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A blowup mechanism with high emergence - theory
of self-organization

Takashi Suzuki (Osaka University)
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1 Introduction

We have discovered quantized blowup mechanism in the mean field of many
self-interacting particles, which is subject to the total mass conservation,
decrease of free energy, and compensated compactness via the symmetriza-
tion of potential kernel. A typical model is the elliptic-parabolic system of
cross-diffusion,

uy =V - (Vu — uVv)

0= Av — av + u } in Qx(0,7)

ou Ov
E}-——b—l;—o on OQX(O,T)
Uly—g = uo(z) 2 0 in Q, (1)

where Q C R? is a bounded domain with smooth boundary 8§, a > 0 is a
constant, and v is the unit outer normal vector on 0¢). It is the simplified
system of chemotaxis in mathematical biology, describing chemotctic feature
of cellular slime molds, but is also the description of non-equilibrium mean
field of self-attractive particles subject to the second law of thermodynamics
in the theory of statistical mechanics.

Unique existence of the classical solution locally in time is proven, and
the solution becomes positive and regular for ¢t > 0 if ug # 0. Supremum of
the existence time is denoted by Tihax € (0, +00], and Thax < +00 is referred
to as the blowup in finite time. In this case, it holds that

u(z,t)dz — Z m(zo)dz, (dz) + f(z)dz (2)

ToES



7

as t T Thax in M(Q) with

mieo) = mte) = { 57 (50 € 0y g

where M () denotes the set of measures on {2}, — the *-weak convergence
there (Suzuki [17]). Actually, S in (2) is the blowup set of u(-,t), and
zo € S if and only if there are zx — ¢ and tx T Thax in Tx € § satisfying
u(zg, tg) — +o0o. We have

A Hu‘(t)lloo = 400
and hence § # { holds in the case of T ax < +00. Therefore, (2) with (3)
implies the sharp estimate of the number of blowup points,

#OQNS)+2-4(2N3S) < luolly /(4m).

Equality m(zo) = m«(xo) in (2) is referred to as mass quantization of
collapses. It has been suspected from the hierarchy of systems in statistical
mechanics, that is, global existence of weak solution to the Fokker-Planck
equation and mass and location quantization of the blowup family to the
Liouville-Gel’fand equation, which describe kinetic and equilibrium states of
the mean field, respectively. Actual proof is associated with the backward
self-similar transformation, and the blowup point o € S is classified into
two types. Namely, it is of type (I) if

lim sup sup R(t)*u(z,t) < +00
t1Tmax T€Q, tw—-wo‘SCR(t)

for any C > 0 and of type (II) for the other case that

limsup sup R(t)%u(z,t) = +oo
tT T max €, ‘2:—-2:0'_<_CR(t)

for some C > 0, where R(t) = (Tmax — t)*/%. Important notion introduced
there is the parabolic envelope, infinitely wide parabolic region as b T +oo of
{(m,t) € Q x [0, Timax | | — zo| < bR(t)}. That is, the whole blowup mech-
anism is enveloped there and it holds that

A i, [ Yrosm e e = mico)



where ¥ = 1z, r(x) is the cut-off function around zg with the support radius
2R > 0and 2 =0 on 8Q.
If zg € S is of type (II) and tx 1 Tax satisfies

lim sup R(tk)*u(z, t) = +o0
k—o00 zENN, |;1;~;1:0,<CR(tk)

for some C > 0, then it holds that

2(y, sk )dy — my(z0)00(dy)

in M(R?) as k — oo. Here, 2(y,s) = R(t)%u(z, t) with zero extension taken
where it is not defined, y = (= — z¢)/R(t), and s = s is defined from
t =ty by s = —log(Tmax —t). Thus, type (II) blowup point is fixed at first.
Then, it attracts the distribution mass of particles asymptotically radially
symmetric and create a quantized collapse. Concetration, compared with
aggregation, is strong, and the rescaled solution z = 2(y, s) develops delta
singularity m,(zg)dp(dz), called the sub-collapse, at the origin. While actual
existence of type (I) blowup point is open, if it exists then it takes a profile
of emergence in the sense of Kaufmann as

t'T'l%’Inix fa:o bR(t ( (t)) = +00

holds for any b > 0, where F;, r(u) denotes the local free energy defined by

Here, G = G(z,z') denotes the Green’s function for —A +a under Neumann
boundary condition. In this connection, it should be noted that the global
free energy F (u(t)) always decreases as requirement of the second law of
thermodynamics, where

