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1 Introduction

In communication process, a channel has an activity to communicate infor-
mation of input system to the output system. The mutual entropy denotes
an amount of information correctly transmitted to the output system from
the input system through a channel. The (semi-classical) mutual entropies
for classical input and quantum output were defined by several researchers
[7, 6, 9]. The fully quantum mutual entropy for quantum input and output
by means of the relative entropy of Umegaki [24] was defined by Ohya [14]
in 1983, and he extended it [16] to general quantum systems by using the
relative entropy of Araki [1] and Uhlmann [25]. Capacity is one of the most
fundamental tools to measure the efficiency of information transmission. The
channel capacity is defined by taking the supremum of the quantum mutual
entropy over all input states in a certain state space.

~ In order to construct an idealistic logical gate, Fredkin and Toffoli [4]
proposed a logical conservative gate. Based on this logical gate, Milburn
constructed a quantum logical gate [11] using a Mach - Zender interferometer
with a Kerr medium. We call this gate a Fredkin - Toffoli - Milburn (FTM)
gate in this paper.

In this talk, we briefly review quantum channels for several models and
we briefly explain the quantum mutual entropy and the quantum capacity
for quantum channels. We concretely calculate the quantum capacity for
the quantum channels. We construct a quantum channel for the FTM gate
and discuss the information conservation by computing the quantum mutual
entropy.
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2 Quantum Channels

In development of quantum information theory, the concept of channel has
been played an important role. In particular, an attenuation channel intro-
duced in [14] has been paid much attention in optical communication. A
quantum channel is a map describing the state change from an initial system
to a final system, mathematically. Let us consider the construction of the
quantum channels.

Let H1,H2 be the separable Hilbert spaces of an input and an output
systems, respectively, and let B (H) be the set of all bounded linear oper-
ators on Hy. & (Hy) is the set of all density operators on Hy (k=1,2) :
SHr)={peB(Hk);p>0, p=p*, trp=1}

A map A* from the input system to the output system is called a (purely)
quantum channel. The quantum channel A* satisfying the affine property
(i.e., Ek A = 1 (V)\k > 0) = A* (Zk )\kpk) = Ek- Ap A* (pk) , Vpr €
G (H,)) is called a linear channel. A map A from B (H;) to B (H,) is called
the dual map of A* : & (H;) — & (H,) if A satisfies

trpA(A) =trA* (p) A

for any p € G (H;) and any A € B (H;). A* from & (H;) to & (Hy) is called
a completely positive (CP) channel if its dual map A satisfies

> BjA(A3Ac) By >0
k=1
for any n € N, any B; € B(H;) and any A, € B(H,).

A channel transmitted from a probability measure to a quantum state
is called a classical-quantum (CQ) channel, and a channel from a quantum
state to a probability measure is called a quantum-classical (QC) channel.
The capacity of both CQ and QC channels have been discussed in several
papers [7], [17], [21].

2.1 Noisy quantum channel

In order to discuss the communication system using the laser signal math-
ematically, it is necessary to formulate a (quantum) communication theory
being able to treat the quantum effects of signals and channels. In order to
discuss influences of noise and loss in communication processes, one needs
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the following two systems [14]. Let K, K, be the separable Hilbert spaces
for the noise and the loss systems, respectively. A quantum channel A* is
given by the composition of three mappings a*, 7*,y* such as

A*:‘a*OW*O’Y*.
a* is a CP channel from & (H; ® K3) to & (H;) defined by
a* (o) =tr,o

for any o € & (H; ® K;) , where try, is a partial trace with respect to K,. 7*
is the CP channel from & (H; ® K;) to & (Hz ® K3) depending on the physi-
cal property of the device. v* is the CP channel from & (H;) to & (H; ® K1)
with a certain noise state £ € & (K;) defined by

T (p)=p®¢&
for any p € G (H;) . The quantum channel A* with the noise £ is written by
A* (p) = tri,m* (p®§)

for any p € G (H;).
Here we briefly review noisy quantum channel [22]. A channel A* is called
a noisy quantum channel if 7* and £ above are given by

§¢=|m)(m| and n* () =V () V7,

where |m) (m/| is m photon number state in H; and V is a linear mapping
from H; ® Ky to Hy ® Ka given by

n+m
V(ny®m)) = > Cr™i)®n+m—j),
=0
om = i (—1)™ Volmljt(n +m — j)! R (_B)n+j-—2r

—r rln—r)1(G—r)!(m~—j+r)!

for any |n) in H; and K = min{j,n}, L = max {j — m,0}, where a and
B are complex numbers satisfying |of* + |8]*> = 1, and 7 = |a|? is the
transmission rate of the channel. In particular, p ® £ is given by the tensor
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products of two coherent states |0) (8] ® |x) (x|, then 7* (p ® £) is obtained
by _

™ (p®¢E) = l|ab +fr)(af + Bk
® |86 + ax) (—F8 + ax|.

