg + v curl(curl ) — curl(u x b) = 0,

(4) divu=0, divd=0,

where u = (ul(z,t),u*(z,t),u%(z,t)) is the velocity field, w = (w!(z,t),w?(z,t),w?(z,t))
the microrotation field, b = (b!(z,t),b%(z,t),b*(z,t)) the magnetic field, p = p(z,t) the
pressure, f = (1(z,t), f2(z,1), f(c,¢)) the body force, g = (g'(2,t), 4*(z,1), 9°(2,1))
the body couple and y,x,a,3,v are the physical constants. The physical constants are
usually assumed to satisfy the condition: min(u,x,a,a+ 8,v) > 0. Here, for simplicity,

the density of the fluid, the squared radius of gyration and the permeability are all
normalized to 1.

We here consider the system under the periodicity conditions
(5) u(-0) = u(,T), w(-0) =w(-T), b(-0) = b(-T),
where 7' is a given positive number, and the boundary conditions
(6) ulaga =0, wlogn =0, b-nlagg =0, (curld) X nlsga =0,

where n denotes the unit outward normal on 6.



In the case N = 2, the system (1)-(4) and the boundary conditions (6) should be
slightly modified. We define the operators curl, curl and the exterior product X by

_ a'v a'U 1 2
curlv = 52, 3z, for all v = (v'(zy,z2),v*(21,22)),
—~ [ 0p Oy _
curlp = (5232, —-(—9—;1') for all ¢ = ¢(z1,z2),
axb=alb?— a®! for all a = (a',a®) and b = (b',5%).

As for the unknown functions (u,w,b), note that u and b are R%valued functions in
2% [0,T] and w is a scalar function. Thus we put in (2) Bgrad(divw) = 0. Furthermore

curlw should be replaced by curlw in equation (1), curl(curl b) and curl(u x b) replaced by

curl(curl b) and curl(u X b) in equation (3) respectively. As for the boundary conditions
for b, (curld) x njsn = 0 should be replaced by curl bjsq = 0.

For the case N = 3, Lukaszewicz et al.[8] showed the existence and uniqueness of
time-periodic solutions of the system. Their arguments are based on a modification of
the Galerkin’s approximation method for some abstract semilinear periodic problem due
to Kato [4]. Hence they needed the rather strong regularity of the external forces such as
f € C*([0,T]; L*(Q)). Our arguments rely on the nonmonotone perturbation theory for
nonlinear evolution equations governed by subdifferential operators due to Otani [10]. In
our framework, the external forces can be taken from a weaker and more natural spaces
such as f € L?(0,T; L*(Q)). Furthermore, the advantage of our method lies in the fact
that our framework can cover much wider class of nonlinear problems including some
quasilinear parabolic systems in regions with moving boundaries.

2. FUNCTIONAL SETTINGS

In this section, we introduce some function spaces and operators.

2.1. Function spaces. Let { be a bounded open subset of RY (N = 2,3) with smooth
boundary 9Q (say C?). For simplicity, assume further that Q is simply connected.

For any function space X(Q) on Q, we denote by X (Q) = (X(Q))" the R¥-valued
function space whose each component belongs to X (Q).

We need the following function spaces:

C2(Q)={veC>®Q)| divv=0in Q, v-n =0 on 60},
CP(Q)={veC®(Q)| dive=0in Q, suppv C Q},
L2(Q) = the closure of CZ(Q) in L*(Q)

= the closure of C2°(Q) in L*(Q)

={v e L*Q)|divv=0in Q, v-n = 0 on 60},
H(Q) = the closure of C2(Q) in H'(Q)

={ve H'(Q)| divv=0in Q, v-n =0 on 80},
H!(Q) = the closure of CZ(£) in H'(Q)

= {v € H}(Q)| dive = 0 in Q},
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H - L2(Q) x L*(Q) x L2 if N =3;
T LA(Q) x L3(Q) x L} if N =2,

V= HL(Q) x H)(Q) x H. if N=3;
T HLQ) x HI(Q) x H: if N=2.
We set
N . .
) = Z / wl,  lul = (u,u)? for u,v € L*(Q),
=1 aQ
('U,,’U)o- = 'U,,’U) Hullo’ = Hu“ for u,v € L?,(Q),
= 1
|Vl = ;/ s, > for u,v € H(R),
(U1, U2)m = (u1,u2)s + (w1, w2) + (b1,02)0 for U; = (us,w;, b;) € H (i = 1,2),
\Ule = (U, U)}{z for U € H,

where u = (u!,u?,u?), v = (v!,02,0%).

