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Approximation of a Reaction-Diffusion Equation with a Nonlocal Term
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1 Introduction.
We consider a scalar bistable reaction-diffusion equation
(RD) eus = €Au+ f(u)—v, t>0, z€q,

under the Neumann boundary condition

(BC) g—g— =0, t>0, €0
Here v is an order parameter while v an additional parameter (acting as inhibitors).  is a
smooth bounded domain in RY (N > 2) and n stands for the outward unit normal vector
on the boundary 0€). The nonlinear term f is assumed to be the negative derivative of a
smooth double-well potential W: f(u) = —W'(u). A typical example is f(u) = u — u®.
The parameter ¢ > 0 is supposed to be very small, and we intend to study the problem
above as the singular perturbation problem.

We will treat in this paper a situation in which the spacial average of the order
parameter is preserved:

1 f ,
u(t,z)de =m (constant), ¢>0

(PP) GIEA

?

L.e., a case where v in (RD) is given by

(NL) )= 7 [ ftutea)) de

When ¢ > 0 is very small, the solution u(¢,z) of (RD) with an appropreate initial
condition creates a sharp transition layer with width of O(¢) and it is expected to move
according to some motion laws, called interface equations. Qur purpose of this paper
is (1) to derive interface equations from (RD); and (2) to investigate how solutions of
interface equations evolve.

Remark 1. From a variational point of view, the equation (RD) is characterized as the
L?(Q)-gradient system for the energy functional of van der Waals type

, 1
E“(u) ::/Q-;—IVuVJrEW(u)dx

subject to the constraint (PP), and the nonlocal term v is regarded as the Lagrange
multiplier (see [2] for example).
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2 Derivation of interface equations.

Throughout the remaining part of this paper, an interface is meant to be a smooth,
closed, N — 1 dimensional hypersurface emmbedded in @ C RY. We will derive some

interface equations from (RD) by the method of matched asymptotic expansions (see [9]
for more details).

2.1 Preliminaries.
We now present precise assumptions on f and prepare some notations for our problem.

(A1) The function fis C* on R and the curve f(u)—v = 0 consists of three sub-branches
of solutions

€™ = {(wv) |u=h~(v), v € I = (5, 50)},
C* ={(w,v) |u="h"(v),v € IT:=(-00,0)},
and A
CO={(u,v)ju=h)vel’ =" nI1t=(v,7)}
satisfying f'(h%(v)) < 0 (or equivalently A% (v) < 0) on I%.
(A2) For each v € I° it holds that A~ (v) < h%(v) < AT (v).
(A3) For each v € I° we define

At (v)
S(v) = / flu) —vdu.
J h=(v)
Then there exists a unique point v* € IV such that S(v*) = 0 and §’'(v*) < 0.

Remark 2. We may regard the point (h°(v*),v*) as the origin (0,0) by appropreate
translations.

flu) —v=0

V
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An unknown interface I'(t), which is to be determined, is expressed as a smooth
embedding from a fixed N — 1 dimensional reference manifold M to RV:

(2.1) y(t, ) M =T CQ, M3y~ az=79(ty) €T(1).
Let Q% (¢) be subregions (called bulk regions) in O decomposed by I'(¢) such as
Q=0 ()UuT)ut(),

and v(t,y) € RY the unit normal vector on I'(t) at 2 = (¢, y) pointing into the interior of
the bulk region Q% (¢). In advance we standardize the parametrization as in (2.1) in such
a way that v;(¢,y) is always parallel to v(¢,y) [3]. For sufficiently small § > 0, a point z
in a neighborhood {z € Q|dist (z;T'(¢)) < 4} is uniquely represented as

(2.2) z = 7(t,y) + rv(t,y),

which gives us a new coodinate system (¢, r,y). We denote by J(¢,r, y) Jacobian associated
with (2.2). Namely,

N-~-1 N-1
t,v,y:Hl-l—mty —1+Zth
=1 =1

where (¢, y) (¢ = 1,--- , N — 1) stand for the principal curvatures of I'(¢) at = = ¥(¢,y).
Let u® be a solution of (RD) for an appropreate initial condition:

(2.3) cup(t,a) = CAu(t, ) + fluf(t,v)) —v(t), t>0, 2€Q,

1
(2.4) vi(t) = — / flu®(t,z))dz, ¢>0.

