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Abstract
Invexity was introduced as an extension of differentiable convex functions due to Hanson[6] in 1981.
The idea plays an important role in analyzing various types of mathematical programming in
which both feasible sets and objective functions are convex. For example, convex functions and
affine functions are invex ones. In 1990 Karamardian et al [8] proved that generalized convexity of
functions was equivalent to monotonicity of its gradient functions. It is said that the role in
generalized monotonicity of the operator in variational inequality problems corresponding to the role
in generalized convexity of objective functions in mathematical programming. Variational
inequalities arise in models for a wide class of engineering or human sciences, e.g., mathematics,
physics, economics, optimization and control., transportation, elasticity and applied sciences, etc. In

this article we consider mathematical (optimization) problems and variational inequality problems.
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1 Introduction.
Consider the following mathematical problem
min f(x) subjectto xin C, (MP)
where a feasible set CinR" and an objective function f: C —R..
Here R and R" are the set of real numbers, n-dimensional linear space, respectively. Problem
(MP) is a particular case of the following variational inequality problems. In this paper we introduce
an approach by applying the invex idea and to (MP) and the below problem variational inequality
problemsto x,inC satisfying

(y — x)'Flxg) = 0 for yinC, (VIP)
where a function F : C —R" Iff is differentiable and F(x) = Vf(x), then (VIP) means (MP).
According to the similar way as [9] we treat definitions of invexity in Section 2. Qur aims are to
solve variational-like inequality problems via the invex method (see Section 3) and to discuss invex

feasible sets  which are extended from the convex sets (see Section 4).



2.Monotonicity and Invexity

In order to  find optimal solutions for mathematical problems by finding solutions for variational
inequality problems and those for variational-like inequality problems [9] discusses variationals of
monotonicity and invexity.

Definitionl A function F: M — R" is said to be monotone(M) on C if each x,y in C, then it
follows that

(y — x)'(Fy) — F(x)) = 0.

A function F is said to be pseudo monotone (PM) on C if each x,y in C such that (y - x)" F(x) = 0,
then (y - x)' F(y) = 0.

It follows that (M) means (PM) immediately. In [4] the following theorem is given as follows.
Theorem1 A differential function f on an open set C is convex if and only if V{ is monotone

onC.

Definition2 A function F is said to be invex monotone(IM) to a function 7 :C* — R"if for each
x,y in C it follows that

7 )T [Fy) — Fx)] = 0.

F is said to be pseudo invex monotone (PIM) to a function 5:C* — R" ifforeach x,y inC
with 7 (y,x)" F(x)= 0, then 5 (yx)"F(y) 2 0.

When Fis (IM)to 7 (y,x) =y — X, it means that (IM) is (M).It follows that (IM) means (PIM).

The following examples illustrate (IM) and (PIM).
Example 1 Consider the following function F(x) = x* on C={x = 0}. It follows that F is (IM) to
7 (yx)=e¢ — € since
7 (pX)[F(y)~ F(x)]
= (y—x)(1H(y+x)/2 Hy Hyx+x2)/31+ L)y —x)(y +x)] = 0.

Example 1 The following function

Fx)= - x (x<0); 0x = 0)
defined on C = R is not (IM) but (PIM) to the same 7 (y,x) =¢ — €*.Incasethaty <x <0, we
get 7 (B,X)[F(y)~ F(x)] = (¢ — ¢ )Xy* x%<0, which means that F is un-(IM). If, however,
(yX)F(x) = 0,theny = x together with 5 (y,x)F(y) = 0. Therefore F is (PIM) to the 5 (y,x).

Definition3 A Differentiable function f is said to be invex (IX) to a function 7:C* — R"if for



each x,y inC, it follows that f(y) — f(x) = 7 (y,x)'f'(x). Differentiable f is said to be pseudo
invex (PIX) to a function #:C* — R" if, for each x,y inC with 7 (yx)T f(x) = 0,
it follows that f(y) — f{(x) = 0.

It follows that (IX) means (PIX). A function f(x) =x +sinxon C= {0 =x < 7/2}is (IX)toy
(y,x) =(y+siny — x— sin x)/(1 + cos x), because

f{y)~ f(x) =y +siny- (x +sin x) = 7 (v,x) £(x).

3.Variational-like Inequality Problems

In this section we treat variational-like inequality problems to find the following x, in C such that

7 (y.X0) F(x¢) =2 0 foryinC, (VLIP)

which plays an important role in solving optimal solutions for (MP) by utilizing the invex idea. We
introduce definitions of hemi-continuity and invex sets. One means the continuity on linear segments
and the other is an extension of convexity.

Definition 4 A function F is called hemi-continuous on C if for x,y in C, y' F(x + ty) is
continuous on the closed interval [0,1].

Definition 5 The set M in R" is an invex sef to i :C* > R* if,foreach x,yinCandtin[0,1],
it follows that

x+ty(yx)inC.

It can be easily seen that C is convex when C is invex to y — x. In the following example we show
a different property of invex sets from that of convex sets.

Example 3 Let a subset M in R?be invex to 7 (y,x) = y on C = R2XR? .Denote vectors ¢,=(1,0)" and
,=(0,1)". Assume that e,, e, €M. Then we get

M=({1=x<} XR)URX {1=y<o0}),

The following definition, lemma and theorem concerning KKM- functions play a significant
role in guaranteeing the existence of optimal solutions of (MP).