In order to define the norms of H,(Q), Hy(Q) and HL(Q), we need the following
lemma:
Lemma 1. There exist positive constants A1, Az, A3 depending only on Q such that
(@) Mfullf <Vul®  for all u € Hy(Q),
(@) Xallw]* < ||Vw|*  for all w € HE(Q),
(453)  X3)|8||2 < ||curld||® for all b€ HL(Q).

Proof. (i) and (ii) result from the Poincaré inequality. For (iii), see for example Appendix
I'in [12]. O

In view of Lemma 1, we equip H.(Q), Hy(Q), HL(Q) with the norms ||Vul|,||Vw],
|| curl b|| respectively.

For an arbitrary normed space X, we denote by LP(0,7T; X) the set of all strongly
measurable functions v on [0, 7] with values in X satisfying

T
/ llv(t)||%dt < o0 if p€[l,0); esssup|v(t)x <oo ifp=oo.
0 t€[0,T)

The norm of L?(0,T'; X) is defined by

lollzs(oixy = (/ Io(t "’dt) " itreltoo

ess sup llw(t)]| x if p = 0.
T

For each p € [1,00) we also equlp Lp (0 T; X) with the following equivalent norm:

HvHLPOTX f0<T<1,

Kol = supf lo(r)[%dr €T > 1.
t—1

1<t<T

[CF
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In what follows, we write ||v||,r instead of ||v{|g T for simplicity.

2.2. Operators. First recall the well-known orthogonal decomposition of L*(Q2) called
the Helmholtz-Weyl decomposition:

(7) L'Q) = L;(Q) ® G(Q), G(Q) = {grad glg € H'(Q)}.

Let P : L*(Q) — L2(9) be the orthogonal projection.
We define three operators A; (i = 1,2,3) as follows.

D(Ay) = H*(Q) N H,(Q);
Au = —(u+x)PAu for u € D(4,),

_JHYQ)NHy(Q) if N=3,
D(4s) = {Hﬂ(n) NHHQ) i N=2

Aoy = —alAw — Bgrad(divw) forw € D(4;) if N =3,
T —atw forw € D(Ay) if N =2,

D(As) = {b € H*(Q)|(curlb) X nlsg = 0 on 8Q} N HL(Q) if N =3,
¥ 7 ) {b € H*(Q)| curlblsq = 0 on 80} N HL(Q) if N = 2;

Ach = veurl(curld) forbe D(As) if N =3,
7 Vveurd (curld) forbe D(As) if N=2.
It is known that these operators all enjoy the elliptic estimates.

Lemma 2. Each operator A; (i = 1,2,3) is a linear self-adjoint mazimal monotone
operator. Moreover, there exist constants C; (i = 1,2,3) depending only on Q and the
physical constants u,x, o, 3,v such that the following estimates hold.

(2) |[u!|Hzm) < Cy||Aru|e for all uw € D(A1),
(27) lele(n) < O] 4aw| for all w € D(A4,),
(212) ||b||Hz(n) < Cs||Asb|l,  for all b€ D(As).

Proof. The linearity and monotonicity of 4; (¢ = 1,2,3) is obvious. For the maximality
and the elliptic estimates, we refer to [12] for Ay, [9] for A; and [11] for As. O

2.3. Abstract formulation. Here and henceforth U = (u,w,b) denotes an element of
H with u,b € L2(Q) and w € L*(Q) (w € L?(Q) if N = 2).
We introduce a functional ® : H — [0, 00] defined by

B+ X 2 & 2 é . 9 v 92 .
sU) =4 7 Vel + ZIVel® + Flldivelzs + 5l curb® UV,
% fU e H\V,

if N =3. When N = 2 we put || divwl||3; = 0 in the right-hand side. It is easy to see that

® is a proper lower semicontinuous convex functional on H and that its subdifferential
O% is characterized by

D(8%) = D(A1) x D(Az) x D(As),
9®(U) = (Ayu, Ayw, Agdb) for U = (u,w,b) € D(02).
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To formulate our problem, we first operate P to equation (1) in order to eliminate
the “gradient terms.” Then we can reduce the system (1)-(6) to an abstract equation
governed by a subdifferential operator:

8) )+ 62(U() + LU®) + BU®) = F&) in [0,T),
9) U(0) = U(T),

where
L(U) = (—~2x curlw, —2x curl v + 4xw, 0),
B(U) = (P(u - grad)u — P(b - grad)b, (u - grad)w, — curl(u x b)) if N =3;
1 (P(u- grad)u — P(b- grad)b, (u - grad)w, —curl (ux b)) if N=2,
F =(Pf,g,0).
Note that — curl(u x b) = (u-grad)b — (b- grad)u (resp. w(m(u X b) = (u-grad)b — (b-
grad)u) if divu = divbd = 0.

