
38

Local Search Algorithms for the TwO-Dimensional Cutting Stock
Problem with a Given Number of Different Patterns

京都大学・情報学研究科 今堀慎治 (Shinji Imahori)
柳浦睦憲 (Mutsunori Yagiura)

山$\mathrm{R}^{\backslash }\ovalbox{\tt\small REJECT}$ 信也 (Shinya Adachi)
茨木俊秀 (Toshihide Ibaraki)

Graduate School of Informatics,
Kyoto University

豊田工業大学・工学研究科 梅谷俊治 (Shunji Umetani)
Graduate School of Engineering,

Toyota Technological Institute

Abstract: We consider the twO-dimensional cutting stock problem which arises in many ap-
plications in industries. In recent industrial applications, it is argued that the setup cost for
changing patterns becomes more dominant and it is impractical to use many different cutting
patterns. Therefore, we consider the pattern restricted twO-dimensional cutting stock problem,
in which the total number of applications of cutting patte rns is minimized while the number of
different cutting patterns is given as a parameter n . For this problem, we develop local search
algorithms. As the size of the neighborhood plays a crucial role in determining the efficiency of
local search, we propose to use linear programming techniques for the purpose of restricting the
number of solutions in the neighborhood. In this process, to generate a cutting pattern, it is
required to place all the given products (rectangles) irr the stock sheet (twO-dimensional area)
without mutual overlap. For this purpose, we develop a heuristic algorithm using an existing
rectangle packing algorithm with the sequence pair coding scheme. Finally, we generate random
test instances of this problem and conduct computational experiments, to see the effectiveness
of the proposed algorithms.

Keywords: TwO-dimensional cutting stock problem, Linear programming, Rectangle packing,
Neighborhood, Local search.

1 Introduction

We consider the twO-dimensional cutting stock problem, which is one of the representative
combinatorial optimization problems, and arises in many industries such as steel, paper, wood,
glass and fiber. This problem is $\mathrm{N}\mathrm{P}$ -hard, since this is a generalization of the twO-dimensional bin
packing problem and the one-dimensional cutting stock problem, which are already known to be
$\mathrm{N}\mathrm{P}$ -hard, and various heuristic algorithms have been proposed $[1, 8]$. In recent cutting industries,
the setup cost for changing patterns becomes more significant and it is often impractical to use
many different cutting patterns. We consider the twO-dimensional cutting stock problem with
a given number of patterns $n(2\mathrm{D}\mathrm{C}\mathrm{S}\mathrm{P}n)$, in which the total number of applications of cutting

数理解析研究所講究録 1349巻 2004年 36-45

37

patterns is minimized while the number of different cutting patterns is given as a parameter [7].
We assume that each product can be rotated by 90’, and do not assume any constraints on
products’ placement such as “guillotine cut”.

$2\mathrm{D}\mathrm{C}\mathrm{S}\mathrm{P}n$ asks to determine a set of cutting patterns and their numbers of applications. The
problem of deciding the number of applications for each pattern becomes an integer programming
problem (IP), and we propose a heuristic algorithm based on its linear programming (LP)
relaxation. We also propose a local search algorithm to find a good set of cutting patterns. As
the size of the neighborhood plays a crucial role in determining the efficiency of local search,
we propose to use linear programming techniques for the purpose of restricting the nu mber
of solutions in the neighborhood. To generate a feasible cutting pattern, we have to place
all products in the twO-dimensional area without mutual overlap. For this purpose, we use a
rectangle packing algorithm with a coding scheme called sequence pair [2, 3, 5]. We conduct
some computational experiments to evaluate our algorithm.

2 Formulation of $2\mathrm{D}\mathrm{C}\mathrm{S}\mathrm{P}n$

We first define the twO-dimensional cutting stock problem $(2\mathrm{D}\mathrm{C}\mathrm{S}\mathrm{P})$. We are given a sufficient
number of stock sheets of the same length L and width W , and m types of products $M=$
$\{1,2, \ldots, m\}$, where each product 2 has length l_{i} , width w_{i} and demand d_{i} .