F(u) = /Qu(logu—~ 1)(z)dz — —/ QXQG(Q: , 2 )u ® u(z,z')drdx'.

On the other hand, formation of collapses around this type of blowup point
may be non-radially symmetric or decay slowly at infinite in the rescaled
variable, as the rescaled system is formally provided with the Lyapunov
function. Actually, it is formal because the convergence of that Lyapunov



function needs fast decay at infinity of the rescaled solution. If this condition
is assured, then the classical solution must be stationary in the rescaled
system, while radially symmetric sationary solution to this system does not
exist. In this way, we can conclude that around type (I) blowup point, if
it exists, mass and free energy are exchanged at the wedge of the parabolic
envelope, with a "self” of quantized mass creating.

2 Equilibria

The quantized blowup mechanism of non-stationary state described above
comes from that of the stationary state, and this story is called the nonlinear
quantum mechanics. In fact, the equilibrium state of (1) is realized as the
nonlinear eigenvalue problem

_ Ae? , Ov
—Av +av = I o'da in 5 = 0 on 09 (4)
with A = |luo||;, and the quantized blowup mechanism at this level arises

in the blowup family of solutions. Namely, if {(Ag,vk)}re; is & family of
solutions to (4) for A = Ay and v = v, satisfying Ay — Xo € [0,00) and
vkl oo = +00, then the blowup set of {v}, denoted by § C § is finite, and
passing through a subsequence, it holds that

ug(z)dz — Z M (20 )0z, (dT)
ToES

in M(f) as k — oo, where

Ap€evk

T T endz

In particular, A\g € 47N/, and furthermore, we have

=0 ()

=g

Va (m*(mo)K(m,on > m*(wG)G(fv,wi)))

12668\{930}

for each zo € S, where only tangential derivative is taken in (5) if g € 092,
and ) ’
5= logle —2'| (z€Q)

K(z,o) = Gl 2') + { Lloglz—2'| (2 €09)
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represents the regular part of the Green’s function G(z, z’).

This kind of quantization was first observed by Nagasaki and Suzuki
[11], [12] for the Gel'fand problem

in Q, v=0 on 099, (6)

and Baraket and Pacard [1] proved the converse, that is, singular perturba-
tion. Calculation of topological degree was initiated by Y.Y. Li [8] based
on those facts, and it was completed by C.C. Chen and C.S. Lin. On the
other hand, Suzuki [10], [15] established uniqueness of the solution to (6) for
simply connected §2 and A € (0,87). There, Morse index of the stationary
solution v is shown to be equal to the number of eigenvalues in 4 < 1 minus
one of the eigenvalue problem

—A¢ = pug in Q
¢ = constant on o1l

9
/3 Gods =0, (7)
where e
e
u= Jaetdz (8)

This Morse index is induced from the variational structure of (6), associated
with the functional

J(v) = % IVol|2 = Alog (/Q e”d:z:) +c 9)

defined for v € H (), where c is a constant.
Independently, Wolansky [21] showed the same fact for u = u(z) > 0
satisfying

(~Ap)~'u=logu+ constant in €, |ull; = 1. (10)

Actually, he introduced this problem as the stationary state for the similar
system to (1),

ut = V- (Vu —uVo)
0=Av+u

Ou __ , Ov _
o~ Yo 0} on 90 x (0,T). (11)

} in  Qx(0,7T)

v=20
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It is subject to the decrease of free energy defined by