Here we remark that an attenuation channel A} [14] is derived from the noisy
quantum channel with m = 0.

3 Quantum Mutual Entropy

The quantum entropy was introduced by von Neumann around 1932, which
is defined by

S (p) = ~trplogp

for any density operators p in & (H;). For the density operator p, the de-
composion into one dimensional projections

p= Z ME,.

is called a Schatten decomposition of p. If these exists a degenerated eigen-
value in the spectral decomposition of p, the Schatten decomposition is not
unique. For a quantum channel A*, the compound state oz representing the
correlation between the input state p and the output state A*p was defined
in [14] by
| o5 = AnEn®AE,,
n

where the subscript E of 0 means a certain Schatten decomposition of p. The
compound state or depends on a Schatten decomposition of an input state
p-

The classical mutual entropy is determied by an input state and a channel,
so that we denote the quantum mutual entropy with respect to the input state
p and the quantum channel A* by I (p; A*). This quantum mutual entropy
I (p; A*) should satisfy the following three conditions:

(1) If the channel A* is identity map, then the quantum mutual entropy
equals to the von Neumann entropy of the input state, that is, I (p;id) =

S (p)-



(2) If the system is classical, then the quantum mutual entropy equals to
the classical mutual entropy.

(3) The following fundamental inequalities are satisfied:

0<I(pA")<S(p).

To define such a quantum mutual entropy extending Shannon’s and Gelefand-

Yaglom’s classical mutual entropy, we need the quantum relative entropy and
the joint state (it is called ”compound state” in the sequel) describing the
correlation between an input state p and the output state A*p through a
channel A*. A finite partition of measurable space in classical case corre-
sponds to an orthogonal decomposition {Ej} of the identity operator I of H
in quantum case because the set of all orthogonal projections is considered
to make an event system in a quantum system. It is known [18] that the
following equality holds

sup { - Z troE logtrpEy; {Ek}} = —trplog p,
k

and the supremum is attained when {E;} is a Schatten decomposition of p.
Therefore the Schatten decomposition is used to define the compound state
and the quantum mutual entropy following the formulation of the classical
mutual entropy by Kolmogorov , Gelfand and Yaglom [5].

The compound state og (corresponding to joint state in CS) of p and A*p
was introduced in [16, 17], which is given by

= Z MEr ® A*Ey, (31)
k

where E stands for a Schatten decomposition {E;} of p, so that the com-
pound state depends on how we decompose the state p into basic states
(elementary events), in other words, how to see the input state.

The relative entropy for two states p and o is defined by Umegaki [24]
and Lindblad [10], which is written as

__ [ trp(logp —logo) (when 7amp C Tano)
${p,0) = { 00 (otherwise) (32)

Then we can define the mutual entropy by means of the compound state
and the relative entropy [14], that is,
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I(p;A") =sup{S (o5, p @ A'p); E = {Ei}}, (3.3)

where the supremum is taken over all Schatten decompositions because this
decomposition is not unique unless every eigenvalue is not degenerated. The
following lemma was proved in [13]:

For a Schatten decomposition p = Y A, E,, the relative entropy S (o, 09)
with respect to op and og is written by

S(og,p®A%p) =) AnS(A*E,, Ap).
This lemma reduces it to the following form:

I(p; A*) = sup {Z MeS (A*Ey, A*p) ; E = {Ek}} . (3.4)
k

This mutual entropy satisfies all conditions (i)~ (iii) mentioned above.