A cutting pattern p_{j} is described as $p_{j}=$ $(a_{1j}, a_{2j}, \ldots , a_{mj})$, where $a.[j\in Z_{+}$ (the set of
nonnegative integers) is the number of product 2 cut from pattern p_{j} . We call a pattern p_{j}

feasible if its all products can be cut down from one stock sheet without overlap, and] $\mathrm{e}\mathrm{t}$ S

denotes the set of all feasible patte$\mathrm{r}\mathrm{n}\mathrm{s}$. A solution of $2\mathrm{D}\mathrm{C}\mathrm{S}\mathrm{P}$ consists of a set of cutting patterns
$\Pi=\{p_{1},p_{2}, \ldots ,p_{|\Pi|}\}\subseteq$ S, and their numbers of applications $X=$ $(x_{1}, x_{2}, \ldots, x_{1}\mathrm{I}\mathrm{I}|)$, where
$xj\in Z_{+}$. A typical cost function is the total number of stock sheets used in the solution.

Now we consider a variant of $2\mathrm{D}\mathrm{C}\mathrm{S}\mathrm{P}$. As noted before, it is impractical to use many different
patterns in recent cutting industries. Hence, we consider $2\mathrm{D}\mathrm{C}\mathrm{S}\mathrm{P}$ with an input parameter n ,
where n is the number of different patterns $|\mathrm{I}\mathrm{I}\mathrm{L}$ We call this problem the twO-dimensional
cutting stock problem with a given number of patte rns $n2\mathrm{D}\mathrm{C}\mathrm{S}\mathrm{P}\mathrm{n}$, which is formally defined
as follows:

$2\mathrm{D}\mathrm{C}\mathrm{S}\mathrm{P}$ n: minimize
$f(\Pi, X)=\sum_{p_{\mathrm{J}}\in\Pi}x_{j}$

subject to
$\sum_{p_{J}\in\Pi}a_{ij}x_{j}\geq d_{i}$

, for $i\in It,$

$\Pi\subseteq S,$

$|$ II $|=n,$

$xj\in Z_{+}$, for $p_{J}.\cdot\in$ II.

$2\mathrm{D}\mathrm{C}\mathrm{S}\mathrm{P}n$ asks to determine a set of cutting patterns Π , where a cutting pattern p_{j} is a com-
binatiort of products cut from one stock sheet, and their numbers of applications X so that
the total number of stock sheets used is minimized while satisfying the demands of all prod-
ucts. In the next section, we consider the problem of computing the numbers of applications

38

$X=$ $(\mathrm{x}\mathrm{i}, x_{2}, \ldots, x_{n})$, where $x_{j}\in Z_{+}$ for a given set of patterns $\Pi=\{\mathrm{p}\mathrm{i},\mathrm{p}2, \ldots,p_{n}\}$. We propose
a local search algorithm to find a good set of cutting patterns II in Section 4.

3 Computing the number of applications for each pattern

In this section, we consider the problem of computing $X=$ (xi, x_{2} , \ldots , x_{n}), where x_{j} denotes
the number of applications for pattern p_{j} , for a given set of patterns Π $=\{\mathrm{p}\mathrm{i},\mathrm{p}2, \ldots,p_{n}\}$. This
problem is described as the following integer programming problem (IP):

$\mathrm{I}\mathrm{P}(\Pi)$: minimize
$f(X)= \sum_{p_{j}\in\Pi}x_{j}$

subject to
$\sum_{\mathrm{p}_{J}\in\Pi}a_{\mathrm{z}j}$

.x$j\geq d_{i}$, for $i\in M,$

$x_{j}\in Z_{+}$, for $p_{j},$
\in n.

This problem is already known to be strongly $\mathrm{N}\mathrm{P}$ -hard since x_{j} must be integer, and hence we
consider a heuristic algorithm for this problem.