.7:(u)=/ﬂ u(logu — 1)(z :1:——/ QXQG(CI,‘ , ) u(z)u(z')dzd',

where G = G(z,7’) denotes the Green’s function for —A under Dirichlet
boundary condition. Problem (10) is nothing but the Euler equation for
the variational problem 6F(u) = 0 under the constraint that |lu|, = A,
and the Morse index of its solution is defined by the maximal dimension
of linear sub-spaces where the associated quadratic form is negative. Thus,
what he showed is that this index is equal to the number of eigenvalues in
¢ < 1 minus 1 for (7). On the other hand, those problems (7) are equivalent
through (8) and

v=(-Ap) 'u, (12)

and in this way, those two variational structures concerning v and u are
equivalent up to Morse indices. This is very important for our point of
view, because the structure of elliptic problem (6) is known in details and
Morse index is easier to calculate, while the dynamics of (11) is subject to
the decrease of free energy and local dynamics around the stationary solu-
tion is controled by its Morse index. Actually, this observation, combined
with the global bifurcation diagram of the equilibrium state led us to the
conjecture of mass quantization of collapses of the non-stationary solution
described above, and particularly, the relation between dynamical and lin-
earized stabilities is important ([16]).

However, dynamical equivalence of those two variations is a consequence
of the general theory, dual variation.

3 Variation

Above dynamical equivalence of those variational structures can be proven
directly. For this purpose, Lyapunov function for the full system takes a
role, and we describe that situation for

u = V- (Vu — uVv)
T = AV + U

Ou _ 4,0 _ |
Lz F' on o0 x (0,T) (13)

} in Q% (0,T)

v=20
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to make the description to be simple. In fact, if W is defined by

W(u,v) = / u(logu — 1)dz + -;— Vo2 = (v, u),

Q

then we have
FWO00) + 7@+ [ ulVGogu=v)P (.02 =0, (1)

where u = u(-,t), v = v(-,t) is the classical solution to (13) and { , ) denotes
the duality:

(v, ) =Luvdw.

Actually, in the simplified system we have (12), and this W is reduced to
the free energy as

WI’U=('—AD)-IU == f- (15)
On the other hand, we have
Ae?
Y =
[qevdx
in the stationary state, because
log u — v = constant and lull, = A

follows from (14) in this case. If we take ¢ = Alog A — A in (9), that is,
1
J(v) = 5 |Vv]|2 — Alog (/ e”dw) + AlogA — A
Q

for v € H}(§2), then it holds that

W‘u: Aev - J- (16>

Q eVdx

We call those relations, (15) and (16) the unfolding Legendre transformation.
Let us confirm that stationary states given by v and v, (10) and (6), respec-
tively, are realized by dF(u) = 0 on ||lul|; = A and 6J(v) = 0, respectively.
On the other hand, we have the minimality indicated as

W(u,v) > max {F(u), T (v)}, (17)
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where |lu|l; = A. In fact, the first inequality is a direct consequence of
Schwarz’ inequality, while the second inequality is proven by Jensen’s in-
equality. It is applied to show the global existence of the solution to (11) or
(13) in the case of A = ||up||; < 8, but is regarded as the dual form of the
Trudinger-Moser inequality as is described later.

Theory of dual variation guarantees the splitting og the equilibrium to
each component in the general stataioniary system, provided with the varia-
tional and dynamical equivalence. However, those unfolding and minimality
are sufficient for its stability. Some systems describing mean field, such as
the Penrose-Fife theory, take only semi-unfolding and semi-minimality, from
which we can derive the stability of one component.

4 Duality

We now develop the general theory of dual variation. Let X be a Banach
space over R. Its dual space and the paring are denoted by X* and (, ) =
), )x x, respectively. Given F': X — [—o00,+400], we define its Legendre
transformation by

F*(p) =Sg§{<w,p>-—F($)} (peX).

