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1 Introduction.

Let D = {(z1,72) € R? : 22 + 22 < 1} be the unit disk in R? and
v € HY2(8D,R3) N L*(dD) a non-constant mapping. For H > 0 and
u € HY(D,R?), we consider the following equations known as H-systems:

Au=2Hu, Aug, inD (1)
U =y on JD,

where A is the exterior product in R?® and subscripts denote partial deriva-
tives. It arises when we seek surfaces in R® with mean curvature H bounded
by v(0D): If a solution u of (1) is conformal, i.e., |tz |% = |tg, |2 = Uz, - Ugy =
0, u(D) represents a surface with mean curvature H at all points z € D
where the rank of du(z) is 2.

(1) is the Euler-Lagrange equation of the functional £y in H!(D,R?) =
{ue HYD,R3) : u =~ on 8D}:

4
En(u) = /D |Vu|? dr + §H/Du-uw1 A Uy, dz.

Let us assume that (D) is contained in the closed ball of radius R with
center at the origin. Under the condition HR < 1, Hildebrandt [6] proved
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the existence of a solution to (1). His solution, denoted by wuy, is charac-
terized as a solution of the minimization problem: €y(uy) = infuegs, Ea(u),
where Sp = {u € H}(D,R?) : [lull~ < R}. Thus uy is a relative minimum
of £y with respect to H* N L*>®-topology. In fact, it is proved in [3] (see
also [13]) that relative minimum of £y with respect to H' N L®-topology
is unique. The second solution to (1) is obtained independently by Brezis-
Coron [3] and Struwe [11], [12] under the assumption HR < 1. Their
large solution (here, we generally call non-minimal critical points of &g -
as large solutions) is obtained as a mountain pass type critical point of
En and it is written as the form Uy = uy + ']—”Q%,ﬂvu, where Jy(v) =
Jo IVv|?de + 4H [ uy - v, A Uz, dz and vy is a solution to the minimiza-
tion problem:

inf{Jy(v) : v € H}(D,R®), Qv)= -1},

where Q(v) = [y v - vz, Ag, dr.

Contrary to the small solution, large solution is not necessary umnique.
The following example is due to H. Wente (see the book of Struwe [13])."
Let 0 < H < 1 and consider ¥(z) = (z,0,0). It is shown in [13] that in
this case, there are infinitely many large solutions to (1).

Let us consider other example. Let us assume 0 < H < 1 and y(z) =
(z4,23,0). In this case, by a geometric meaning of the equations (1), it
is generally believed that there is exactly one large solutions. However, at
least to the author’s knowledge, there is no proof of it, c.f., [2, p169] . The
lesson to be learned from these examples is the following one: There are
more than one large solutions in general and non-uniqueness may depend on
boundary data. Thus we are naturally led to the following problem posed
by some authors (see [2, Remark 11] and [13, p126, Example 3.7]).

Problem. Determine under what conditions on <, there
exist more than two solutions to (1).

Note that for a critical point v of Jy in M = {v € H3(D,R®) : Q(v) =
-1}, uy + %‘é}’—)v is a solution to (1). Thus the above problem is equivalent
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to finding a suitable condition of 7y such that Jy admits at least two distinct
critical points in M.

In this note, we report results obtained in [10] concerning the above
problem. Before stating the results, we introduce some notations. For
~ € HY2(9D,R?), h, denotes the harmonic extension of v in D: Ak, =0
in D and h, =y on 8D. e; = £(1,0,0), e3 =*(0,1,0) and e3 = (0,0,1) de-
note the standard orthonormal basis of R®. SO(3) is the special orthogonal
group of R3: SO(3) = {R € GL(R®) : R'R =1, det R =1}.

Qur first result is the following:

Theorem 1.1 Let v € HY%(D,R®) N L>*(dD). Assume that vy satisfies the
following condition:

(C-1) h, is regular at some point in D (that is, the rank of dh, is 2 at
some a € D, or equivalently, (h-)z, A (hy)z, # 0 in D) and IV.ha,l2 -
2|(hy)as A (he)as| is ot identically equal to 0 in D.