Our heuristic algorithm first solves the LP relaxation $\mathrm{L}\mathrm{P}(\mathrm{I}\mathrm{I})$ of $\mathrm{I}\mathrm{P}(\Pi)$, in which the integer
constraints $x_{j}\in Z_{+}$ are replaced with $x_{j}\geq 0.$

$\mathrm{L}\mathrm{P}(\mathrm{I}\mathrm{I})$: minimize $f(X)=$ 1 x_{j}

$\mathrm{p}_{\mathrm{J}}\in\Pi$

subject to
$\sum_{p_{J}\in\Pi}a_{ij}x_{j}\geq d_{i}$

, for $i\in M$,

$x_{j}\geq 0,$ for $p_{j}\in$ H.

Let X $=$ $(\overline{x}_{1}, \overline{x}_{2}, \ldots,\overline{x}_{n})$ denote an optimal solution of $\mathrm{L}\mathrm{P}(\mathrm{I}\mathrm{I})$. In order to obtain att integer
solution, we sort aU variables \overline{x}j in the descending order of $\overline{x}_{J}-\lfloor\overline{x}$: \rfloor , and round up \overline{x}j to $\lceil\overline{x}$j \rceil

in the resulting order of j until all demands are satisfied. We round down \overline{x}j to $\lfloor X_{\mathrm{j}}\rfloor$ for the
remaining variables.

In our local search algorithm for finding a good set of patterns, which will be explained $\mathrm{i}\mathrm{r}\mathrm{t}$

the next section, we must solve many $\mathrm{L}\mathrm{P}(\Pi)$. If LP is naively solved from scratch whenever
we evaluate a new set of cutting patterns in the neighborhood, the computation time becomes
very expensive. We therefore incorporate a sensitive analysis technique based on the criss-cross
method to utilize the optimal LP solution for the current set of cutting patterns.

4 Local search algorithm to find a good set of patterns

As noted before, a solution of $2\mathrm{D}\mathrm{C}\mathrm{S}\mathrm{P}\mathrm{r}\mathrm{c}$ consists of a set of n patterns $\mathrm{I}\mathrm{I}=\{\mathrm{p}\mathrm{i},\mathrm{p}2, \ldots,p_{n}\}$ and
the numbers of their applications $X=$ (xi, x_{2} , \ldots , x_{n}). Our local search (LS) generates a set of
patterns in the neighborhood $N(\Pi)$ of the current set of patterns Π . The numbers of applications
for the new set of patterns Π ’ are obtained by solving $\mathrm{I}\mathrm{P}(\mathrm{I}\mathrm{I}’)$ explained in the previous section.

The following ingredients must be specified in designing $\mathrm{L}\mathrm{S}$: Search space, move strategy,
a function to evaluate solutions, an initial solution and neighborhood. In our local search
algorithm, we define the search space as the set of all II and we adopt first admissible move

38

strategy. A set of patterns ri is evaluated by the optimal value of $\mathrm{L}\mathrm{P}(\Pi)$. Note that, we also
compute an integer solution of $\mathrm{I}\mathrm{P}(\mathrm{I}\mathrm{I})$ heuristically, and update the best solution if its value is
better than those obtained so far. We construct att initial solution heuristically based on the
next fit algorithm for the (one dimensional) bin packing problem, since the problem to find a
feasible solution is also NP-hard.

4.1 Neighborhood for local search

We use the neighborhood obtained by exchanging only one cutting pattern ill the current set of
patterns. However, the size of this neighborhood is still too large, and most of them may not
lead to improvement. We propose a heuristic method to generate a smaller set of patterns to
improve the efficiency of the local search algorithm.