9 Ja
We define an interface I'(t) as a level set of the solution u® to (RD). Since transition
layers are expected to develop in regions {z € Q|u®(t,2) ~ h°(v*)}, we set (cf. Remark
2)
(2.5) I“(t) := {2 € Q|u(¢t,2) = 0}.

On the other hand, I'*(¢) is also assumed to be expressed as a graph of a smooth function
over the interface T'(¢):

(2.6) () ={2 € Qlz = 7(t,y) + R (t,y)v(t,y), y € M}.

R*, of course, is a priori unknown and is to be determined.

2.2 Outer expansion.

We separate the whole domain §) into two components Q%% (t) by the interface I'(¢)
such as Q@ = Q7 (¢) UT(¢) U Q* (%), and substitute the formal expansions

(2.7) Ut 2) = U™ (t,z) = YU (t,2), v'(t) =Y ev(t)

720 720
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into (2.3) in order to see the profile of solutions away from layer regions. Equating to zero
the coefficient of each power of € in the resulting equation, we obtain the following series
of equations:

(2.8) FU) =¥ =0,
(2.9) FUSHU»= =v + FE j> 1

Here Fji stand for functions depending on U** (0 < k < 7) only.
As the solution of (2.8), noting that (A1), we choose

(2.10) U%*(t,z) := hE(0°(1)).
Once we make this choice, U7* (5 > 1) can be successively expressed by (2.9) as
(2.11) UP(t,2) = RE(W () (1) + VE()

with Vji' being some functions depending on v* (0 < k < 5). Therefore once v’ is known,
U?* are determined completely. v/ (j > 0) will be determined later so that the (-
matching conditions are satisfied (cf. subsection 2.5). We note, in particular, that the

outer solution U®(¢,z) is independent of z, and therefore is denoted simply as U®(¢) in
the sequel.

2.3 Inner expansion.

To deal with layer phenomena near r = eR*(¢,y) (cf. (2.2), (2.6)), we use a stretched
variable z 1= ¢ ![r — €R*(t,y)] and recast our problem (2.3) in terms of (¢, z,y):
(2.12) @S, + (e - v)as + f(a°) + eRGS — v 4+ D0 =0, z€(=d/e— R, §/e — R),

where D¢ stands for a differential operator including R*.
We will seek an asymptotic solution to (2.12) of the form

(2.13) @'t 2,y) = U, @) lomr(ty) 4 (ezteRe(ta)u(ty) T 97 (L 2,y) = US(1) + &°(¢, 2, y),

i.e., we will determine ¢° in such a way that @° in (2.13) asymptotically satisfies (2.12)
for z € (—o0, 00). We substitute the formal expansions

(2.14) E(ty) = Ri(t,y) + cR*(ty) + ER(y) + -

(2.15) Uty z,y) = a“E(t,z,y) = U"E(t) + ¢°F (¢, 2, y)

= Z erj’i(t) + Z CpE(L, 2, y) = z duE(t, 2, y)
320 i20 720
together with the expansion for v* into (2.12) to obtain some series of equations for aE
and ¢*F in 22 € (0,00). We now exibit equations for @* only:

(2.16) G5+ (e - V)0 + f(@%) o’ = 0,
(2.17) WE + (v - )aE + FEOHWE =0 - RIGY*+ FF, j> 1L

Here ff stand for functions depending on R*, v¥, #%% (0 < k < j) with R := 7.
We impose the following conditions:



48

o Boundary conditions at z = 0 (cf. (2.5)):
(2.18) B3 (,0,y) = UP(t) + ¢"*(t,0,y) = 0.