Then, Fenchel-Moreau’s theorem says that if F': X — (—o0, +00] is proper,
convex, lower semi-continuous, then so is F* : X* — (—o00,+0o0], and the
second Legendre transformation defined by

Fo@)= s {@p) - Fp))  (eeX)

is'equal to F'(z) ([5]).
Let F,G : X — (—o0,+o0] be proper, convex, lower semi-continuous,
and put that
®(z,y) = F(z +y) - G(z).

Let D(F'), D(G) be the effective domains of F', G, respectively. Each z €
D(QG) induces proper, convex, lower semi-continuous mapping

y € X — &(z,y) € (—o0, +00]
and its Legendre transformation is given by

W(z,p) = sup {{y,p) — ®(z,y)} (peX7)
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and thus,
W(z,:): X* — (—o0,+00]

is proper, convex, lower semi-continuous. Sometimes
L(z,p) = -W(z,p)

is referred to as the Lagrange function. Then, we have for (z,p) € D(G)x X*
that

W(z,p) = sup {{y +2,p) - F(z +y) + G(z) — (z,p)}

= F'(p)+G(z) - (z,p). (18)

Putting W(z,p) = +o0o for z & D(G), we get (18) for any (z,p) € X x X*.
Next, given p € X*, we put that

ro-{T970 )

Then, we obtain

inf W(z,p) = F*(p) - sup{(z,p) — G(z)}
z€ reX

= F*(p)—G*(p) = J*(p)

for p € D(F*). It is valid even for p ¢ D(F*) by (18) and (19). Similarly,
we set for z € X that

J(z) = { G(z) - F(z) (z € D(Q)) (20)

+00 (otherwise)

and obtain

inf W(z,p) = G(z)— sup {(z,p) — F*(p)}

peEX™ pEX™*

~ G(z) - F*(2) = J(z)

for x € D(G), which is valid even for z ¢ D(G) by (18) and (20). Thus, we
have

D(J)={z € X | J(z) # oo} = D(G) N D(F)

D(J*) = {p € X* | J*(p) # %00} = D(G") N D(F")
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and
infzex W(z,p) = J*(p) (p€ X™)

infoex- W(z,p) = J(@) (z€X). (21)
Relation (21) implies
inf  W(z,p) = inf J*(p) = inf J(x), (22)

(z,p)eX X X* pEX™* zeX

called the Toland duality ([19], [20]).

5 Sub-differential

Above global theory can be localized in use of the sub-differential. In fact,
given F : X — [—o0,+00], z € X, and p € X*, wesay p € 0F(z), = €
OF*(p) if

F(y) > F(z) + (y — z,p) (for any y € X),
F*(q) > F*(p) + (z,9 — p) (for any g€ X7),

respectively. It is obvious that F(z) # 0 implies z € D(F), butif F : X —
(—o0, +0o0] is proper, convex, lower semi-continuous, then

z € 0F*(p) & p € OF (), (23)
and Fenchel-Moreau’s identity
F(z)+ F*(p) = (z,p) (24)

holds in this case ([5]).
Under those prepartions, we can show the first part of the theory of dual
variation, the variational equivalence.

Theorem 1 Let F,G : X — (—o0,+00] be proper, convez, lower semi-
continuous, and W = W (z,p) be defined by (18). Given £ € X, p € X*, we
take the set of minimizers of pe X*, z € X in
£) = inf I *(p) = inf W(z,p),
J(@) = if W(z,p), J (p) = inf W(z,p)

denoted by A*(2), A(p), respectively. We say that £ € X, p € X* are critical
points of J, J* if 0G(&) N OF (&) # 0, 0G*(p) N OF*(p) # 0, respectively,
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and that (&,p) is a critical point of W if 0 € 0; W (&,p), 0 € 8,W (&,p) holds
true. Then, first, we have for any (z,p) € X x X* that

A*(z) = 0F(z),  A(p) =9G"(p). (25)
Furthermore, the following items are equivalent:
1. (z,p) € X x X* is a critical point of W.
2. £ € X is a critical point of J and it holds that p € 0G(&) N OF(&).
3. p € X* is a critical point of J* and it holds that £ € OF*(p) NOG™(p).