The solutions in our basic neighborhood of the current solution (Π, X) are those generated by
changing one pattern $p_{j}\in$ II by the following basic operation: Remove $t(t=0,1,2)$ products
from the pattern p_{j} and add one product to the pattern. The size of this neighborhoods is
$O(nm^{t+1})$ for each t . We use the information of overproduction $r_{i}= \sum_{j}a_{;}jxj-d_{i}$ for each
product i to decide which products to remove. We sort surplus products in the descending
order of overproduction ri , and remove products in this order in our neighborhood search. On
the other hand, we use a dual optimal solution $\overline{Y}=$ $(\overline{y}_{1}, \overline{y}_{2}, \ldots,\overline{y}_{m})$ of $\mathrm{L}\mathrm{P}(\mathrm{I}\mathrm{I})$ to deter rmine
the product to be added. Larger \overline{y}_{i} tends to indicate that increasing $a_{i\dot{g}}$ in pattern $p_{j\prime}$ is more
effective. We sort products such as $r_{i}=0$ in the descending order of \overline{y}_{i} , and add a product in
this order in our neighborhood search.

We introduce other operations to make the search more effective. For each pattern, surplus
products are divided into two sets. One is the set of products which do not affect the current
LP solution even if a product is removed from the pattern (i.e., the set of products i such that
$a_{ij}\geq 1$ and $x_{j}\leq r_{i}$ for the pattern p_{j}). The other is the set of products which affect the LP
solution if it is removed from the pattern (i.e., the set of products i such that a_{ij}. ≥ 1 and
$x_{j}>r_{i}$ for the pattern p_{j},). It takes only $O(m)$ time to divide the products into these sets,
and all products which do not affect the current LP solution are removed from the pattern. We
call this operation as the redundancy reduction operation, and it is applied before the basic
operation.

We explain another operation of adding products after changing a pattern by the basic
operation. We divide all products into two sets according to whether overproduction r_{i} is 0 or
positive. We first add products such that $r_{i}=0$ to the pattern as much as possible. In this
stage, we sort products in the descending order of \overline{y}_{i} , and add them in this order. Whenever a
product is added to the pattern, we recompute an LP optimal solution and update \overline{y}i. When it
becomes impossible to add such products, then products with $r_{i}>0$ are added to the pattern
as much as possible. We sort these products in the ascending order of $r,$, and add them in this
order. Since surplus products do not affect the LP solution, we can not improve the current LP
solution by this operation and it is not necessary to solve LP problem again. However, we may
improve the current LP solution in the subsequent iteration with this operation. We call this
operation as the filling-up operation, and it is applied after the basic operation. By these two
operations, we can improve the quality of pattern p_{j} .

If all products in pattern p_{j} are removed by the redundancy reduction and basic operations,

40

we must reconstruct a new pattern from scratch by the basic and filling-up operations. This
situation always occurs for pattern p_{j} with $x_{j}=0,$ and such reconstruction may not find a
pattern with small trim loss. Therefore, we replace p_{j} with a new pattern in this case. For this
purpose, we keep cn (c is a parameter and we use $c=3$) good cutting patterns obtained by then
in memory, and choose one from them, where we define good cutting patte rn as those having
small trim loss. We call this as the replacement operation.

Now, our new neighborhood is the set of solutions obtained from Π by applying the operations
proposed in this section (i.e., basic, redundancy reduction, filling-up and replacement). We call
this neighborhood as the enhanced neighborhood. Two neighborhoods, basic and enhanced, will
$\})\mathrm{e}$ computationally compared in Section 5.

4.2 Generating feasible cutting patterns

In order to generate feasible cutting patterns, we must solve the twO-dimensional rectangle
packing problem, which is also $\mathrm{N}\mathrm{P}$ -hard. That is, to judge whether a combination of products is
realized as a feasible cutting pattern or not, we need an algorithm to place a given set of products
into the stock sheet without mutual overlap. For this purpose, we develop a heuristic algorithm
using an existing rectangle packing algorithm $[2, 3]$, which is based on local search with a coding
scheme called sequence pair [5]. In their algorithm, they use a pair of permutations of all given
rectangles to represent a solution, and compute positions of all rectangles with their decoding
algorithm. We tailored their algorithm to our local search algorithm for $2\mathrm{D}\mathrm{C}\mathrm{S}\mathrm{P}$ n. We omit the
details of this algorithm here, see [4] for more detailed explanation.

