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Global solutions below the energy class

RACKRAREGEZZAAR FRYE 435 (Takafumi Akahori)

Mathematical Institute, Tohoku University

1 Introduction and Main results

In this note, we consider the system of Klein-Gordon-Schrodinger equations with Yukawa
coupling:

O+ Au = 2uu, zeR? t>0, 1)
Olv—Av+v = —|u?, zeR?Y t>0,

which represents the classical model of dynamics of conserved complex nucleon field u
interacting with neutral real scalar meson field v.

We are interested in the global well-posedness of the Cauchy problem for this system,
especially, when data do not have the finite energy.

Global well-posedness below the energy class is recently developed by J. Bourgain
13, 4] and J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao [5, 6, 7). In [12], H.
Pecher has proved that, if d = 3 and 1 > 81,59 > 7/10 with 1 + s2 > 3/2, then the
system (1) is globally well-posed for the data (u(0),v(0),v:(0)) € HSt x H2 x H%2™1,
His proof is based on the idea of Bourgain.

Our aim here is to extend his result, in particular, to the high dimensional case
d = 4. We obtain the following result: Let d < 4. Assume (4) for u(0) when d = 4. If
12> 51,82 >4/(8+2s2—d), then (1) is globally well-posed for the data (u(0),v(0),v:(0)) €
Hs' x Hs2 x H*27!. Qur proof is based on the [-method [5]. But we encounter the
complicated high-low frequency interactions caused by the system, which do not appear
in single equations such as the KdV and the Schrédinger equations (5, 6, 7]. To analyze
these interactions, we use the conservation of the energy represented by the Bourgain
weight (see the case (2-3) in the section 4).

Moreover, introducing the space wihch controls the low frequency part and the mod-
ified multiplier for I-method, we obtain the similar result for the massless version of (1)
which is the wave-Schrédinger system below (see Theorem 6.1 ).

0w+ Au = 2wu,
v —Av = —[ul?

where u and v are complex and real valued functions on R x [0, 00), respectively.
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The Klein-Gordon-Schrédinger system above is transformed into a time first oreder
system in the usual way [8, 12] and so, in what follows, we consider the following Cauchy
problem.

0+ AY = (p+ )Y, zeRY, t2>0,

KGS 'iatqs_(l—A)igb = (1_A>—§(
(KGS) $(0) = voc HA(R
#(0) = ¢o € H(

where both ¢ and ¢ are complex valued functions.
For (KGS), we formally have the mass and the Hamiltonian conservation laws:

(@) i2Rey = Yol L2(Ray. (2)

H(y(t), ¢(t)) = H (o, do), (3)
where
H(f,9) = 11 o, + 1910 o~ [ (9() +5@) (@) da

From (2) and (3), it follows that (KGS) is globally well-posed if d < 3 and s; =sy; =1.
Moreover, if d = 4, s; = so = 1 and

(SIS

(S4)
(G: )1

then (KGS) is globally well-posed, where Sy and G, 4 are respectively the best constants
of the Sobolev and the Gagliardo-Nirenberg inequalities:

Sallfll, 2 ey < V1 E2Rey

ollz2Rey < ) (4)

1
3

| o 2
HflEiszz(Rd) < Godll VfHLz R¢) Hf“io;&%d 74 0<o< T3 (d = 2).

Our main result is as follows.

Theorem 1.1 (Global well-posedness)
Let d < 4, and assume (4) when d = 4. If s; and sq satisfy that

4

1> > e
= 51552 8+232—*d

then (KGS) is globally well-posed.
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Remark 1

(i) From the Lemma 1.2 below, we find that (KGS) is locally well-posed under the
conditions of Theorem 1.1.

(ii) As stated above, in [12], H. Pecher has proved the following: Ifd = 3 and 1 > s1, 82 >
7/10 with s; + sg > 3/2, then (KGS) is globally well-posed. Our result is an extension
of [12]. We briefly refer to the Pecher approach in the section 2 as the known results.

To prove Theorem 1.1, the Bourgain spaces are essential and therefore we first intro-
duce them. After that, we give Lemma 1.2, which will play a crucial role for the proof
of Theorem 1.1.