Finally, we have

W(z,p) = J(&) = J*(P) (26)

in this case.

Proof: In fact, we have from (18) and (23) that

0€ 9, W(z,p)=0 & pedG(z) & z€0IG*(p)

0€,W(z,p)=0 & z€dF*(p) & pecIF(z) (27)

for any (z,p) € X x X*. Given z € X, we take p € A*(x). This means that
it attains

J(z) = inf W(z,p),

peEX*

which is equivalent to 0 € 0,W (z,p). Thus, A*(z) = 0F(z) holds by (27).
Relation A(p) = 0G*(p) follows similarly, and the first part, (25), is proven.
The second part, the equivalence of those three items are obtained also by
(27), because (Z,p) € X x X* is a critical point of

W =W(z,p) = F*(p) + G(z) — (z,p)

if and only if p € 0G(&) and & € F*(p). Finally, (26) follows from (25) and
p € 0G(z), £ € OF*(p), as

W(z,p) = F'(§)+G(&)—(Z,p)
= F*(p) - G*(p)
= G(&) - F(2)

The proof is complete. ]
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We have the equivalence of
p € 0G(L) NOF (&) = & € OF*(p) N 0G™* (p),

and therefore, each critical point of J, J* produces that of J*, J, respectively.
This correspondence, we call, the Legendre transformation of critical points,
or their duality. Principle of dual variation indicates the production of those
critical points of J, J* from that duality. This means equivalently that the
critical point (£,p) € X x X* of W = W(z, p) is characterized as for each
element &, p to be a critical point of the separted J, J*, respectively. We
can prove the equivalence of those critical points up to their Morse indices
under natural assumptions, as in the special case of (1) described in [17],
that is, the second part of the theory of dual variation, indicated as the
dynamical equivalence. If a (local) dynamical system

t €(0,T)— (z(t),p(t))

is given and W = W(z, p) acts as a Lyapunov function, then we call critical
points of W the equilibrium.

6 Stability

Remarkable structures (15), (16), and (17) of unfolding and minimality are
natural consequences of the abstract setting of dual variation. We can show
the third part of the theory of dual variation, the unfolding - minimality.

Theorem 2 Given proper, convez, lower semi-continous functionals
F,G: X — (—o0,+00],

we take W = W (z,p), J = J(z), and J* = J*(p) by (18), (20), and (19),
respectively. Then, it holds that

Wlpeor@ =9 Wleesar) =7 (28)

and

W(z,p) 2 max {J(z), J"(p)}, (29)
where (z,p) € X x X*.
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Proof: For the unfolding (28) to prove, we note that p € 0F(z) implies

F*(p) — (z,p) = —F(z)

from Fenchel-Moreau’s identity (24). This implies the first equality of (28),
and the second equality is proven similarly. On the other hand, the mini-
mality (29) is a direct consequence of (21). O

Unfolding and minimality imply the stability of equilibrium in the fol-
lowing way.

Theorem 3 Let a proper, convezx, lower semi-continuous functional
F.:X — (—00,+0]
be given with J : X — [—o00,+oo] and W : X x X* — [—o00, +00] satisfying
Wleorz =J  and  W(z,p) 2 J(z)
for any (z,p) € X x X*. Let (&,p) € D(W) C X x X* be in
p € OF(2)NY. and I €Yy,

where Yy is a closed subset of a Banach space Y continuously imbedded in
X, and Y, is a Banach space continuously embedded in X*. Spppose that
Z is a linearized stable local minimizer of J lYo in the sense that for some
g0 > 0, any € € (0,e9/4] admits § > 0 such that

zeYy, |z—ily<e, J@-J@<s = |z-dy<e

(30)
Suppose, finally, that Wy, .y, is continuous at (£,p). Then, if

{(z(8),p(t)) }ogs<r C Yo X Ya
is given with t € [0,T) — z(t) € Yy continuous and

te0,T) +— W(z(t),p(t)) (31)
non-increasing, then any € € (0,£0/4] admits § > 0 such that

lz(0) - 2lly <6 and  |[p(0) = plly, <9 (32)
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imply
le(t) — 2y <e  (0<t<T). (33)