5 Computational experiments

We conducted computational experiments to evaluate the proposed algorithms. The algorithms
were coded in the C language and run on a handmade PC (Intel Pentium IV $2.8\mathrm{G}\mathrm{H}\mathrm{z}$, 1GB
memory).

5.1 Test instances

We generated random test instances of $2\mathrm{D}\mathrm{C}\mathrm{S}\mathrm{P}$ following the generation scheme described in
$[6, 8]$. The instances are characterized by the following three parameters.

Number of product types: We have four classes 20, 30, 40 and 50 of the number
of product types m (e.g., $m=20$ in class 20).

Range of demands: Demand d_{i} of type S (S stands for small) is randomly taken
from interval $[1, 25]$, type L (large) is taken from $[100, 200]$, and type V (variable)
is taken from either intervals $[1, 25]$ or $[100, 200]$ with the equal probability for
each product i .

Size of stock sheet: We have five classes α , β,γ , δ and ϵ of the stock sheets. Class
α is the smallest stock sheet which can contain six products on the average,
while class ϵ is the largest containing about 50 products.

41

Hence, there are 60 types of instances and we generated one instance for each type. These
instances are named like “20S\"a, $” 20\mathrm{S}7"$, . . ., “20S\"a,, $” 20\mathrm{L}\alpha"$, . .. ’

$” 20\mathrm{V},"$, “also”, J ..,
“50V\"e. In our computational experiments, we apply our local search algorithms ten times to
each instance with different initial solutions, and report the average results of ten trials. All test
instances are electronically available from our web site
(http: $//\mathrm{w}\mathrm{w}\mathrm{w}$-or. $\mathrm{a}\mathrm{m}\mathrm{p}.\mathrm{i}$.kyotO-u. $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}l^{\sim}$ imahorilpacking/).

5.2 Comparison of basic and enhanced neighborhoods

First, basic and enhanced neighborhoods were computationally compared. For each instance,
we applied our local search algorithm with each type of neighborhood ten times, and report the
average quality of the obtained solutions and computational time, where local search halts only
when a locally optimal solution is reached. For simplicity, we set the number of different cutting
patterns to the number of product types (i.e., $n=m$). Results are shown in Table 1. Column

Table 1: Comparison two neighborhoods in solution quality and computational time

basic enhanced

$|m$ quality time quality time
20 15.17 13.88 10.49 18.42
30 14.81 41.18 8.71 45.76
40 11.91 221.61 8.76 144.93
50 10.94 955.64 8.18 638.86

$” \mathrm{m}$” shows the number of product types. For each m , we have 15 instances with different ranges
of demands and different sizes of stock sheet; e.g., we have instances $20\mathrm{S}\mathrm{a}$, $20\mathrm{S}\mathrm{a}$, .. . ’

$20\mathrm{V}\epsilon$ for
$m=20.$ Column “quality” shows the average of the following ratio,

quality $=100\cdot(f-f_{LB})/f_{LB}$,

where f is the number of stock sheets used in the solution, and f_{LB} is a lower bound of the
number of required stock sheets. The smaller quality means the better performance of the
algorithm. Column “time” shows the average CPU time i II seconds of one local search. These
notations are also used in Table 2.

From Table 1 we can observe that the enhanced neighborhood gives smaller quality value
than the basic neighborhood in all cases, while using similar computational time. It indicates
that the redundancy reduction, filling-up and replacement operations proposed in Section 4.1
make the search more powerful and efficient. Based on this, we will use the enhanced neighbor-
hood in the following experiments.