Let U and V denote the free evolution operators of Schrédinger and Klein-Gordon

. . . i .
equations, respectively, i.e. U = e'® := Fgle_mﬂz}} and V = ¢t(1-8)2 .— F{le‘t@fz

where (§) := (1+¢ |2)% and F,, ;! denote the Fourier and the inverse Fourier transforms
with respect to z, respectively.
We define the Bourgain norms and the Bourgain spaces for Schrédinger equations by

ullxsie = f[(1 = A) (1= 87)2U(=)ullzz ,
and

A= {“ € S'RY) | luflxse < OO}

were S’ denotes the class of the tempered distributions. Let L be an interval in R. We
define the time-localized space of X% by

X$(L) = {u :R% x L — C : measurable | "4 € X% s.t. &, = u} :

and its norm by

[ullxsa(ry = inf - |ullxse.
uE‘X ’
u L:’u

Similarly ‘we introduce the spaces for the Klein-Gordon equation.

ollyse = {I(1 = A)3(1 = 87)2V (=)ullz,,
yse .= {v e S'(R™Y) | [[uflyse < oo} ,

Y*¥L) = {v 'R x L — C : measurable } T eySe st U = v} ,

[ollysezy = inf_|[ollys.a.
vl =v
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By direct calculation, we find that
(1= A)3(1 -8} EU(—)u=U(=)F (&) (r + €7 Faylu]] in SR (6)
and
(1= A)E(1 =828V (= v = V()FE (7 + (€))° Faylv] in S'RTY. (7)

From (6) and (7), it follows that

lullxse = €Y (7 + [61)* Faglullizz (8)
and
follyse = €Y7 + (€0) Faalvllzg (9)
Now we set
lull s = {11 = AYE(1 = 8) 3 Uull 2, = 1(€)°(r = 16%)* Foulullzz
ollyse = {[(1 = A)F(1 = 8F) 2 Vullra, = [I{6)° (T = (€))* Faulvllrz
and

XS,C! .

Il

{ue s'®H*Y) | ulxee <0},

2 = {ve SR ] Jullyse < oo}
Then we easily see that if 1 € X*%, then ¥ € X>* with the identity
[l xoe = [[#lx2e (10)

Also |[@|lysie = ||¢|lys.. Further time-localized versions of X2 and Y>% are defined by
the same manner as above. |

To state Lemma 1.2, we introduce the time smooth cut-off funciton: Let p € C*(R;[0,1])
be such that

(1 <
p(t)”{o if ¢ >2

Then we define the time smooth cut-off function by pr(t) := p(t/T).
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Lemma 1.2 (Bilinear estimates with explicit time power)
Let 0 < T < 1. Assume that s, and s, satisfy that

d
1>s 20, 1232>max{0,1——2—}, §1— — >

and 6, gsatisfy that

~ 3 d
9<min{1+8—2—§, 1+fZ,:9_1, 1}, 0<min{—+sl—§3——z, 1},

2 4 2 2
Then there exixt o, 5 > 1/2 such that

[(orw)(oro)lx a=s < OT [ullxos o]y s,
11 = &) 72 [(prw) (7)) |y sgo-1 < CT[ul| %0

(11)
(12)

where both C and C are independent of T. In the R.H.S. of (11), we may replace Y 2:#

with Y528

The proof of Lemma 1.2 is similar to [§].

This note is organized as follows. In section 2, we introduce the known results. In
particular, we show the key bilinear estimate for the Pecher approach. In section 3, we
introduce the smoothing operators and the modified energy of (KGS). Here we give the
increment of the modified energy, which is stated in Proposition 3.2. In section 4, we
prove the Proposition 3.2. In section 5, we prove the Thorem 1.1. Finally, in section 6,

we consider the massless case, the wave-Schrédinger system, briefly.

2 Known results

As stated above, H. Pecher proved the following theorem using Bourgain’s idea (3, 4].

Theorem 2.1

Letd=3 and 12> s1,s3 > 7/10 with s1+ so > 3/2. Then (KGS) is globally well-posed.

In this section, we only show the key bilinear estimate to prove Theorem 2.1. For the

proof of the theorem, see the original paper [12].
The key estimate is the following.

Lemma 2.2
Let My > 2, My > 0. Suppose that

sppilf|c {7 <l <2 f, sl c {22 < g <o ).

Then

=8

-1

ml

M,
M

where C is a constant depending only on the space dimension d.

NUAVliLzrs < C=2 £l 13 Il 2

= i
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To porve the Lemma 2.2, we need the following.

Lemma 2.3 (Co-area formula)
Suppose that P € C®(R% R) and f € C®(R%;C) with VP 0 on supp f. Then

do
[ F@)6P@)e = /{ oo T BT

Now we give the proof of Lemma 2.2
Proof of Lemma 2.2.