¢ Boundary conditions at z = +0o (outer-inner matching conditions):

(2.19) &= (t,2,y) — 0 exponentially as z — fo0.

e C'-matching conditions at 2z = 0:

(2.20) @ (t,0,y) = 4l (t,0,y).

2.4 Expansion of nonlocal term.

(2.4) is recast as follows:

U=~ 10| + U"*lﬂﬂ

et — e Z/ : +] R‘ y y))iﬂ dS;“v)
(2.21) +/ / (657 + (e - )65 + €REGE™ + Drt]J* dedS) )
/ / [0 + (- v)d5™ + Ry + D¢t ]I dzd S

+0(e7ted/e),

Here J*(t,2,y) := J(L,7,Y)|r=cotere(ry) and dS.J(t") stands for the volume element on M

induced from dS.™, the surface element on ['(t) at «, by the embedding v(¢,-). These
are denoted simply as d.S, and dS, in the sequel.

We substitute the outer and inner expansions into (2.21) to obtain some series of
equations:

0
(2.22) UO,‘[Q‘| + UO,+|Q+‘ — / / [qﬁg;— + (7 - V)qﬁg’—] dzdS,
M J ~c0
+ / / [6%F + (7 - v)¢%*] dzdS,,
M IO

U107 + U7
= (U — %) / R’ dS,
JM

0
" / / 607 1 (- 0)@0 IR dedS,
MJ -
(2:23) */ / 10 4 (- )0 R R dzd,
M J0
0 .
+ / / (657 + (e - v)gi~ + R0 dzdS,

// (ve - V)0t + RI¢2F) dzdS, + 7, § > 1.
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Here k := k1 + - - - + £ny_1 is the mean curvature of ['(¢) at 2 = v(¢,y), and Z7(¢) stands
for a function calculated by using functions R*, U¥* and ¢** (0 < k < j).

2.5 (Cl-matching.
We note that the following problem
Q. +cQ.+ f(Q)—v=0, z€(—00,00),
(2.24)
Q(£00) = A¥(v), Q(0) =0,

has a unique solution pair (Q(z;v), c(v)) for each v € I°. Then (2.16) with (2.18)-(2.20)
have unique solutions if and only if

(2.25) ye(t,y) - v(ty) = (1) o7(t) € 1%
and solutions are given by
(2.26) %%, 2,y) = Q(z;0°(t)), +z € (0,00).

Once (2.25) is satisfied and we have (2.26), we can successively show the existence and
uniqueness of ¢*F satisfying (2.19) for all 7 > 0.

As for 4% (j > 1), equations (2.17) with (2.18)-(2.20) have unique solutions if and
only if a solvability condition of (2.17)

/ ¢ Q(v) = RIQ- + F;) dz =0

o

is satisfied, which is equivalent to

(2.27) Ri(t,y) = ¢ (W°(1) v7(8) + ps(ty)

with p; being a function calculated by using R¥, v* and @* (0 < k < j). For instance, p;
is given by

(2.28) pL = f_ = ;(v Z) z) )(; ;:) 0%,
On the other hand, (2.22) and (2.23) with (2.18)-(2.20) respectively yield
2001y — h* (v°(t)) — h™(v°(1)) 0
229 PO = h s @ A s <O T

(2.30) 5 (1) = /M alt,y) Rt y) dS, + b(£) v (1) + o3(2).

Here a and b are some functions depending only on (I',v°) given by

[+ (v°) — A ()] e(v®) & + [A (v°) = A7 ()] °

23 "= B (O] + b (10127 |




50

I B O
b= i R <O

(2.32)
(hy (v°) = by (v°) () [T = (A, (W)IQ | + A, (0)|QF]) 0°
hs (vO) Q7] + A (v°) |24 ’

+

while o; stands for a function computed by employing R¥, v* and ¢** (0 < k < j). For
Instance, oy is given by

_ ht (v /d%’
i <>1ﬂ|+h+u°|n+v

i
+ [h;(v Q|+ AF(v° )|Q+|] B X { c(vo)(/_oo 2Q.(z;0°) dz) /M kdS,
- () i0m = 2 (n @0 o
— (/_i(Qv(z 0°) — hy (v°)) dz + /OOO(Q.U(Z; v°%) — hF(v%) dz) o0 ||