Definition 6 A function V:R"—2"{R"}, the power set of R", is called KKM-function if, for every
finite set A= {X;,X, ..., X, }in R", the convex hull conv(A) is contained in U {V(x,): I=],...m }.
Lemmal ({4]) Let a subset A in R" be non-empty and V:A-—>2"{R"} a KKM-function. If V(x) is
compact for x in A, then N {V(x):xinA} #+ ¢.

Theorem?2 ([9]) Let C in  R" be non-empty, compact and convex. Let a function 7 be continuous,
linear in the first argument and 7 (X,y) + 7 (y,x) = 0 on C2. If F is (PIM) to » and hemi-continuous on

C, then there exists at least one optimal solution for (VLIP) .



The following relations are essential in proving the existence of optimal solutions of (MP). Let a set
of optimal solutions for (VLIP) to y be denoted by
Viy)={xinC: 5 (yx)'Fx)2 0} fory inC.
Denote
Vyy)={xinC: 5(yx)'Fy) = 0} fory inC.

In [9] they show that V| and V, are KKM- functions, respectively, and

Vily) CVyy) for yinC.
Provided that 7 (x,y) + 7 (,x) = 0 for (x,y) in C?, then it follows that

N {Vi(y):yinC} = N{Vy(y): yin C}.
[4] showes the following result.
Theorem 3 It follows that N{V(x): x in C} # ¢ if C in R" is non-empty and the KKM-

function V : C—2"{R"}is compact for x in M.

In [9] authors show the optimal solutions of (VLIP) and (MP) are equivalent each other.
Theorem4 Let C — Rbe (IX) to » and C aninvex set.
Then x in C is an optimal solution of ~ (VLIP) to the gradient Vf and 7 ifandonlyifxis

an optimal solution of (MP).

4. Invex Feasible Sets

Theorem 3 and 4 give the following existence criterion Theoerm 5.3 in [9] for (MP) via the idea of
invexity provided with compact and convex feasible sets.

Theorem 5 The following conditions (i)-(iii) hold.

(i) Let C in R" be non-empty, compact and convex. Let» be continuous, linear in the first
argument and 7 (x,y) + 7 (;x) =0on C2

(ii) Let f be differentiable on C and (IX) to 7.

(ii)Let Vfbe (PIM)to nand hemi-continuouson C.

Then there exists an optimal solution xinM  for (VLIP)and (MP).

In the following we get an existence criterion for (MP) of invex feasible sets which is non-convex.
Theorem 6 (Extension of Theorem 5.3 in [9]) The following conditions (i)-(iii) hold.

(i)Lety be linear in the first argument on C and 7 (x,y)+ 7 (,x) =0onC?. Let CinR" be
non-empty, compact and (IX)to 7.

(i1) Let f be differentiable on C and (IX) to » .

(ii))Let V f be (PIM) to y and 7 (x,y)" V f(x) be upper semicontinuousin ~ x in C for y in C.

Then there exists an optimal solution x in C for (MP).



In the similar way to [9] invex feasible sets have at least one optimal solutions for (VLIP).

Lemma 2 (Extension of Lemma 5.2 in [9]) The following conditions (i)-(ii) hold.

(()Letn be linear in the first argument on C and #» (x,y)+ 7 (y,x) = 0 on C% Let C in R" be
nonempty and (IX) to 5 .

(ii) Let F: C—>R"be (PIM) to » and 7 (y,x)"F(x) be upper semicontinuous in x C for y in C.

Then N{Vi(y):yinC}= N{Vyy):yinC}

Foryin C..

Proof. Letx in M {V,(y): y in C }. From Condition (ii) we have
7 (yx)'F(y) = OforyinC suchthat 5 (y,x)"F(x)=0.Thenxin N {V,(y):yinC }.
Let xin MN{Vyy):yinC}. Fory ininvex C,denoting w=ty+(l1-t)x inCwith0<t <
1, we get 7 (w,u)'F(w) 2 0.Conditions (i) leads to that 7 (x,x)"F(w) = 0 and
7 (y.x)"F(ty + (1 -t)x) = 0,
wheih means that limsup. ., 7 (v,x)" F(£) = 0.Then , by Condition (i) it follows that i
(yx)'F(x) 2 0, ie,xin N{V(y):yinC}.
Q.E.D.

Lemma 3 (Extension of Theorem 5.1 in [9]) Assume that the set C is bounded in addition to

conditions of Lemma 2. Then there exists an optimal solution for (VLIP).

Proof. Consider the following function to the above 5 such that
Vily) ={xinC: 5 (yx)' Fx) = 0}
for yin C. From Condition (i) it follows that V, is a KKM-function. From Condition (ii) the
set Vi(y) isclosed for yinM. The boundedness of C means that V\(y) is bounded for vy in
C. Therefore V,(y) is compact for y in C, which means that N{V,(y): yin C} + ¢i.e., there
exists an optimal solution for (VLIP) in C.

Q.E.D.

Moreover we get the following theorem to ensure the existence of optimal solutions for (MP)
under conditions that the feasible sets is invex and compact.
Lemma 4 Assume that f is differentiable with F = V{ and that C is compact in addition to

conditions of Lemma3. Then there exists at least one optimal solution for (MP).
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