In what follows, we denote all constants depending only on the space dimension d by
C.
First note that

UHOWVE) = Ft | R[]« O R, [g])
Then, by Plancherel’s theorem with respect to space-time, we have

IUHVlz = || [ PRl =00 |,
THE

= |||, PRl - )7 [eer-een] e,
€1

|
r
|
|

1212
= | [, FlEFE - e+ 6P - - ede| @)
&, llz2r?
Moreover, by Lemma 2.3 and Schwartz inequality with respect to do,
| : do |
RHS of (13) = || F z19)(§ —
R R - W
< 18l ([ 1ml@Ps [g}(&—&)\z—l—dof (14)
- B * VP& 112
where
P(&1) = Pe,(&1) =7+ [&]* = (£ - &),
and
B=Be = (Ple) =00 {2 sle somfn { M < - <aam).

Here we have, for any £ € B,
M,

|

1 IVP(&)| < 5M;

<206]-1< ‘251
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and thus
V2, Lo ( 2 g do )%
R.H.S. of (14 —|B Fe Fe - —_——
of (14) < Mﬁ‘ ) ([ 1R Elae - 6P epre s
< oty (/ FAEPIAE - )P g ) | 9
‘ L2L2
By Lemma 2.3, R.H.S. of (15) is equal to
c2 ( [, 1Rl - e + el - <s—el>>dsl)
Mfl R, L2L?
M 2
= C—2rIfllz2llgllzz,
M?
which completes the proof. a

At the end of this section, we remark that it seems difficult to apply the key estimate
Lemma 2.2 in the high dimensional case d > 4. Indeed, M; and M, repesent the freuency
supports and therefore differential. In Lemma 2.2, if d > 4, then the difference of order
of M, and My is greater than 1, that spoils the same approach as H. Pecher [12].

Thus we employ the I-method without the Lemma 2.2, where I-method is essentialy
same as the Bourgain’s idea [3, 4].

3 Smoothing operator and Modified energy

In this section, we introduce the operator for the I-method and define the modified energy
which makes sense for the functions below the enegy class.
Let m%, € C*®°(R%[0,1]) be radially symmetric, non-increasing and

s _ 11 if !§|SN
my(§) = <%> T £> 2N (16)

We set I§, := fglmf\,}} and I} := 1.
The properties of I3, are stated in the following proposition.

Proposition 3.1 (Properties of I})
Let 0<s<1,2< N,s €Randa,B €R. Then we have

R Fl st (Rey < 1 prsr (Rays (
1 Fll Ry < 2N 7201 Fll o Ry (18
s Ray < IR SF] H1(Rey,s (
11l grsRey < N F I3 ey 1N F L2 (Rey + N f L Ry (
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Remark 2
(i) By (18), we find that I3, is a smoothing operator of order 1 — s.

In what follows, we assume that sj,s2 < 1.

We simply write I; := I3} and its Fourier multiplier m; := my. Also Iy := I} and
ma 1= M.

We define the modified energy of the Caucy problem (KGS) by

Ev2(f,9) == H(I1f, I2g). (21)
For the space-time functions u = u(z,t),v = v(z,t), we simply write
E(u,v)(t) = E(u(t),v(t)).

If f € H% and g € H*2, then, by Proposition 3.1, we find that this modified energy
is finite, although the Hamiltonian H is not finite for s1,s2 < 1.
The increment of the modified energy is estimated as follows.

Proposition 3.2
Letd <4, N >32, L:=[to,t1], @,8>1/2,e >0 and (¢, ¢) be a H* x H®2-solution of
(KGS) on L. Assume that1>s; > 1/2,12> s2 >0 with s1 +s2 > 1. Then we have

E12(¥,¢)(t1) = E12(¢,¢)(to)
1 s s | 3 1 S S ! 4
< o 3= (I vllxsew + 19w + gz (MRl em + I56lvsoun) }

whrere C, is independent of L = [tg,t;] and N.

The proof of Proposition 3.2 is given in the next section.