5.3 Effect of the number of patterns n

Next, we conducted computational experiments for different number of patterns n , i.e., n was
set to m , $0.8m$, $0.6m$ and 0.4rn. Results are given in Table 2. The leftmost column shows the

42

Table 2: Quality and time with various number of different patterns on various classes

$\underline{n=m}$ $\underline{n=0.8m}$ $\underline{n=0.6m}$ $\underline{n=0.4m}$

quality time quality time quality time quality time

class 20 10.491 18.424 12.247 6.308 14.432 3.753 20.810 1.954
class 30 8.707 45.758 9.899 18.533 12.175 6.424 16.758 3.098
class 40 8.758 144.932 10.360 45.330 12.218 15.630 16.891 7.091

$. \frac{\mathrm{c}1\mathrm{a}\mathrm{s}\mathrm{s}508.177636.8619.940143.13511.50437.29215.31512.117}{\mathrm{c}1\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{S}12.531149.20014.55547.33516.37715.37320.7696.348}$

class L 6.185 262.195 7.390 57.178 9.100 16.865 12.403 5.369

$\frac{\mathrm{c}1\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{V}8.384223.0879.89055.46712.26915.08619.1586.478}{\mathrm{c}1\mathrm{a}\mathrm{s}\mathrm{s}\alpha 10.51646.94412.43610.00116.3231.84328.2030.264}$

class β 8.048 71.712 10.027 15.579 12.269 3.388 19.436 0.780
class γ 7.924 141.175 9.661 28.295 11.530 6.258 14.912 1.627
class δ 7.331 311.113 8.483 60.768 9.397 15.827 10.795 6.567
class ϵ 11.348 486.525 12.451 151.9901 13.391 51.559 13.871 21.087
average 9.033 211.494 10.612 53.327 12.582 15.775 17.443 6.065

instance classes. For example, “class 20” represents 15 instances with $m=20.$ Each figure in this
row is the average of 150 trials (that is, 10 trials with different initial solutions for each instance,
and there are 15 instances for class 20). “class S

” represents 20 instances whose demand is taken
from interval $[1, 25]$, and each figure is the average of 200 trials. Other rows can be similarly
interpreted. Now from the rows for classes 20 30 40 and 50 in Table 2, we can observe that as
m becomes larger (i.e., from class 20 to 50), computational time increases and solution quality
becomes slightly better. As n becomes smaller, the size of neighborhood becomes smaler and
local search algorithm converges to locally optimal solutions rather quickly, making the quality
of obtained solution poorer.

From the rows for different ranges of demands (i.e., S , L and V), we can observe that the
solution quality for class S is the worst even though all classes use similar computational time.
This is due to the influence of rounding and overproduction. Namely, we compute the numbers
of applications x_{j} by rounding from the LP solution, and it introduces a little overproduction
for several product types. As the total demands is smaller for class S , the effect of one unit of
overproduction to the quality is larger.

From the rows for different sizes of stock sheet (i.e., class α , β , γ , δ artd ϵ), we can observe
that the solution qualities for classes α and ϵ are worse than others. The reason for class ϵ is
similar to the previous one. For many test instances of class ϵ , we could find good solutions if the
numbers of applications x_{j} can be fractional. However, these solutions degrade after obtaining
integer solutions. On the other hand, as the size of stock sheet becomes smaller, it becomes
harder to find a placement of products with small unused area, since there are not enough small
products to fill up the stock sheet.

43

5.4 Trade-0fF curve between n and solution quality

Finally, we conducted more detailed experiment to obtain the trade-0fF curve between n and the
quality of the obtained solutions. We used two instances $40\mathrm{V}\mathrm{a}$ arid $40\mathrm{V}$ S. The area of the stock
sheet of $40\mathrm{V}\mathrm{S}$ is four times as large as that of $40\mathrm{V}\mathrm{a}$. Results are shown in Figures 1 and 2. In
these figures, horizontal axis is n , and vertical axis shows the solution quality and CPU time in
seconds. $40\mathrm{V}\alpha$-LP (resp., $40\mathrm{V}\delta- \mathrm{L}\mathrm{P}$) shows the average quality of obtained LP solution (i.e., the
numbers of applications can be fractional) for $40\mathrm{V}\mathrm{a}$ (resp., $40\mathrm{V}\delta$), and $40\mathrm{V}\mathrm{a}$ -IP (resp., $40\mathrm{V}\delta-$