Then there erists Hy > 0 such that one of the following (A-1) and (A-2)
holds for 0 < H < Hy:

(A-1) There exists a non-minimal critical point vy of Jg in M, that is,
vy is a critical point of Jy in M satisfying Ju(ve) > infuerm Ju (v)-

(A-2) There exists infinitely many minimizers of J o i M.

In particular, under the assumption (C-1), for 0 < H < Hy, (1) admits at
least three distinct solutions.

The next theorem gives another criterion for v such that (1) admits at
least three distinct solutions.

Theorem 1.2 Let v € HY/?2(8D,R%) N L*(8D). Assume that v satisfies
the following:

(C-2) There exist a € D and § > 0 such that the set {R € SO(3) :
(hy)z:(a) - Res + (hy)zs(a) - Reg > 8} € SO(3) is not contractible
in SO(3).
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Then there exists Hy > 0 such that for 0 < H < Hy, there exist at least
three distinct solutions to (1).

One can show that (C-1) implies (C-2), see Example 1 in §3. Thus we can
deduce the existence of the third solution under (C-1) from Theorem 1.2.
However, the conclusion of Theorem 1.2 is weaker than that of Theorem
1.1.

Let us return to the boundary condition v. For non-constant -, there are
only three possibilities:

(P-1) (Ay)e; A (By)zy # 0 and ;v},,7]2 = 2[(hy)zy A (Bq)zy] # 0.
(P-2) (he)ay A (By)ay 2 0 and [V |2 = 2|(hy)ay A (A )ay] = 0.

(P-3) (hy)ay A (h)sy = 0 and [Vho 2 = 2{(ha)iy A (y)aal # 0.

The case (P-1) is considered in Theorem 1.1 and in such a case, there
are at least three distinct solutions for (1). The case (2, z;3) = (21, 24,0)
satisfies (P-2) and we think that in such a case one can not expect more
than two solutions in general. We will see in Example 2 in §3.2 that (P-3)
implies (C-2), and by Theorem 1.2, there are at least three solutions for
such a case. From these observations, we guess that the condition (C-2) is
the best one for 7 such that (1) admits three solutions.

As for the case (P-3), we have in fact:

Theorem 1.3 Assume v € H/2(0D,R%) N L*(AD) satisfies (P-8). There
exists Hy > 0 such that for 0 < H < Hy, (1) admits (uncountably )infinitely
many distinct solutions.

The following corollaries are easy consequences of Theorem 1.1, Theorem
1.2 and Theorem 1.3.

Corollary 1.1 Let v € H/?(8D,R3) N L>(8D). Assume that the function
|Vhy|2 = 2|(hy)z, A (By)e,| is not identically equal to 0 in D. Then there
erists Ho > 0 such that for 0 < H < Hy, (1) admits at least three distinct
solutions. "
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Corollary 1.2 There erists an open dense subset 84 C HY2(9D,R®) N
L>(0D) such that for v € U, there exists Hy > 0 such that for 0 < H < Hy,
(1) admits at least three distinct solutions.

Thus for almost all v € H/2(dD,R?) N L>=(dD), (1) admits at least three
distinct solutions for small H > 0.
Here we give some remarks about the function |Vhy |2 = 2|(hy) sy A (hy)as]-

Remark 1.1 o The function [Vh,|? = 2|(hy)z; A (hy)zs| is always non-
negative (by the Cauchy-Schwartz inequality) and it is 0 at z € D if and
only if k., is conformal at x, that s, |(Ay)z, (T)> = |(By)aa (@) = (hy)zy () -
(hy)as(x) = 0. The last claim follows from an easily checked fact: For
a,b € R3, |a)? + |b]2 — 2|a Ab] > 0 and equality holds if and only if |a| = |b|
anda-b=0.

e We have either |Vhy|? — 2|(hy)s, A (By)z,| =0 in D or the zeros of the
function |Vh,|? = 2|(hy)z, A (hy)z,| are isolated. The proof is given in the
next section.