4 Proof of Proposition 3.2
In this section, we prove Proposition 3.2.

First note that, for any functions u € C(L; H2(R?))NC'(L; L*(RY)), v € C(L; HY(RY))N
CY(L; L*(R%)), we have

O H (u(t),v(t)) = — 2R /Rd atu(z,t)Eq(s)(u,v)(a:,t) dt

-2 | (1 - A)38,0(z, ) EqB O (u,v)(z, t)dz, VteL  (22)
d
where

EqS) (u,v) 1= idu + Au — (v + D),
Eq(KG)(u,v) =10 — (1 — A)% -(1- Ar%(i“‘z)'

)

Now let (1,¢) be a solution of (KGS) on L := [to,t1]. By the continuous depen-
dence and standard approximation argument, it is enough to prove Proposition 3.2 for
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the solutions (¥, @) with ¥ € C(L; H*(R%)) N CY(L; L?(RY)) and ¢ € C(L; HY(R%)) n
CL(L; L*(R%)).
Then, since E12(¢, ¢)(t) = H(L19(t), [2¢(t)), by (22) and using the equations,
Ey2(¥,9)(t1) — E12(¢, ¢)(t0)

_ / B, Ey 2 (0, ) (t) dt

= 20 [ [ ARG {Rle+] - (o + Tdi) (23)
29 [ | Te+00l {(Lle+PW - e+ TAIv}  (20)
+29 [ [ (1= &)k (Rl - 11} (25)
w28 [ [ (0= A ER(P) {R(0) - 1), (26)
Here, the integrals (23) and (25) are cubic and therefore we want to bound them by
iz (Eblne + [ Bollyase)® (21)

On the other hand, since the integrals (24) and (26) are quartic, we want to bound them
by

1
7 (1%l xnew + 1 28llyusy)* (28)

The order of differential in (25) and (26) are respectively less than (23) and (24) by 1.
Therefore they are easier and we only consider (23) and (24). Moreover, to stress our
devise, we concentrate on the estimate of (24).

Thus we consider the integral (24) here. Since the our aim is to show the same
bound for all dimension d < 4, we may only consider the case d = 4. The other cases are
easier. In particular, In the 1 dimensional case, by good bilinear estimate Lemma 2.2,
we probably obtain the better order of N and thus Theoreml.1 will be improved.

We denote a smooth dyadic resolution of unity in R? by {n}3%,, which has the
following properties: m € C*°(R%[0,1]) (k € NU{0}), suppmno C {|¢] < 2}, suppnx C
{2F-1 < |¢] < 281} (kK € N) and

> omk(€) =1, VE e RY,
k=0

Now let us consider (24) in the 4 dimensional case. By Plancherel’s theorem in space,

) me) N\ m)
@ = 23 /g amta. <m1<sl>mz<sz> 1) or Ea)ma(Ea)
X Fo[[) (€1, 8) Fu[lo9 + I@](€a, ) Fe[[19)(&3, ) Fu [ T2 + Log) (€4, t) (29)
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where / denotes / . d€3d§dE.
§=§12=E34 R? %

§=¢1 +€2 €364
In the usual I-method, we start the analysis from now. But, to overcome the difficulty

appearing later, we further take the time Fourier transform. So, take arbitrary extensions
W1 € X5 ¢y € YVP such that ¢y|p = Ny, ¢a|r = ¢ and replace them in (29).
Moreover insert the characteristic function xy (observe that we can not use the time
smooth cut-off function) and use Plancherel’s theorem in time . Then we have

R.H.S. of (29)

_ 25 mi§) ma (§)
=7 /f “h2=tse (ml(fl)m2(§2) 1) my(€3)ma(&s)

TET12=

X Fot[01](€1,71) Futld2 + b2) (€2, T2) Fu t[U1] (€3, 73) Frt[XLb2 + XLb2) (€4, T4)

o0

<2 )

4
11 7, (&) {Ma My | Py [} (6 m) | [ P2 + B2l (62,72

£=£12=E€34 <

k1,k2,k3,kq=0" r=Tip=7134 J=1
X | Faul1)(€3,73)] | Fatlxréz + xr02) (€4, )| } (30)
where / = / / and / is defined as same manner above.
5:51122133;1 §=612=€34 Y T=T12=T34 T=T12=734
Further we put
my(§)
My =M 81 e 7 )
1 1(& 51 62) ‘ml(gl)m2(§2) |
m1(§)
My = Mo(€, &3, =,
? 2(8, 65, 84) mi(€3)ma(&q)

and {n, }°_g is the dyadic resolution of unity in }jo.
We split the different frequency interactions into four cases, according to the size of
the parameter N in comparison to the 2%i:

2 ZZZZ

kika,k3 ks  (2-1) (2-3) (2—4)
where
(2=1): N > 2ki+2 gka+2 ~ and kg kg €NU {0}
(2-2): 2M+l > N > 2ke+2 okst2 okit2 and Ky > ky +3
(2—-3): 2ftl > N >oki+2 gkst2 okit2 and ky > k) +3
(2—4): otherwise

Note that, by 7,, each variable §; (j = 1,2,3,4) is restricted to the annulus {2ki—1 <
€] < 281}

In the case (2-1), since [£1] < 2% < N/2 and |&;| < 22! < N/2, we have €]
|€1 + &2| < N. Hence M) = 0 and the integral vanishes.

i
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If 2% > N, then, from the relation

we can derive the factor 1/N exchanging the differential (—A)%. In the case (2-4), at
least two frequencies are greter than or similar to N and thus this case is harmless. So, we
omit the estimate of (2-4). In the other cases, only one frequency is so. In particular, the
case (2-3) contains the most complicated situation. So, for simplicity, we only consider
the case (2-3).