Similarly, if G : X — (—o00,+00] is proper, convez, lower semi-continuous,
J* 1 X* — [—o00, +00]| satsifies that

Wleeogrpy =J°  and  W(z,p) 2 J*(z)
for any (z,p) € X x X, (&,p) € D(W) is in
& € 0G*(p) and D € Yo,

respectively, where Yo, is a closed set in Y., D is a linearized stable local
minimizer of J*|y _in the sense that any € € (0,€0] admits § > 0 such that

peYo, llp—>ly, <€, J'(@—-J ) <? = lp—Blly, <e,

t €[0,T) — p(t) € Yo« is continuous with (31) decreasing, £ € 0G*(p), and
Wlyxy,, 18 continuous at (£,p), then any € € (0,€0/4] admats § > 0 such
that (32) implies

Ip(t) = Blly, <e  (0<t<T).

Proof: We show the former part. In fact, given ¢ € (0,¢0/4], we take
§ = 6, > 0 in (30). Because Wy, ,y, is continuous at (£,p), there exists
d € (0,e0/2] such that

|z(0) = 2|y <6  and  ||p(0) —Dlly, <9 (34)

imply
W ((0),p(0)) — W(2,p) < d1. (35)

On the other hand, we have
W(z,p) > J(z) 2 J(2) = W(Z,p)

for any (z,p) € Yox X* with ||z — Z||, < €0 from the assumption. Therefore,

as far as
lz(t) — &lly <eo (36)
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we have

(z(8)) = J(&) < W (2(t), p(t)) — J (&)
W (2(0),p(0)) - W(&,p) < d1. (37)

IA N

Now, we have
l2(0) — 2{ly <& < eo/2.

Then, if there is tg € (0,T) such that ||z(to) — &|ly = €0/2, then we have
(36) and hence (37) for t = tg. This implies from (30) (with § = 6;) that

() — &lly < < co/4, (38)

a contradiction. Therefore, because t € [0,7) — z(t) € Yy C Y is continu-
ous, the relation
l2(t) = 2lly <eo/2

keeps to hold for t € [0,T"), and hence (36) im particular. Again this implies
(37) and (38) for any t € [0,T'), and the proof is complete. 0

Continuity of W at (z,p =

(Z,p) can be replaced by the first case of (34)
and (35) for the initial value (z(

),2(0)), to imply (32).

7 Applications

By Damlamian [4], Toland duality in applied science was first observed in
free boundary problem for plasma confinement, between the formulations
of Berestycki and Brezis [2] and Temam [18]. That duality can be realized
in a slightly different way, with the Nehari principle involving, and then
we can localize their equivalence up to Morse indices. In the Penrose-Fife
system [13], on the other hand, exact duality cannot be observed, while
semi-unfolding and semi-minimality are valid, which provide stability of the
field component. We have several examples of those dual variation or semi-
dual variation in mean field theories. Here, we show how the abstract theory
is realized in the system of chemotaxis, particularly in (11), where 2 C R™
is a bounded domain with smooth boundary 0f).

For this problem, we take X = H}(Q2) with the Gel’fand triple X —
L?(Q) — X*. Then, dual entropy functional F : X — (—o00, +00] is defined
by

F(v) = Alog (/ e”d:c) — Alog A + A,
Q
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which is proper, convex, lower semi-continuous. We have

D(F)-——{veXl/Qe“dm<+oo},

OF (v) # 0 for any v € D(F), and

Ae?
Jqevde

u € OF(v) & u =

Entropy functional is defined by its Legendre transformation,

F*(u) = { Joullogu—)dz (u € X*NIXQ), w20, Jul; =)
+00 (otherwise).

It holds that
DF)={ue X*|u>0, u€ LlogL(Q), |lull; = A},
v € OF*(u) if and only if u € D(F*) and
v = log u + constant € X,

where Llog L(§2) denotes the Zygmund space. On the other hand, taking
Gw) = 3 1V,

we get the proper, convex, lower semi-continuous mapping
G:X — (—o0,+00).