Our idea for the proofs of the above results are based on the invari-
ance of the first equation of (1) under the natural action of SO(3) (acting
as: SO(3) x R®* 3 (R,u) — Ru € R?®). In general, a Lie group action
of a variational problem leads to conservation laws (Noether’s theorem).
For example, an action of R? as translation H!(D,R%) x R? 3 (u,a) —
u(- + a) € H(D,R®) leads to a conservation of “momentum” (more pre-
cisely, the conservation of “stress-energy momentum”), and from it a well-
known Pohozaev identity follows (see the book of Hélein [5] for a derivation
of Pohozaev identity from the conservation of stress-energy momentum ten-
sor). From it, one can show that for a constant boundary date -y, (1) has a
unique solution, the constant solution which is a result of Wente [16].

On the other hand, SO(3)-action leads to a conservation of “angular
momentum”, and our question is: What can we say about solutions of (1)
from this conservation law. In other words, we study the role of SO(3) for
our equations (1). In fact, it turns out that the topological properties of
SO(3) play an important role to our problem. It is also important for the
asymptotic analysis presented in [7], [8] and [9].
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In the next section, we give outlines of the proofs of Theorem 1.1, Theorem
1.2 and Theorem 1.3. For complete arguments, see [10].

2 Outlines of the Proofs of Main Theorems.

We first give functional analytic properties of @ defined in H'(D,RR%). It
is obvious that Q(v) = [ vy, A vz, d is well-defined for v € H'(D,R%)N
L>(D). However, the space H'(D,R®) N L*>(D) is not useful in order to
develop a variational theory. We want to work in H'(D,R3) (or affine
spaces modeled on H} (D, R?)) directly. The following result, essentially due
to H. Wente [15] (see also [3], [13], [1], [4] and [5] for recent developments),
asserts that it has also a well-defined meaning for v € v + H}(D, R?), where
u € H(D,R®) N L*(D) is arbitrary.

Lemma 2.1 Letu € HY(D,R*NL>(D) be given. The functional Q defined
in HY(D,R?) N L>(D) extends to an analytic functional on u+ H}(D,R?).
Q has the following expansion for ¢ € H}(D,R?):
. 1
Qu+¢) = Q(u) +(dQ(u), ) + 58°Q(u){p, #) + Q).
Here

1. {dQ(v),¢) = 3 [y - Vay A Vs, dx for Vv € u+ H(D,R?) and Vp €

H}(D,R*)NL>(D) and dQ extends continuously to a map d@ : H*(D,R®) —

H~Y(D,R3) which satisfies the estimate
{dQ(v), ¥)| < ClIVYl1apylI Veolla(o)
for any v € H'(D,R®) and any p € H}(D,R?),

2. PQu) ) = 3 fy - (9o Athay + s Apry) d for 0, € HY(D, RY)
and it extends continuously to a map d*Q : H'(D,R3) — S2H!(D,R?)
which satisfies the estimate

|°Q(u) (p, ¥)| < ClIVull 20y I Vel L2y VIl £2(0)

for any v € HY(D,R®) and o,y € HL(D,R®), where S2H~1(D,R?)
denotes the 2-fold symmetric product of H*(D,R3).
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Proof 1. It is obvious that vy, A v, € L'(D), but ¢ € H*D,R?) is
not included in L*(D) in general. However, one can show that (using a
determinant structure of the nonlinearity) v;, A vy, € H* (H' is the Hardy
space) and p € HY(D,R®) ¢ BMO (by the Poincaré inequality. Here BMO
is the space of functions with Bounded Mean Oscillation). From these and
Fefferman-Stein’s H!-BMO duality theorem, one can consider the integral
Jo # * vz, A v, dx as the duality pairing between H! and BMO.
2. is proved similarly. O

Set M = {v € H}(D,R?) : Q(v) = —1}. Then by the above lemma, for
v € M, we have (dQ(v),v) = 3Q(v) = =3 # 0 and —1 is a regular value of
Q : H}(D,R3) — R. Thus by the inverse function theorem, M C Hj(D,R?)
is a codimension 1 submanifold. Let u € M. From the inclusion M C
H}(D,R3), T, M is equipped with a metric. Since M C H}(D,R?®) is closed
it is complete and is a Hilbert manifold. .
Under these preparations, we first give an outline of the proof of Theorem
1.1. |