Since 0 < mgy(&2) < 1, by trivial inequality,

B gzl((é)) - 1‘ = mzt&) =¢ <%—}:fi>l )

Moreover, clearly we have My = 1.
Hence, using the relation 1 ~ |&]/2%2 < 1£|/N, the considering integral is bounded
by

Z /5 £12=E34 an {]Fmt "Vl (5177-1 ’\52' l]:xt[ng ‘|“CP2 (52’7'2)

T=T1p=T34 J=1

I}—a:,tw)l] €3, 73)] | Frelxrda + xrd2](€a, )|} - (31)

As stated above, we can not derive the expected factor 1/N 3¢ directoly. Our idea to

overcome this difficulty is to compare the low frequency size to N%, i.e. we split the case
(2-3) into two cases:

2= 2.+ )

(2-3) (2—3—1) (2-3—i1)

where

(2-3—i): (2-3) and 2mex{krkska}+3 > N3
(2-3—4i): (2-3) and N7 > gmex{kukskal+d,

In the case (2-3-i), we have |§;| ~ 2% > Nz for some j € {1,3,4}. Hence we derive the

additional factor 1/N %"E, where —¢ is necessary for removing the characteristic function
xL (cf. Lemma 4.2 below). Thus this case is harmless.
We consider the case (2-3-ii). In this case, we have

6 max {(r1 + [61]%), (r2 £ (€2)), (73 + &%), (ra £ (€4))} > |&a]. (32)
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Indeed, since 2%t > N > 22mex{kikska}H8 we have |€]2 + |€2 + |&] + 1 < 4

92(max{k1,k3,ka}+1) < 92max{k k3 ke}+4 < '1'1§N < _}igkz—l < %Ing and thus

dmax {(r + [€1]°), (r2 £ (&), (3 + [€5[%), (74 % (&)}

> |+ &P - &)+ |73 4 1€31%] + |7 — 73 £ (£4)]
> |n+lalP+(r—nE (@) - (m+ 162 - (r - £ (&)
= |[a]® £ (&) — |&)% = (&)

> 6] — (&) + |62 + (€] + 1)

> ool - 11l = >leal

Hence (32) follows.
Then the considering integral, which is subcase of (31), is bounded by

4
C C
< e 3
N%‘E( Z /5:&12=634 Illnkj T NiE /52512=5s4 ) 139

2-3—ii) © r=Tig=Tgq J= T=T13=7T34

where - -+ denotes the integrand

max {(r1 + [&2[2), (72 £ (€2)), (75 + [€a%), (ra = (€4))} 2077

X {|Fo 1] (€, m)| €2l | Fapldz + Bal (2, 7o) | | Fa e [01)(s, 7o) | Fat Xz b2 + X2.02) (€4, 74) |} -

Then, deviding the integral according to the maximal Bourgain weight and using the
Lemma 4.1 below, we obtain the bound

C

gl Y EOM CA L

This implies the expected bound (28) and hence Proposition 3.2 follows.

Lemma 4.1
Let o, > 1/2 and € > 0. We consider the following integrals.

)

/€=612=534 (11 +1€1|2)309) \Fe il |E2] | Faild + Gol| | Fap 1] [Farlxré2 + X12]

/‘52512=€34 | Fo eln]] 1€l (72 £ (€2)) 279 | Fo sl + Bl | | Fu 1)l | Frlxr o + xLé2)!,
/5=512=534 \Feilrll 162l | Foiloz + d2)| (73 + €512 20-%) \Foilrl] | Foilxeoe + xp02]

/;:mzm (Foaltn]l 1€2] | Faelda + Bal| | Felr)] (s £ (6)) 307 | Fralxrdn + X202

TET12=734

Then all of them are bounded by

Clivrlxralldal®rs

where C is independent of L := [tg,t;] and N.