Now our results can be stated as follows.

Theorem 1 (existence). In the case where N = 3, there ezists a constant p; > 0 de-
pending only on Q and the physical constants such that if F € L*(0,T;H) satisfies
\|\Fllz2r < p1, then there exists a solution U to (8) and (9) satisfying

(&) Uec(o,T;V),

G) S, 88(U()), LW()), BWU() € L0,T;H).

In the case where N = 2, for each F' € L?*(0,T; H), there ezists a solution U to (8) and
(9) satisfying (i) and (ii).

Theorem 2 (stability and uniqueness). There exist positive constants p; and ps de-
pending only on Q and the physical constants such that if F € L*(0,T;H) satisfies
|Fllm2r < p2, then there exzists a unique periodic solution U as in Theorem 1 and if

there ezists a solution U € C([0,T); H) N L*(0,T;V) to (8) with the initial condition
U(0) = Uy for some Uy € H, we have

\T(t) = U@)\g < |06 — U0)|ge™t for all t € [0,T).

3. SOME LEMMAS

In this section, we collect some lemmas used in sections 4 and 5.
3.1. Some estimates.
Lemma 3. The following identities hold.
(v,curlw) for all (v,w) € H*(Q) x Hg(Q),
(v,curlw) for all (v,w) € H'(Q) x HY{(Q) if N = 2.
Hglglwllz + || div wl|2, for all w € Hy(£),
|| curlw]||? for all w € H}(Q) if N = 2.

(2) (curlv,w) = {

(@) [Vw|* = {



Proof. (i) The result immediately follows by integrating by parts.
(i) In the case where N = 3, (i) combined with the well-known formula

curl(curlw) = —Aw + grad(div w)

gives the result. If N = 2, the result immediately follows from the definition of the norm
IIVw|| and the operator curl. O

Lemma 4. Ifu € H-(Q) and v,w € H*(Q) then

((u - grad)v,w) = —((u - grad)w, v).
In particular, if w = v, then ((u - grad)v,v) = 0.
Lemma 5. There exists a constant C depending only on Q such that
ClIVull Vol 2|lo]i - if N =3,
Ol 2|Vl /2 [Vol 2ol Yp o N =2,
for all (u,v) € H'(Q) x H*(Q).

[|(u - grad)v|| < {

Lemma 6. There exists a constant C' depending only on Q such that

Cllull 2] 22 | Vo | wl] g i N =3,
|((u-grad)v,w)\s{ o e
Cllulull g Vo)l w2l s if N =2

for all u,v,w € H'(R).

For the proofs of Lemmas 4, 5 and 6, see [12]. We here note that Lemmas 5 and 6 are
also valid even if v, w are scalar functions.

The following lemma will be used to establish various a priori estimates in sections 4

and 5.

Lemma 7. Let y be a nonnegative absolutely continuous function on [0,T] with y(0) =
y(T), z € L*(0,T), w be a nonnegative function belonging to L'(0,T), ap > 0 and a; > 0
satisfying

W (6) + aoy(t) < [2(6)] + (o1 + w(B)yle) for ace. ¢ € [0,T]

If z # 0 or ay # 0, assume further that ||z||1,r < ao and that there ezists a positive
constant ay such that ||yl < as||2||l1,r. Then we have

sup 4(6) < (a2 +201+ aan) (14 ) ) el

t€f0,T) ag — [lwlly,z

Proof. For the case where w = 0 and a; = 0, see the proof of Lemma 3.4 in [5]. Here we
prove the case that w # 0 or a; # 0.