(") = h7 (09 o) (0 T

o e o) Joee € QL(200)Qu(z; )
(B ()~ hm (%)) O e

i° 1] |-
We finally arrived at the following interface equations:

h*(v°) - h’_(lvo) 0 T,

(IE?) v ov=c(v?), = 0 [T R (00 c(v”)

(IEY) Rl = (v°) v’ + p;, 'i)f:f aRdS, +bv +0;, j>1
M

3 Analysis of interface equations.

We are now ready to study the interface equations. Let us begin with the 0-th order
equation (IE?).

3.1 0-th order equation.

The equation is as follows:

(1IE®-a) v(z;T'(t) = e(v(t)), t>0, zel(t),
0 R - h0)
(IE%b) "= e Ol T A ) g GO >0,

(TE®-c) ['(0) =Ty, v(0) = vo.
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Here v(z; T(t)) := %(¢t,y) - v(¢,y) is the normal velocity of I'(t) at 2 = v(¢,y). We note
that the superscript ‘0’ in v°(¢) has been suppressed.

It immediately turns out, due to (IE%a), that the normal speed is independent of the
position z € I'(¢) and is regulated by the (0-th order) nonlocal term v. Thanks to the
identity

d d ‘ ,
3.1 —1Q ()] = == QT (t)| = / v(z;T'(t))dS,,
(3.) G wi=—giror= [ vir)
the interface equation (IE®) implies
- +
(3.2) 0 L Ly e LA O Y
1€ 19
where mg = mq(Lo, vo) is given by
. K%l (o Iﬂﬂ
3.3 mg = h~ h

with QF being initial bulk regions such as Q0 = QF U, U QF. We note that (3.2)
corresponds to (PP) for (RD) as € — 0 (cf. (2.10)).

We recast (IE°) as a system of ordinary differential equations after the manner of
Sakamoto [11]. For a given initial interface 'y we express 1'(¢) as the graph of a function
r(t,y) over I'p: v(t,y) = v(0,y) + r(¢,y)v(0,y). Then some elementary calculations yield
v(t,y) = v(0,y) and r(t,y) = r(t), and therefore (IE°-a) is recast as 7(¢) = ¢(v(¢)). On
the other hand, the surface area of an interface {x € Q|a = v(0,y) + rv(0.y), y € M}
is given by

N-1
g(r) = / J(0,7,y)dS¢ = Nl + Y ( / Hi(0,y)dSp)r,  dS§ = dsy).
M =1 M

so we have |['(t)| = g(r(¢)). Moreover, (3.2) together with |Q~(¢)| + |Q*(¢)| = || implies
that the volume of the bulk regions are represented in terms of v as

(v — My _ mg— R~ (v
(3.4) 1= el el = e

from which the first factor in the right hand side of (IE%b) is rewritten as h(v(t)) with

, e 1 ) = hm(o)]
(3.5) h(v) = h(v;vg) := Wh;(v)[h"‘(v) — mg) + ht(v)[mo — h‘(v)l'

In particular, if the initial pair (T, vg) is chosen so that mg € (u,%), it follows that
|9%| > 0 in (3.4) and therefore we have h(v) < 0 for all v € I° (cf. (A1), (A2)). Thus
the interface equation (IE?) are equivalent to the following initial value problem:

’ = c(v),
(ODE?) = h(v) e(v) g(r),
(0) 0, v(0) = ve.
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By virtue of reformulation above and an equivalent expression of ¢(v)

S(v)
2. Q:(z;v)]2dz’

the interface dynamics are summerized as follows:

(3.6) c(v) = —

e veE(v,v) = >0, v<0
the interface ['(¢) evolves in such a way that the bulk region 7 (¢) grows uniformly.

e vE(v,v) = r<0, v>0;
the interface I'(¢) evolves in such a way that the bulk region Q7 (¢) shrinks uniformly.

o v ="0" = 7r=0, v=0;
the interface ['(t) does not evolve.