)
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Lemma 4.1 is a direct consequence of Sobolev’s embedding theorem, Strichartz type
estimate (see [8], Lemma 2.4) and the characteristic function lemma below.

Lemma 4.2 (characteristic function lemma)
Let s€ R, e >0, @ >1/2 and L be an interval in R with the length |L| < 1. Further let
X1 be the characteristic function on L. Then we have

Ixzull oy < Cllulxee, (34)

Ixzolly o 3-c < Clivllyse. (35)

where C depends only on € and . We may replace X and Y with X_ and Y_, respec-
tively.

Proof of Lemma 4.2.
We have, for any o > 1/2,

ekl 5o < Cliblisg (36)

for some constant C' > 0 depending only on ¢ and a. This inequality is analoge to [11]
Lemma 3.2. From (36), we have

Ixzulgese = =231 -0)EU(=)0au)| , ,
{ s | 1

) ]

£ L2
|

< Cll|(1-a)zu(- |

< o|a-aiu )uIHm%

= CHU”XS,Q.

Similarly, from (36), we have 1iXLvHYs,%—£ < |lv]lysa.
Hence we have done. O

5 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We assume the conditions of Proposition 3.2 For
simplicity, we only give the proof for the dimension d = 3,4. In the case d = 1,2, we
need some minor modifications.

Now we give the proof for d = 3,4. Set

Ar2(8) = [T )] g gey + 1 20Ol
Then, by Proposition 3.1 (18) (we also use (17) as || Ta¢(t)lz2 < ||¢(¢)l12.),
Ara(t) < 2N ()] s Ray + AN 6(E) ] a2 Ry
< ANTTII ) ((8)| oy ey + 198 e ) (37)
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In particular, we have
A1 2(0) < 4CyN1-min{s1s2} (38)

where

Cp:= WJOHHs] (R4 + H¢OHHS2(RG’)'

Now let (¢, ¢) be a solution of (KGS) on L := [ty,tg + 6]. Then, by Lemma 1.2, we

250 —
§—+—f—2—d, there exist «, 8 > 1/2 such that

find that, for any 6; 5 < 1

2
11l xtary + 1120lly1s(z) < Codra(te) + Cpo%2 (Hh’lﬁl\xm(m + i|12¢Hyw(L)> (39)

for some C, C’,’J > 1 both independent of L and N, where p is an arbitrary fixed time
smooth cut-off function introduced in the section 1.

Then, consider the quadratic equation z < C,A; 2(tg) + C;)(S@lv?:c? By the continuity
of z = z(d) := [l x1az) + [[L28]ly1.5(1) in 6 (o is fixed), we have, for any v > 1,

HIﬁ,/}HXLa(L) + H12¢Hy1,ﬁ([,) < 2vC,A12(t0), (40)

if we take
1
6 < (4I/CpC;)A1’2(t0)) 12 (41)

Moreover, by Gagliardo-Nirenberg inequality (and using the condition (4) if d = 4),
we find that

E12(0,0)(t) < Co(Ara(t))? (42)

for some Cjj > 1 depending only on {[¢g{| 2(Re). Also, we find that

A1o(t) < Cy/E1a(,6)(t) (43)

for some C > 1 depending only on ||3ql| 12(Re)-

We show that the local solution of (KGS) can be continued until any given 7" > 0,
which completes the proof of Theorem 1.1.

For this, let us make the following observation. We first assume the following:
Assumption : For any given T' > 1, there exists a solution (¢, ¢) on [0,T] such that

Alyz(t) < QALQ(O), Vit € [0, T]
for some constant 2 > 0 determined later.

Now, for fixed v > 1, we set

1

0y = (4VCpC;)QA1’2(O))_ L2, (44)
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We may assume that x := T'/§; € N by the suitable choice of v. Then we set L;
[(1-4)8,56] ( =1,2,---,k) and thus [0,7) = Ly ULy U--- U L,. Moreover, we may
assume that g < 1. Indeed by Proposition 3.1 (19), HgbgHHsg < Hadollgr < A1 2(0).
Thus, if [|@o|g+2 < 1, then take v > 1/|/¢p|| =2 and otherwise, automatically &y < 1.