$\mathrm{I}\mathrm{P})$ shows the average quality of obtained IP solution (i.e., the numbers of applications must
be integer) for $40\mathrm{V}\mathrm{a}$ (resp., $40\mathrm{V}\delta$). $40\mathrm{V}\mathrm{a}$ time and $40\mathrm{V}\mathrm{S}$ -time show the average CPU times in
seconds for ten trials. When n is very small (i.e., $n\leq 11$ for $40\mathrm{V}\mathrm{a}$ and $n\leq 2$ for $40\mathrm{V}\mathrm{a}$), we could
not find initial feasible solutions. From Figures 1 and 2, we observe that the computational time
tends to increase and the solution quality improves as n increases. For larger n , the improvement
in quality becomes tiny instead of the computational time is increasing steadily. Note that, if
the numbers of applications can be fractional, it is known that an optimal solution for $2\mathrm{D}\mathrm{C}\mathrm{S}\mathrm{P}$

uses at most m different patterns. Nevertheless, our obtained LP solutions for these instances
with $n=40$ are slightly worse than those with larger n . From these observations, there is still
room for improvement in our neighborhood search. We also observe that the gap between LP
and IP solutions for $40\mathrm{V}\delta$ are more significant than the gap for $40\mathrm{V}\mathrm{a}$.

30 ao
$—– 40\mathrm{V}\alpha 40\mathrm{V}\alpha-$-LIPP
$\ldots+\cdots 40\mathrm{V}\alpha-.\mathrm{m}\mathrm{e}$ 70

25

20

$=\vee-\circ\supset 15$

$.\cdot.\dagger.......,\mathrm{a}.\backslash .’.\cdot.\cdot:.\cdot.\cdot.\cdot.\cdot......\dotplus\cdot.\cdot.\cdot.\mathrm{i}.._{}....\dotplus\cdot.\cdot\cdot.\cdot\dot{}_{}..\cdot$

. \cdot

50

40

$.\sim\underline{\circ}\overline{\mathrm{o}}$

. $+$

$!$ $\dotplus\cdot.\cdot$

: 30
$\mathrm{j}\mathrm{Q}$

$+$.
$.\dotplus\cdot\dotplus i\cdot.i.’.\star.....\cdot\star$

20

5
$\mathrm{j}\mathrm{Q}$

70
$\epsilon 0^{0}$

$\mapsto\mapsto+$

屋
010030 40

num r of di erent pa $\mathrm{e}\prime \mathrm{n}\mathrm{s}$

Figure 1: Trade-Off between n and solution quality for $40\mathrm{V}\mathrm{a}$

6 Conclusion

Irr this paper, we considered the twO-dimensional cutting stock problem with a given number of
cutting patterns. We proposed a local search algorithm using linear programming techniques. In

44

$\mathrm{s}\mathrm{o}0$

–
$\mathrm{v}\mathrm{v}-$.

$\mathrm{L}\mathrm{P}$.T.\cdot.\cdot.
$—–+\cdot-\cdot$

l $-$ti e

$._{\dot{}}$

. 700
25 : \cdot..

!. .

$+$

$.\dotplus j\cdot+_{!}...+\cdot\dotplus’\cdot+$

.
$\dotplus\cdot\cdot$

:.
6屋 0

20

1

$[$

$.+!......\cdot.+.....+$

.
$..\cdot.+.\cdot..._{}...\cdot.\dotplus\cdot.:_{}..\cdot.\cdot.\dot{}........\cdot i.+.\dotplus\cdot.\cdot+\cdot...\cdot$

. $\mathrm{s}\mathrm{o}0.\vee--\sim-\Phi$

15 400 0

$\supseteq 010$
$.\cdot+.\cdot+^{*}+\cdot.\cdot$

.