2.1 Outline of the Proof of Theorem 1.1.

By the observation given in Remark 1.1, the function |Vhy|* = 2|(hy)sz, A
(B )z,| vanishes at z € D if and only if the holomorphic quadratic differential
@y, associated to h, is 0 at z. Here U = [(hy)ay|* = |(hy)eal* — 2i(Re)a, -
(hy)z. Since Ahy, = 0 and ¥, = %‘f— : %‘L, we hzawef;\l’h7 = 0 and
¥}, is holomorphic. The condition (C-1), the observation given in Remark
1.1 and the holomorphy of ¥, imply that there exists a € D such that
(7)zs (@) A (By)as (@) # 0 and [Vhy(a)[? = 2[(By)ei (@) A (Ry)zy(a)] # 0.

The crucial step for the proof of Theorem 1.1 is the following result:

Lemma 2.2 Assume (C-1) holds. There exist Hy > 0 and 6y > 0 such
that for 0 < H < Hp and 0 < § < Jg, we have WI(JE,'"‘S) # 0. Here
Ji% = {veM: Jg() < S -6} and m(J5%) is the fundamental group
of J57°.
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Proof. We first construct © : Jf{a — SO(3). For this purpose, we
observe that if v € J5 %, there exists C' > 0 (independent of v) such that
(1- C'H)/ |Vu|lde < Jy(v) < S -6 < 6.
From this, we have ’
/D [Vv|?dz < S(1-CH)™L. (2)
We need the following lemma:

Lemma 2.3 For any € > 0, there exists n > 0 such that the following holds:
For any v € M with [|Vv|?*dx < S+ 1, there exist R € SO(3), a € D
and X > 0 satisfying A\/d(a,dD) < € such that

“V (gv - RPUM>

< €.
L'Z(D)
22 . — =
Here Uy (x) = YTieaE | 2 | PUsy = Urg — hrg, Ahpre =0
—A

and hyqlop = UA,alBD-

For the proof of this lemma, see [10].
By the above lemma and (2), for any € > 0, there exist F; > 0, R €
SO(3), a € D and A > 0 with A/d(a, D) < e such that

“V(*‘g—v - RP[[,\‘G)

<e. (3)

For € > 0, define

M(e) = {v e H}(D,R%): 3R € SO(3), 3\ > 0 with
A/d(a, 0D) < € such that |V (v — RPU),)| 12y < €}-

It is proved in (7], [8] that there exists ¢ > 0 such that for 0 < € < ¢
and v € M(e), the problem

inf{||V(v — pRPU) )| L2() : 1/2 < <2,
Re€ SO(3), a €D, A >0 with A\/d(a,dD) < 2¢} (4)
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has a unique solution.

In (3), we take ¢ = ¢. For v € J;" (0 < H < Hy), consider the unique
solution u, R, a and X to the problem (4) and define ©(v) = R. By the
uniqueness of the solution, © is a continuous function.

In the following, we give a construction of an essential loop in Jf,“s .
Consider F : SO(3) — R defined by

F(R) = —(hy)s.(a) - Re1 = (hy)z,(a) - Rea.

Here a € D satisfies (hy )z, (@) A (hy)zp(a) # 0 and |Vh,(a)|? = 2|(hy)z, (@) A
(ha)zz(@)] # O (see the beginning of this section). For this choice of a, it can
be shown that F is a Morse function in SO(3), see [10] for details. (In fact,
(hr)en(@) A (r)aa(@) # 0 and [Vhy(@)]? = 21(hy)uy (@) A (hy)os @)] # 0 are
necessary and sufficient conditions for F' to be a Morse function). The crit-
ical values of F are —(|Vh,(a)]? +2|(hy)z, (@) A (hy)zy(a)])/? (Morse index
0). ~(IVhy(@)[? = 21 (y)as (@) A (o )ea(@)]) /2 (Morse index 1), (|Vhy(a)f? -
2| (), (@) A (By)z, (a)])*? (Morse index 2) and (|Vh,(a)? + 2|(hy)a, (@) A
(hy)zs(a))/? (Morse index 3). From this and Morse theory, one can show
that there exists a loop R : S* — SO(3) which is not homotopically trivial
such that | |

sup F(R) =inf{ sup F(R):¢:S'— SO(3), £~ R(-)}
RER(S')  Ref(sY)

= “(IV’M((L)I'Z = 2|(hy)z, (@) A (h'r)wz(“')l)l/z' (3)

R is obtained as a parametrization of the unstable manifold of the negative
gradient flow of F' associated with the critical point of F whose Morse index
is 1.