The mean value theorem says that there exists a ¢ in [0, T such that y(to) < |jy|1,7-

For the sake of periodicity, we may assume to = 0 without loss of generality. From the
given inequality we derive

0) < yO)exp (- [ (ao=ule))is) + [ exp ([ (o= wl) ) (1£(6) + axy(e)) e
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It is easy to see that

[t—s]

[wtrar =3 [ wiie s [ wieyde < (6= o]+ Dlwlhr < (¢~ s+ Dlwlir

j:l +-7—1 +[t_5]

for 0 <s <t < T, where [r] = max{m|m is an integer and m < r}.
Then we have

y(0) exp (- /0 (a0 - w(s))ds) < elllir|ly sz < agellhr 2l ¢

and

/: exp <“ /;t(ao - w(r))dr) (I£(s)| + a1y(s))ds

[¢] i ¢
< cllullsr (Z e~([t1-j)(ao—lw!h.r)[ (|2(s)| + ary(s))ds + f](]f(s)l + aly(S))dS>

j=1 i—1 [t
< e“w“l.T 1 11 (1 +aa )HZH
- 1 — e—(ao—|lwl1,7) 1d2 1,7
1
< (1 + ala2) (2 + ————-———-———) e“wlh’Tl'z”l,T,
ao — |lwlly,r

whence the result follows. O

3.2. Abstract result. To prove Theorem 1, we make use of the nonmonotone pertur-
bation theory in [10], which is applicable to the equations governed by a subdifferential
operator with a nonmonotone perturbation. In the framework of [10], the subdifferen-
tial operator could be time-dependent, nonlinear and multi-valued and so could be the
perturbation. In our case, however, it is only required that the subdifferential operator
is independent of time, linear and single-valued. For the convenience, we here give a
simplified version of the theory suitable to our case.

Let H be a separable real Hilbert space with the norm |- |3, ¢ : # — [0,00] a proper
lower semicontinuous convex functional and A an operator which is linear, self-adjoint
and maximal monotone in H. Suppose 7 and A satisfy the relation:

D)  =H, D(¥)=D(AY?),

Do) = { Al it e D),
00 ifue #H\ D),
D(8y) = D(A), 8% = A

Consider the following abstract periodic problem (AP) in H.
dv
hahd — : T
apyd P+ 0800 + BE) = F) i 0,7)
v(0) = »(T),

where B : D(B) — H with D(6y) C D(B) is a (single-valued) nonlinear operator and F
an H-valued function on [0,T]. We assume conditions (A.1)-(A.4) for ¥ and B below.



(A.1) There exist constants ko and g € (1, 00) such that ko|v|};, < ¥ (v) for all
v € D(9).
A.2) TFor every XA > 0, the set {u € H| |v|y + ¥ (v) < A} is compact in H.
(A.3) B is ¢-demiclosed, i.e., if v, converges strongly to v in C'({0,T}; H),
8y (v,) converges weakly to 8¢ (v) in L*(0,T;H), and B(v,) converges
weakly to £ in L?(0,T;H), then £(t) = B(v(t)) a.e. t € (0,T).
(A4) () $(0)=0.
(ii) There exist k € [0,1) and a nondecreasing function £ : [0, 00) — [0, c0)
cuch that |B(u)[}, < KIaw(o)l} + Lol (o) + 1) for all v € D(6Y).
(1) There exists a positive number ¢ such that
(=0 (v) — B(v),v)y + 6¢(v) <0 for all v € D(0%).
The following Proposition 1 is a direct conclusion of Theorem I in [10]:

Proposition 1. Assume that conditions (A.1)-(A.4) hold. Then for every function F
belonging to L*(0,T;H) there exists a solution v to (AP) such that

() veo(oThv),
G) 2, A(), B() € (0.7 H).

4. PROOF OF THEOREM 1

4.1. The case N = 3. We begin by considering the following auxiliary problem:

(10) T t) + 63(U1) + LU() = F(&) in 0,7,

(11) U(0) = U(T).

Lemma 8. For all f,g € L*(0,T; L*(Q)) there ezists a unique solution U to (10) and
(11) such that

() Ueo(o,T}v),
G) 5 68(U()), L)) € L0, T; H).

Proof. According to Theorem 1, for the existence we have only to see that the assump-
tions (A.1)-(A.4) are satisfied.