Operator —Ap induces the isomorphism A: X — X*, and we have
G*(u) = %<A“1u,u>

for w € X*. Then, Lyapunov function of this system is realized as

Wv,u) = F*(u) + G(v) — (v,u)
and the equilibrium is described by

0 € 8,W(7,7), 0 € 8, W(1,7)
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or equivalently,
u=A"'9, ©edF*(n).

From Theorem 1, this relation is transformed into the conditions on @
and U, separately, that is, to be critical points of

J(v) = Gv) - F(v)
- -;. |Voll5 — Alog (/ e’”dm) +Alog A =\
Q
defined for v € X and
J'(u) = F*(u) - G")u)
— 1 A—1
= /Qu(logu —1)dz — 3 <A u,u>

defined for u € X*NLY(Q), u > 0, |lull; = A, respectively. Those conditions
are equivalent to

v € X, /e’jda:<+oo
Q

A Ae? .
A’U = W € X (39)

and

ue€ XNLlogL(Q2), w>0, Jg|;,=A
A7'% = log T + constant € X, (40)

respectively. The exact correspondence of Morse indices can be derived from
the general theory, but here we only admit the equivalence of linearized
stability of those @ and ©. Then we can apply Theorem 3 for

Y = D(J) = D(G) N D(F) = {'v € X| /Qe”da: < +oo}

and

Yo = DJ*)={ueX*|ueLlogL(), u>0, |ull, =A}
C Yi=X*NLlogL(Q),

and in this case there is 9 > 0 such that if u = u(-,t), v = v(-,t) is a solution
o (11) for t € [0,T"), then any ¢ € (0,e0/4] admits § > 0 such that

[o(,0) =vllx <& flu(+0) =Tllxenriogr <& Nul- 0l = A=zl
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implies
lo(t) —3llx <& lu(,t) —Tllx-nriogr <€

for any t € [0,T). This result is valid to any space dimension and also to
the full system

ug =V (Vu —uVo) .

Tv = Av+u } i 2x(0,T)
ou v

LD ""’U;g; =0

=0 } on oQ x (0,T)

with 7 > 0.
Next, we examine the role of unfolding - minimality in this system of
(1). In fact, first, from the Trudinger-Moser inequality, we have

Jg)f{ J(v) > —o0 (41)

in the case of n = 2 and A = 8r. Next, Theorem 1 guarantees the equuiv-
alence of boundedness from below of J on X and J* on X*, and hence it
follows that

_inf J*(u) > —o0
u€X*NLlog L, u>0, |lull;=A

in this case. Furthermore, the Trudinger-Moser inequality again guarantees
Llog L(Q2) — X* for n = 2, and hence it holds that

inf{/ u(logu — 1)dz — 1 / G(z,z')u ® udzdr’
Q 2J Jaxq

[u>0, ull, =8} > —co, (42)

where G = G(z,z') denotes the Green’s function. Inequality (42), valid to
n = 2 is regarded as the dual form of the Trudinger-Moser-Onofri inequality.
We have from (41) that each A < 8 admits a constant Cy such that

J(v) = -;—HVUHE—-/\Iog(/Qe”dm)+)\log)\—/\

> 5(1-5) 1ol

for any v € X. Therefore, if ||uol|; = A < 8 in (11), then we have

sup [[Vu(-,t)ll, < Cs
te(0,T")



114

with a constant Cy > 0 determine by A, because of (29) and

sup W (v(t),u(t)) < W (u(0),v(0)).
te(0,T)

Similarly, from (42) we have

J*(u) > (1——§—>/ulogudm—03
8m/) Ja

for any u € Llog L(f2) in uw > 0 and ||u|| = A < 87, and this implies that

sup /(ulogu)(w,t)dm < Cy. (43)
te[0,T) /N2

Then, from Moser’s iteration scheme or the maximal reguality we can derive
Tmax = +00 and the uniform boundedness of u(-,t):

sup Hu('vt)“oo < Cs.
te[0,T)