5

$*^{t}$

$\star^{*+}.\dotplus$

$++$

00 10 20 40 so 70 80
number of diff『en’ pattems

Figure 2: Trade-Off between n and solution quality for $40\mathrm{V}\delta$

our local search algorithm, we heuristicaUy compute the number of applications for each cutting
pattern from the solution of the associated LP relaxation. To realize an efficient search, we
restrict the size of the neighborhood by considering only those solutions obtained by exchanging
one pattern in the current set of patterns. First, we proposed the basic neighborhood defined by
removing t products from one pattern and add one product to the pattern. Then, we improved
this basic neighborhood using two ideas: (1) We remove all products which do not affect the
current LP solution and we add products as much as possible to the pattern, (2) We keep good
patterns during the search and use them when the current pattern is found to be useless. To
check the feasibility of each pattern, we proposed a rectangle packing algorithm which is based
on an effective algorithm proposed by Imahori et al. $[2, 3]$.

We reported computational results of the local search algorithms using two different neigh-
borhoods, and compared their performance. We confirmed the effectiveness of various ideas to
generate a new pattern. We also pointed out that our approach can provide reasonable trade-Off
curves between the number of different cutting patterns and the quality. As a future work, we
are planning to improve the solution quality by introducing more efficient neighborhood search
and by incorporating advanced metaheuristic algorithms.

References

[1] $\mathrm{P}.\mathrm{C}$. Gilmore and $\mathrm{R}.\mathrm{E}$. Gomory, Multistage cutting stock problems of two and more dimen-
sions, Operations Research, 13, pp. 94-119, 1965.

[2] S. Imahori, M. Yagiura and T. Ibaraki, Local search algorithms for the rectangle packing
problem with general spatial costs, Mathematical Programming Series B (to appear).

45

[3] S. Imahori, M. Yagiura arrd T. Ibaraki, Improved local search algorithms for the rect-
angle packing problem with general spatial costs, submitted for publication (available at
$\mathrm{h}\mathrm{t}\mathrm{t}\mathrm{p}:\oint/\mathrm{w}\mathrm{w}\mathrm{w}$-or.amp.i.kyot0-u. $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}\oint\sim \mathrm{i}\mathrm{m}\mathrm{a}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{i}\oint$packing

[4] S. Imahori, M. Yagiura, S. Umetani, S. Adachi and T. Ibaraki, Local search algorithms for
the twO-dimensional cutting stock problem with a given number of different patterns, sub-
mitted for publication (available at http://www-0r.amp.i.ky0t0-u.ac.jp/ \sim imahorifpacking).

[5] H. Murata, K. Fujiyoshi, S. Nakatake and Y. Kajitani, VLSI module placement based on
rectangle-packing by the sequence-pair, IEEE Transactions on Computer Aided Design , 15,
pp.1518-1524, 1996.

[6] J. Riehme, G. Scheithauer and J. Terno, The solution of twO-stage guillotine cutting stock
problems having extremely varying order demands, European Journal of Operational Re-
search, 91, pp. 543-552, 1996.

[7] S. Umetani, M. Yagiura and T. Ibaraki, An $\mathrm{L}\mathrm{P}$ -based local search to the one dimensional
cutting stock problem using a given number of cutting patterns, IEICE Transactions on
Fundamentals, E86-A, pp. 1093-1102, 2003.

[8] $\mathrm{R}.\mathrm{A}$. Valdes, A. Parajon, and $\mathrm{J}.\mathrm{M}$. Tamarit, A computational study of $\mathrm{L}\mathrm{P}$-based heuristic
algorithms for twO-dimensional guillotine cutting stock problems, OR Spectrum , 24, pp.179-
192, 2002.