By the assumption on the physical constants, Lemma 1 and (ii) of Lemma 3, it follows
that there exists a constant Cy depending only on  and the physical constants such
that Co|U|% < ®(U) holds for all U € V. Therefore (A.1) is valid with ¢ = 2. By virtue
of the assumptions on €, (A.2) follows from Rellich’s embedding theorem. (A.3) and
(A.4)(i) is obvious. An easy calculation shows that

IL(U)|% < C1&(U) for all U € D(8%),

where C; depends only on Q and the physical constants. Hence we can take k = 0 and
£ = C; in (A.4)(il). We observe that, by Lemma 3, for all U € D(69)

18
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(), V) = ol = dxlenstunes) 2 sl = x (Il + 1194l ) = x|l

The above inequality together with the fact that (8&(U),U) = 2®(U) yields
(0@(U) + L(U),U)u > 60%(U),

where &y := 2u/(p + x). Therefore (A.4)(iii) is valid with § = 4.
_To prove the uniqueness, let U; and U; be two solutions to (10) and (11). Then
U = U; — U, satisfies
dU ~ ~ :
—d?(t) + 0®(U(t)) + L(U(t)) =0 in [0,T],
U(0) = U(T).

Multiplying the above equation by U and integrating over [0,T], we obtain
T

0= / C08(T(6) + L{T(), T(e)mdt > b f

0

S~ T i~
&(T())dt > 800 / () 3,
0

whence follows that U = 0 on [0,T]. This completes the proof. O

For any positive number R, define a bounded closed convex subset K of L?(0,T; H)
by

Kr = {G € L*(0,T; H)| ||G|4,.7 < R?}.

Let an arbitrary F' € Kg be fixed. For each G € L?(0,T; H) we denote by Ug the
unique solution of (10) with F replaced by F — G and (11). Hence we can define an
operator S of L?(0,T; H) into itself by

S :L*(0,T;H) 3 G = B(Ug) € L*(0,T; H).

We can show that the operator § is continuous as a mapping from $y into itself, where
Hw denotes L?(0,T; H) endowed with the weak topology. Moreover, if R is sufficiently
small, § maps Kp into itself. Since Ky is a nonempty compact convex subset of Hy,
Tychonoff’s fixed point theorem says that there exists a fixed point G of § in Kg such
that G = B(Ug). Then Ug turns out to be a solution to (8) and (9).

To show that the assertions on § are true, we need the following a priori estimates.

Lemma 9 (a priori estimates). There ezist positive constants M; (7 = 1,2,3,4) depend-

ing only on §) and the physical constants such that if U is a solution of (10) and (11)
then

(12) Sue HU)||% < My||F |3 2.1,
(13) 12U r € Ma||Fl\% 210
(14) t:;%]@(U(t)) < M3||F|% s

(15) 102U (NE2r < Mal| Flifar
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Proof. Multiplying (10) by U(t) and integrating over [0, 7], we have

(16) S +802(U(0) < 5 PO

Hence (12) follows from the fact that Cy|U|}; < ®(U) and Lemma 7. Then integrating
(16) over [t — 1,t], we obtain (13).
Multiplying (10) by 0®(U(t)) and integrating over [0, T], we have
d 1
(17) Z2U®) + 510U < IF@)E + C:12(U®),

where we use the well-known formula d®(U )/ = (0®(U),U)n (see Lemme 3.3 in [2]).
Since 28(U) = (0®(U),U)n and ColUl4 < ®(U), it easily follows that 4Co®(U) <
|6®(U)|%. Then we have

La(u(t)) + 202U ) < PO + CBU().

(14) follows from (13) and Lemma 7. Integration of (17) over [t — 1,¢] leads to (15). O

By Lemma 5, it follows that there exists a constant Cs depending only on ) and the
physical constants such that

(18) |B(U)|4 < C,8(U)%%18%(U)|g  for all U € D(5®).
Since F,G € Kpg, (18) and Lemma 9 imply that
|S(G )“H2T = “B(UG)||H2T <0 SFP]‘i( (t ))3/2H8¢(UG( Miar

< Co My MP||F ~ Gllyar
< 16MoM2* M, R®.

Let pg := (16M0M§/2M41/2)’1/2. It is clear that py depends only on Q and the physical
constants and S maps K, into itself.