In the original work of Biler [3], Gajewski and Zacharias [6], Nagai, Senba,
and Yosida [9], inequality (43) is derived from the Trudinger-Moser inequal-
ity and

/(ulogu—uv)dm+)\log (/ e“dm)——/\log)\ZO (44)
Q Q

valid to w € LlogL(Q?), v > 0, |lu)l; = A. Inequality (44) follows from
Jensen’s inequality, but it is also a consequence of the minimality

W(v,u) > J(v).
In the simplified system, we have
W (v,u) = F(u)
and hence from the minimality it follows that
Fut) 2 J(v(t))  (0<t < Tmax)-

On the other hand, from the quantization of blowup mechanism of the sta-
tionary state we have

Ja=1inf{J(v) |v € Bz} > —o0
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for A € [0,00) \ NV, where E) denotes the set of critical points of J on X.
Furthermore, we have

d
—-/ ulogudz < 2K\
dt Jao

+4 Q] exp (41(2 / ulogudz + 4K%e™! lQl)
Q
with a constant K > 0 determined by £, and if Tiax = +00 and

lim [ ulogu(z,t)dz < 400,
t—+00 JO

then we have t; — +o00, § > 0, and C > 0 such that
/n(ulogu)(a:,t)da: <C (t € [t,tk +6]).

This implies the non-empty of the omega limit set of (u(t),v(t)) so that

W (vg,up) > lm W (v(t),u(t)) = ja

~ t—4o00

holds true. Because

tTl%‘Tax ﬂ(u logu)(z,t)dr = +00

follows in the case of Tipax < -+00, we obtain the criterion of Horstmann and
Wang (7] that

W (vg,uo) < Ja = lim (ulogu)(z,t)dz = +oo. (45)
t—Tmax JQ

Relation (45) is valid even in the full system, in use of the argument devel-
oped in [14].

8 Conclusion

Nonlinear quantum mechanics is just an episode of the mathematical the-
ory of statistical mechanics, where each hierarchy of equations to the mean
field of many particles has its own physical and mathematical principles.
It asserts the control of the total set of equilibrium states over the global
dynamics of non-equilibrium states. This story, we are convinced, is efficient
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to the most theory on mean fields, where self-interaction is caused in term
of the field created by particles. The principle of dual variation aries in this
context, study of the equilibrium states in the nonlinear system, with the
interaction desribed in terms of the field and particles. It assures that the
equilibrium state in those hierarchies splits into the problems on the field
and on particles, each of which is provided with the variational structure,
dynamically equivalent each other. We have unified such a structure in the
formulation of Toland duality for the system of chemotaxis and also in the
free boundary problem in plasma confinement, where concentration of the
particle distribution is widely observed. On the other hand, the Penrose-Fife
system succeeds a part of this duality, unfolding - minimality, only in the
field component and the same is true for the Euler-Possion equation describ-
ing the evolution of gaseous stars. Consequently, we can discuss the stability
of equilibrium field in those systems, by introducing variational structure for
the field component. Skew gradient system, on the other hand, is also under
the control of dual variation, but the leading structure is different and the
stable equilibrium is realized as the saddle point of the Lagrange function.
Actally, it is associated with the Kuhn-Tucker duality and especially, the dy-
namics around degenerate stable equilibrium is quite strange. All of those
materials are still in progress and will be published someday in future.

In the context of the theory of self-organization, type (I) blowup point
is quite interesting. It assures the emergence coming from the wedge of the
parabolic envelope, where entropy and mass are exchanged to create a clean
self with the mass quntized, which reminds us of the principle asserted in
system biology that the expanding cosmos is the origin of life. This remark-
able fact is derived mathematically, motivated by the theory of nonlinear
quantum mechanics, where the theory of dual variation takes a role to con-
trol the set of equilibirum states as well as the local dynamics around them.
See [17].
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