Under these preparations, we define qg : S — H}(D,.R3) by

R(§)PUs, .
[Q(R(0)PU», )|/

050(9) =

where

A, = (IVhy(a)]? - 2((’1»,):51(;‘)2/\ (h’v)wz(a)l)l/? H,

Ohl
32 (a) + 52 (a)
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hi(z) = 2&i=%) op 9D,

|a-ea)?

{ Ahi =0 inD

We then have

Lemma 2.4 There ezists § > 0 such that ag : S — J5~0 is not homotopi-
cally trivial.

Proof. We have the following expansion (see [7] for the proof):

S (8h} Oh2, \ .z
JH(Q()(O)) =S5+ -5 (0.1"1 (a) + 8.’112 (&))/\a

- S((h’y)m (a) ’ R(9)81 + (h“/‘):vz (a) ’ R(H)e:l)/\aH + O(Hz)'

From this, (5) and the definition of A,, we have

J];((xg(e))
_s [V, (a)? — 2{(hy)r (@) A (hy)za(@)] 110 o H2
<S8 5 %’;‘f}(a)+%&%(a) H* 4 o(H?).

By this, there exists § > 0 such that for small H > 0, ao(S!) C J5 .

We claim that op is not homotopically trivial in J5 °. Assume by contra-
diction that ag ~ 0 in Jij %, Then there exists a homotopy H : §' x [0, 1] —
J3=% between g and a constant loop: H(:,0) = ao, H(-,1) = v, € J5°.
Consider H = © 0 H : S! x [0,1] — SO(3). Since O(a) = R(:), H gives
a homotopy between R(-) and a constant loop ©(vy) in SO(3). This is a
contradiction since R(-) is not homotopically trivial in SO(3). a

By Lemma 2.4, we have completed the proof of Lemima 2.2. O

To proceed, we recall the following notion:

Definition 2.1 Let M be a complete Finsler manifold, J € C1(M), 8 € R.
J satisfies (PS)g-condition if any {v,} C M satisfying J(v,) — B and
dJ(v,) — 0 is relatively compact in M.

We then have

Lemma 2.5 For any 3 < S, Jy satisfies (PS)s in M.
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For the proof, see [3], [10], [11], [13].

We now complete the proof of Theorem 1.1.
Completion of the proof of Theorem 1.1. We define

8 = inf { sup Jy(v):a: S — 5—5 is homotopic to ao}.
vE(S?)

By Lemma 2.4, we have 8 < S — § and by Lemma 2.5, 3 is a critical value
of Jy. There are two possibilities:

Ld :8 > ﬂmin-
L 5 = ‘3m'iwn.-

Here Bnin = infoers Ju(v).

It is obvious that the first case implies (A-1). We claim that the second
case implies (A-2). The idea of the proof is as follows:

We assume that there are only finitely many minimizers v, ..., v, (p > 1)
in M.

ol. Fix 6, € S'. By a compactness argument, it can be shown that there
exists a sequence of loops {a, }n>1, @ 1 St — Jz"‘s such that a,, ~ o and
dist(a,(6o), {v1, - -, Up}) — 0. Without loss of generality, we may assume
that o, (6) — v as n — o0.

2. It can be shown that for any x > 0, there exists N € N such that
an(St) € Bi(v1) :={v € M : ||V(v —v1)||L2(p) < k} for n 2 N.

e3. For all small x > 0, it can be shown that B.(v;) C J5 ¢ and B, (v;)
is contractible in Jf;"‘s.

o4. By 3, we have ag ~ a,, ~ 0. This is a contradiction. Thus the second
case implies (A-2). O

2.2 Outline of the proof of Theorem 1.2.

Proof of Theorem 1.2. We argue by contradiction. So assume that there
is exactly one critical point vy of Jg in M (vp is necessary a minimizer of
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Ju in M and it is obtained by Brezis-Coron [3] and Struwe [11], [12]). We
derive a contradiction from this.
We first prepare

Lemma 2.6 There exists Hy > 0 such that the following holds: For any
O0<H<Hyande>0 with Bpm < S —c¢, . }3’6 is contractible in itself.