Since L%(0,T; H) is separable, K, is metrizable in fiyy. Therefore it suffices to show
the sequential continuity of § in . To this end, let (G,) be a sequence in K,
converging weakly to some G € K,. For the sake of brevity, let U, = Ug, and
U = Ug. By Lemma 9, (U,), (®(U,)) and (8%®(U,)) remain in a bounded subset
of C([0,T); H), C([0,T]) and L%(0,T; H) respectively. Hence it follows that (L(U,)),
(B(U,)) and (dU,/dt) are also bounded in L?(0,7; H). Then it follows that (U,) forms
an equicontinuous family in C([0,T]; H). Besides the boundedness of (®(U,)) implies
that (U,(t)) lies in a relatively compact subset of H for each fixed t € [0,T]. There-
fore, by Ascoli’s theorem we can exact a subsequence (U,,) converging strongly to some
U* € C([0,T]; H). Without loss of generality, we may assume that

dU,,  dU*
dt dt
0®(U,, ) — 8®(U*) weakly in L*(0,T; H),

(

L(U,,) — L(U") weakly in L2(0,T; H),
B(U,,) — B* weakly in L*(0,T; H)

where we use the demiclosedness of d/dt, 0® and L.

weakly in L%(0,T; H),

)
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By much the same argument in the proof of Theorem II in [5], it follows that B is
also ®-demiclosed. Therefore B* = B(U*). In view of (10), U* must equal the unique
solution U. Then we have B(U,,) — B(U).

Since the above argument is independent of the choice of subsequences, the original

sequence (B(U,)) converges to B(U) weakly in L%(0,T; H). o

4.2. The case N = 2. The result follows straightforward from Proposition 1. To see

this, let B(U) := L(U) + B(U). It is easy to see that B satisfies assumptions (A. 1)—
(A. 4) Here we only show (A.4)(ii) and (iii) are satisfied. By Lemmas 4, 5 and 6 it
follows that

B < 3102(0) + CUTL +1)((V) + 1),

where C' is a constant depending only on {) and the physical constants. This assures
(A.4)(ii). By virtue of Lemma 4, a simple calculation gives (B(U),U)y = 0. By much
the same argument in the case of N = 3, it follows that (8®(U) + L(U),U) > §;®(U).
Therefore (A.4)(iii) holds for B with § = 4. a

5. PROOF OF THEREOM 2

5.1. The case N = 3. Let p = ||F||mar- If p < p1, we can construct a periodic solution
U satisfying sup,¢io 71 ®(U(t)) < 2M3p? as in the proof of Theorem 1. Take U as in the
assumption of Theorem 2. Then U = U — U satisfies
5 200 +82(0(0) = ~(BOW) - BUE),T@)x
From Lemma 4, we find that
(BOW®) - BUE),U(t)x

= ((@ - grad)u, @) + ((@ - grad)w, @) + ({4 - grad)b,d) — ((b- grad)u,b) — ((b - grad)b, @),
where U = (#,@,b). By Lemma 6, we get ‘

(BO®) - BU®), U(®)ul < C:2(UE)*2(T(2)),

where Cj is a constant depending only on € and the physical constants. Take p; > 0 suffi-
ciently small so that py < min{p1,doC5(2M3)/?} and ps = Co(do— Ca(2M3)*/?ps) > 0.
Then we obtain by (19)

(20) [U(t)|g < et |U(0)|g for all ¢ € [0, T).

The uniqueness of U follows from (20) at once. 0

(19)

5.2. The case N = 2. By much the same argument as in the proof for the case N = 3,
we find that U = U — U satisfies the following inequality.

(21) L10(0) + 248 - U E)ETE) <o

We show that if ||F||g2r is sufficiently small, then sup,co 71 ®(U(t)) is small. To this
end, we need some a priori estimates for solutions to (8) and (9). We can easily derive

sup |U(t)[y < M|[F ||, and |R(UC)]1r < M| Fllar

t€[0,T)

in the analogous way to the proof of (12) and (13).
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On the other hand, by multiplying (8) by 8®(U(t)) and Lemma 5, we get

22)  SeU()+Cau) < Py + (0 + R U0ROW) ) #U0)

where we use

270"
16

IB(U)|=|88(U)|x < C3* UL 8(U)Y? |68 (V)Y <
Noting that

02 (U) |5 + UE2(U)*.

|

HUOIERWUE) e < MM F 521

we can apply Lemma 7 provided that ||F||ga,r is small enough. Thus we find that
supsepo,r) (U(t)) < Lu(||Flm2,r), where £, is a nonnegative increasing function satisfying
£,(r) = 40 as » — +0. Therefore there exists a positive number p; such that p3 :=

8 — Cil.(p2)*/* > 0. It is now easy to show the uniqueness and stability of U, so we
omit the details. O
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