On each interval L;, we have (39) replacing L with L; and A; o(tq) with Ai12((j—1)0)
which is bounded by QA 3(0). Thus, from (41, 40), it follows that

Il xrery) + [ R2@llyiew,) < 2w0C,Q412(0) (Vi=1,2,-- k). (45)
Then, by Proposition 3.2

Evo(4,0)(T) = Er2(¢,¢)(kd)
= F12(%,0)(kd) — E12(¢,0)((k — 1)6)
+E12(¢,8)((k = 1)8) = E12(1, 9)((x — 2)6)

+E12(¢, 8)(0) — E12(%,9)(0) + E12(¢, ¢)(0)
1

, 1
= o {F=os+ .|

1 1
+Cx {N1—5 Q(Ly)® + N%_eQ(Ll)Ll} + Ev2(v,9)(0)  (46)

where Q(L) := 1Yl xre(r) + HI2¢HY1’5(L)-
By (45), (38) and (42),

R.H.S. of (46)

1
= (20,0 412(0) ) + Ci(41200)7

s (WO, (4G N mminterea))

. 2
+ Ngl__s (2vC,Q)* (4CON1‘““{S“”}) } + Cp(A1,2(0))%. (47)
2

Since, by (44) and (38),
1 1 1-min{sy,sy}

T - 1
8— = 71(41/0;)0;)9/41,2(0))91’2 S T(16VCPC;COQ) 91,2N 91'2
0

K =

R.H.S. of (47)

1—min{s;, 241 | —(2-¢
+2560§(ucp9)4N( o ””( “1,2) (5 )}+05(A1,2(0))2. (48)
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Here, by (43), we have (4; 2(T))? < C~’2E1’2(w,¢)(T) and thus, in order that A, o(7T) <
A1 2(0), we need that

Er2(¥,¢)(T) < R.H.S.0f(48) < g‘(Al,Q(O))2- (49)

For this, choose {1 such that

Q> Cy/2c. (50)

Then it is required that

2 1 1—min{sj, T ot ) (1=
2% > TC.(16vC,C)CoQ) 72 {SQCO(VCPQ)SN( for 52“( *el,z) (1=¢)
9 4 (1-min{s1,sg})<2+9—l——>—(%—5)
+256Cy (vCY)* N 1.2 . (51)
To realize (51), all powers of N must be negative, i.e.
(1 — min{sy, s2}) (1 +~ b—l—-> -(1-¢)<0 (52)
and
: 1 3
(1 —min{s;,s2}) {2+ — ]| =—¢] <O. (53)
612 2
Then, taking N sufficiently large, we realize (51). Note that
: o1 . 1 3
(1 —min{s1,s2}) |1+ 57— ) - (1—¢)— |(1 —min{s;,82}) (2+— ) - [ = —¢
01,2 91’2 2
1
= min{sy, sa} — 5

Moreover recall that we are assuming that 1 > s; > 1/2 and 1 > s > 0. Thus if
1/2 > sg, then we need (53), i.e.

(1 = min{s1, s2}) <2+ 0—%) - (g «—a) —(1-sy) <2+ 911—2) - (; —g> <0,

Since we can take 6, o and ¢ arbitrarlily close to gﬂ—%’f’—d and 0, respectively ( taking both

« and G close to 1/2 ), we find that we need at least that sy > 1/2, which is impossible.
On the other hand, if s > 1/2, then (52) is required. For this, we need that

4

in{s1, 89} > o,
min{s1, 82} > g0

which is the condition of Theorem 1.1.
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Hence, we obtain (49) if we take s1, s2 as in Theorem 1.1 and N so large that
02

l-min{s;,s 1+ ) —(1-
tmmintes sz (1egls )~ 5){ L e

_1
TC.(160C,CLCo0) 12 3zco(ucpn)3J <

and

N(l—min{sl,sz})(Q-{—e—lsz—)—(%——5) { 2

1 Q
TC*(161/C,,C’F’,COQ)91|2 25603(116’,,9)4} < ZE’E (55)

L

From the above observation, we determine the parameters 2, s1, 53 and N as in (50),
Theorem 1.1 and (54, 55), respectively. Then we show that the solution (1, ¢) exists on
[0, T] for any given T > 0 and satisfies that

(&) s (Ray + ()] irsz (Rey
< ol Lzrey + QA12(0) (S 1Yol L2 Re) + 4CoNl“mm{3"”}) : (56)

which completes the proof.

Note first that, by the locally well-posed result, there exists §; > 0 such that the
solution exists on {0,0;]. On the other hand, if we have the bound (56) at the initial
time, we can extend the existence interval by some length d5.