Proof. We only give the outline of the proof.
e1. First, it can be shown that there exists # > 0 such that B, (vg) C J5*

and By (vo) is contractible in J5 €.

e2. By a compactness argument, one can show that there exists € > 0
such that Jom»*¢ B, (uy).

3. Then, since Jy satisfies (PS)g for any 5 < S (Lemma 2.5), by Morse
theory, J f;"‘““' is a strong deformation retract of J5 .

From 1, 2,3, the conclusion follows. O

Completion of the proof of Theorem 1.2, Take a € D and § > 0 satisfying
the assumption of the theorem. Define E = {R € SO(3) : (h,)z, (a) - Re; +
(ha)ea(a) - Res > 6},

Define ¥ : E — M by the formula (¢ > 0 is determined later)

_ RPU,\(R)’a
|Q(RPUNRyo)|M?

¥(R)

here '
— (h'Y)-l?l (a) - Rey + (h'y)arz(a) - Rey

DRl 2
7 (@) + 522 (a)

H.

A(R)

We then compute
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Ju (Y(R))
=S g(%(“‘) + gz—;‘(a)))\(zz)z
— S((hy)z:(a) - Rey + (By)xy(a) - Rea)MR)H + o( H”)

<S- 3 ((hy)zi(a) - Rey + (hy)ay(a) - R82)2H2 + o( H?)

Ohl oh2

2 Cha(a) + $oa(a)

S 62 .
<5-2 H? + o(H?).
= Bhi Oh2

2 Sa(a) + 52 (a)

From this, for small H > 0 and € > 0, we have ¥(E) C J5*.
In the next step, we consider the following composition of maps:

ol : E L J5 2 50(3).

By our definition of ©, @ o ¥(R) = R for any R € E. On the other hand,
Lemma 2.6 implies that © o ¥ ~ 0. Thus E is contractible in SO(3). This.
is a contradiction. Thus we complete the proof of Theorem 1.2. .

2.3 OQutline of the Proof of Theorem 1.3.

We first show that, under the assumption (P-3), h,(D) is contained in a
one dimensional affine space in R3.
More precisely, we have

Lemma 2.7 Assume ~y satisfies (P-8). Then there exists a harmonic func-
tion h: D — R and e, fe R® such that h, = he+f.

This follows from the following lemma.

Lemma 2.8 Let G : D — C3 be a holomorphic map with G AG = 0. Here
D is equipped with the standard complex structure and A : C* x C* — C8 is
defined as the extension of A : R3 x R® — R3 by complex bilinearity. Then
there exists a holomorphic function g : D — C and e€ R? such that G = ge.
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For the proof of these lemmas, see [10].
Under these preparations, we now complete the proof of Theorem 1.3.

Completion of the proof of Theoremn 1.3. Since the equation Au =
2Hu,, A u,, is invariant under the natural action of the Euclidean mo-
tion SO(3) x R3, by Lemma 2.7, we may assume without loss of generality
that h, = *(h,0,0) for some harmonic function A.

The proof consists in three steps:

ol. Since Ahy = 0 and (hy)s, A (hy)z, = 0, h, is a solution to (1). By the
maximum principle, H||A,||zec@) < H||V|lz=@p) < 1 (if H > 0 is small).
From this and the characterization of the small solution by L*-norm, h, is
equal to the small solution of Hildebrandt.

e2. By the result of Brezis-Coron [3] and Struwe [?], [?], there exists
a large solution @y of (1). We claim Ty(D) ¢ {¥(2,,0,0) : z; € R}.
In fact, if Wy is contained in the z;-axis, then (Tpy)s, A (Uy)e, = 0 and
Ay = 2(Uy )y A (BH )z, = 0. So we have Ty = h,. This is a contradiction.

e3. By 2, there exists « € D such that uy(a) has a nonzero z, or z;
1 0 0
component. For § € S, define Ry € SO(8)by Ry=| 0 cos —sinh
, 0 sinf cosé

Then {RyTy }oest are S'-parametrized distinct solutions to (1). ]

3 Examples.

3.1 Example 1.

Here we show (C-1) implies (C-2).