We also obtain the following

Theorem 3 (Unique existence of solutions). Let ['q be a smooth initial interface, and a
pair (Lo, vy) is assumed to satisfy vo € I° and mg € (u,u). Then the following statements
hold true:

(1) There exists a constant T' > 0 such that (1IE®) has a unique smooth solution pair (T',v)
on a time interval [0, 7).

(2) Ifin addition vy is sufficiently close to v*, then the unique solution (I',v) in (1) ezists
globally in time.

Proof. (2) immediately follows from the existence of a constant R > 0 such that r-
component r(-) of the solution to (ODE®) remains in a neighborhood (—R, R) while the
corresponding interface I'(:) = {& € L]z = v(0,y) + r(-)v(0,y), y € M} is smooth for
all |7| < R when we choose vy & v*. O

Theorem 4 (Stability of equilibrium solutions). Suppose that a pair (I'o,vo) is as in
Theorem 3. Then the following statements hold true:

(1) (To,vo) is an equilibrium solution of (IE®) if and only if vy = v*.
(2) The equilibrium solution (T'y,v*) is asymptotically stable relative to (ODE®).

Proof. (2) We linearize (ODE?) around the corresponding equilibrium solution (0,v*) to
obtain the eigenvalues 0 and h(v*)¢'(v*) |Tg| < 0. O

For each v € I° the nonlinear term f(u) — v defines a new double-well potential
W(u; v) with two wells located at u = h*(v). Moreover, the potential difference is related
to S(v) and ¢(v) as follows:

W(hT (v);v) = W(h™ (v);v) = =8(v) = ¢(v) /00 (Q:(z;v)) d=.

Hence it turns out that the 0-th order nonlocal effect equalizes the potential of two wells
no matter how the initial state is.
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3.2 Higher order equations.

The j-th (7 > 1) order equations are as follows:

(IE-a) Ri(t, y) = (v°(1) v (t) + p;(t,y), t>0, ye M,

)P0 = [ RSOV o0, >
M

(TB-c) R(0,y) = R/(y), v'(0) = w5

Recall that a and b are functions depending only on the solution (I, v?) to (IE°) (cf. (2.31),
(2.32)), while p; and o; are some functions which can be calculated by using functions
with index k {0 < k£ < j) in outer and inner expansions.

Each equation (IE?) can be recast as a system of linear non-homogeneous ordinary
differential equations. Indeed, by employing a function r/ given by

¢
)= Bty - Bw) - [ s uds
0
(IE’-a) and (IE’-b) are respectively expressed as

(1) = ¢(0°(t) v(1),
vi(t) = ( /M a(t,y)dsy)rf(t) +b(t) (1)
+ /M a(t,y) (Rj(y) + /Ut pi(s,y) ds) dSy + o (1),

from which we obtain an initial value problem of the form
(1) = B(t)vi(t),

(ODE) (t) = C()ri(t) + D(t) vi(t) + By(),
ri(0) =0, vi(0)="uv}

Due to this reformulation, we have the following

Theorem 5 (Unique existence of solutions). Once the initial pair (R (y),v]) is given,
the equations (IE?) (7 > 1) are successively solvable on a finite time interval [0, T].

In particular, we can construct a smooth approximate solution u4 of (RD) in the sense
that

oy o] e _ Ok
e —-ezsuA——fKuA)%—IQ,/QJXuA<wla>dequqﬂxﬂ)-O(e )
du _ ‘
e 0, (t,2)€10,T] x99,

by means of unique solutions (I',v°) and (R’,v?) of (IE?) for 0 < j < K.

As the solution v°(¢) approaches the equilibrium state v*, the 0-th order equation (IE°)
becomes powerless to approximate the layer dynamics. In this case, we must move our
attention to the equation (IE!) for (R',v') in order to capture the further dynamics of
layers. An investigation in such a direction will be our future work.
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