Now we set

0 = min{éo, 51, 52} (57)

Then, taking v sufficiently large, we can take §, = &y and therefore Kk = T/6, € N. By
(41, 40), we have

Q(Ll) S QVC'OALQ(O) S QVCPQALQ(O). (58)
Then, by the same argument as above,

Er2(v,¢)(67)
= E12(¥,9)(6%) — By 2(¥,9)(0) + E12(v, ¢)(0)

1 . .
< C.(412(0))° { (2w, (0o o)

1 . 2
+ ——(2vC,0)* (4CON1"“‘“{31’32}> }+05(A1,2(0))2
N2~°¢

< KCL (A1 2(0)? { L

Nl-e

(2vC,Q)° (4G NP~ min{onea})

1 . 2
+ - (2I/CPQ>4 <4CON1—-mln{81,SZ}> } + C(/)(ALQ(O))Q
N27°¢

1 . 1—mi , 1+ ) —(1-¢
< TC*(lﬁl/C'pC;COQ)f’L? (A1,2<0))2 {3200(1/099)3]\7( min{s; 32})( +91,2) (1-¢)

1—min{sy, 241 (3~
+256cg(uc,,9)4N( { ”2})< +91v2) G E)} + Ch(A; 2(0))2. (59)
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From the choice of parameters €2, s1,s9 and N (cf. (50), (54 , 55) ), we have
A12(07) < QA1 2(0) (60)

and thus, by Proposition 3.1 and the L%-conservation law, we have the bound (56) for
the time t = 6*. Hence we extend the existence interval to [0,25*].
Next we consider E} 2(v, ¢)(26*). By (60) and the same way as above, we have

A;9(26") < QA1 (0)

and we can extend the existence interval to [0, 36*].
‘We can continue this procedure until the time T and thus we have shown that the
solution exists on [0, 7] for any given 7' > 0. We have done., O

6 Further result

In this section, we consider the wave-Schrodinger system below, which is the massles
version of the Klein-Gordon-Schrédinger system.

0w+ Au = 2ou,
Ov—Av = —|ul?

where u and v are complex and real valued functions on R% x [0, 00), respectively.
As the Klein-Gordon-Schrodinger system, this system is transformed into a time first
oreder system

WO+ Ay = (p+¢)Y, zeRY, >0,

06— (-A)1¢ = (=8)73(YP), zeRY, t20,
(WS) $(0) = o, r e RY,
¢(0) = oo, z € RY,

where both ¢ and ¢ are complex valued functions.

The main difference from the massive case (KGS) is the treatment of the low frequency
part. Indeed, we no longer have the L2-bound for the wave equation and therefore we
have to work with the homogeneous Sobolev spaces H® (s < 1) in order to show the
global well-posedness. At that time, since it is not true that ||g|lz. < I3 9l 41, the
bound for the modified energy does not imply the one for the H*-norm of the solution.
To overcome this difficulty, we introduce the space Q%°. We set

s € it jgl <,
W (E) :={ IEIIS " ‘1l_<_i£1, (61)

and define the operator D*° by

Fo[D*P£)(€) 1= w* (€) Fx[](€). (62)



42

Let Z(RY) = {f € S(RY) |[(D*F[f])(0) = 0,V € (NU{0})? }. We find that 2’ = §'/P
where P is the space of all polynomials. We define the space Q25°(R%) by

QSb(RY) = {f e Z'(R%) jDS»bf e L2(Rd)} . (63)

Then we find that || f|jqs: = | D*!f||zz ~ [[I% fllz: and thus we can prove the global
well-posedness below the energy class. Moreover, introducing the modified multiplier for
I-method, we can prove more general result.

Let mi’f?M € C®(R%\ {0};R) be radial, non-increasing and

(Mlgh)P=t i [ < 1/M,
s,b . 1 if 1/M <|¢| <N,
mN’M(g) - smooth if N < |¢] < 2N,
(N/lgnt—= if 2N < ¢,

We define the operator I]S\;?M by

Foll3 F1E) = miy o (O FolF1(E). (64)

In particular, we define I}\;le = f.

7b }
Note that we have [|I3 fll g1 ~ [[fllqse = | Db f|ipe.
Then, with some low frequency analysis, we obtain the following result.

Theorem 6.1 (Global well-posedness)
Let d = 3,4. Assume (4) when d = 4. If s; and sy satisfy that

4
> S 5
12 51,82 > gm0, (65)
and b satisfies that
1 1
bS§(3*Pd) (d=3), bS§(5—2Pd) (d=4), (66)
where
B—dZ+32-(8-d) 0 if 812 gy
dq ‘= 4 s Pd = i+d~8 if 4 >S>L )
§1 8+qg4—d 1 9—d

then (WS) is globally well-posed for the data (g, ¢g) € H*(R%) x Q2°(R%),
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