Assume a € D satisfies (h, )z, (@)A(hy)e, (@) # 0and VA, (a)2—2](hy)e, (@) A
(h)za(@)] # 0. We take § = 3(Vhy(@)[? — 2/(h)er (@) A (h)sy(@))V2.
Since (|Vhy(a)|? — 2|(hy)z, (@) A (hy)ep(a)])? is a critical point of the func-
“tion SO(3) 3 R + (hy)s (@) - Rey + (hy)s,(a) - Res € R with Morse in-
dex 2, it can be shown by Morse theory that the set E = {R € SO(3) :



(hy)z (@) - Rer + (hy)zy(a) - Rea > 8} is not contractible. In fact, it is ho-
motopy equivalent to a 1-cell of SO(3) which generates the first homology
group H,(SO(3);Z) = Zs.

3.2 Example 2.

Here we show (P-3) implies (C-2).

By the result of the previous section, we may assume without loss of
generality that h, = (h,0,0), where h is a harmonic function. Then F =
{R € SO(3) : he,(a)Ryy + hsy(a)Ryz > 0}. Here R = (R;;). Let @ € D be
such that dh(a) # 0. We claim that E is not contractible for small § > 0.
The proof of the claim consists of three steps:

ol. Let P5o(S?) — S? be the oriented orthonormal frame bundle of S,
There is a natural identification Pso(S?) & SO(3): A point of Pso(S?) is
specified by three mutually orthogonal unit vectors in R%. One corresponds
to a base point of the fibration Pso(5?) — S* and other two correspond to
an oriented orthonormal basis at that point. Moreover, these vectors form
an oriented orthonormal basis of R®. Since SO(3) is naturally identified
with the set of all oriented orthonormal bases of R3, it is identified with

Pso(S?).

¢2. For small § > 0, the set U = {}(x1, T2, 73) € S? : hy, (a)T1+ b, (a)T2 >
8} is topologically a disk in 2. Therefore it is contractible and Pso(S%)|y —
U is isomorphic to the trivial bundle U x SO(2) — U. Thus E has the same
homotopy type of SO(2), the fiber over a point p € U.

3. From el and 2, E is homotopically equivalent to a subset of SO(3)
consisting of rotations about the axis (p) = {tp:t € R}. The latter set is
not contractible in SO(3). In fact, it generates the first homology group of
SO(3), see [10] for details. ‘

Thus we complete the proof of the implication (P-3) = (C-2).
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3.3 Example 3.

We consider the case v = (x1,22,0). We show in this case that F =
{R € SO(@3) : (hy)s,(a) - Rer + (hy )z, (a) - Reg > 6} is empty or contractible
for any ¢ € D and § > 0.

In this case, we observe that F'(R) = Ry; + Ros and the critical values are
—2 (with Morse index 0), 0 (corresponding critical points are degenerate)
and 2 (with Morse index 3). IFrom this, by Morse theory, E is empty (if
d > 2) or contractible (if 0 < § < 2).

This example also support our conjecture: For v = (21, 2,0), there are
exactly two solutions to (1).

3.4 Example 4.

Here we give a condition of v such that if v satisfies it, then the conclusion

of (A-1) in Theorem 1.1 holds.
Let v be sufficiently smooth (for example, v € C%*(dD) for some a > 0
is sufficient). We assume the set

{a€eD:K"(a)= mgch*(a:)}
consists of isolated points in D and for any a € D with K+ (a) = max,ep K+ (),
(hy)zy(@) A (hy)y(a) # 0. Here
[Vhy(2)[ + 2/ (hy)z, () A (Ry)z,(a)] _

ohl Bh?2
7 (T) + g2 (%)

K*(z) =

Then we showed in [10] that (A-1) in Theorem 1.1 holds.

Since the above condition of « is satisfied for generic +, for generic bound-
ary data v, (1) admits at least three distinct solutions uy, Ty and uy whose
energies satisfy €y (uy) < Eu(Un) < En(ugy).
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