We will briefly review more general case. If A : B — A is a unitial
completely positive mapping between the algebras A and B, that is, the dual
A* is a channeling transformation from the state space of A into that of B,
then

S(A* o1, A*p2) < (i1, 02)- (3.5)

Let A : B — A be completely positive unitial mapping and ¢ be a state of
B. So ¢ is an initial state of the channel A*. The quantum mutual entropy
is defined after [14] as

I(; A*) = sup {32, A S(A g, A*p) : 32, Ajps = o}, (3.6)

where the least upper bound is over all orthogonal extremal decompositions.
Note that the definition (3.3) of the mutual entropy is written as

I(p; A*) = sup {Z MS (A*pr, A"p);p =Y Mepr € F, (p)} :
k k

where F, (p) is the set of all orthogonal finite decompositions of p. The proof
of the above equality is given in [?] by means of fundamental properties
of the quantum relative entropy. For the case of probability distribution



p = ) M6y and classical -quantum channel v*, the mutual entropy can be
denoted by

I(p;7) = S (7"8k,7P) @3

k
where 6, is the delta measure. When the minus is well-defined, it equals to
I(p;~* Z,\ks (v*6%) » (3.8)

which has been taken as the definition of the semi-classical mutual entropy
for a classical-quantum channel [7, 6, 9].

Holevo proved the following inequality in 1973 [7].

When A =C* and B =C™ of the above notation

Ia=) pylog ”Jq' < $(v"¢) Z'\ S(v*ex)

1,J

holds.
Holevo’s upper bound can now be expressed by

- Z AS(Y i) = Z’\is(’Y*%a Y'e)- (3.9)

Yuen and Ozawa [26] propose to call Theorem 1 the fundamental theorem
of quantum communication. The theorem bounds the performance of the
detecting scheme. For general quantum case, we have the following inequality
according to the lemma of [14].

When the Schatten decomposition (i.e., one dimensjonal spectral decom-
position) ¢ = 3, Aigp; is unique,

In<I= ZPiS(A*%A*SO)-

for any quantum channel A*. '

We see that in most cases the bound can not be achieved. Namely, the
bound may be achieved in the only case when the output states A*p; have
commuting densities.

If the states A*g;, 1 < i < m, do not commute, then

Ly = Epn log - < S(A%) = 3o NS(°p)

is a strict inequality.
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4 Quantum capacity

The capacity of purely quantum channel was studied in [19], [20] , [23].

Let S be the set of all input states satisfying some physical conditions. Let
us consider the ability of information transmition for the quantum channel
A*. The answer of this question is the capacity of quantum channel A* for a
certain set S CS (H;) defined by

Cy (A*) =sup{I(p;A*);p € S}

When S =& (H,) , the capacity of quantum channel A* is denoted by C, (A*).
Then the following theorem for an attenuation channel was proved in [19).
We here give a proof for a noisy quantum channel.

For a subset S, = {p € & (H;) ;dim s (p) = n}, the capacity of the noisy
quantum channel A* satisfies

Cor (A*) = logn,

where s (p) is the support projection of p.

When the mean energy of the input state vectors {|76;)} can be taken
infinite, i.e.,
. 2
lim |78, = |2(|" = oo
T—00

the above theorem tells that the quantum capacity for the noisy quantum
channel A* with respect to S,, becomes log n. It is a natural result, however it
is impossible to take the mean energy of input state vector infinite. Therefore
we have to compute the quantum capacity

Coe (A*) = sup {I (p;A*);p € S.}

under some constraint S, = {p € S; E (p) < e} on the mean energy E (p) of
the input state p.

In [16, 19, ?], we also considered the pseudo-quantum capacity C, (I'*)
defined by (??) with the pseudo-mutual entropy I, (p; I'*) where the supre-
mum is taken over all finite decompositions instead of all orthogonal pure
decompositions:

I, (p;T*) = sup {Z S (T, T*p) 5 p = Z’\’“p’“ finite decomposition} .
k ok
(4.1)
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However the pseudo-mutual entropy is not well-matched to the conditions
explained in Sec.2, and it is difficult to compute numerically [20]. From the
monotonicity of the mutual entropy [18], we have

0 < C%(T) < G (T*) < sup {S(p); p € So} -

5 Numerical Computation for Capacity of Noisy
Quantum Channel

In this section, we compute the capacity of the noisy quantum channel for
input coherent states with a coherent noise state.

First we prove the following theorem.

For any states p given by p = Alz)(z|+ (1 — A)|y)(y| with any nonorthog-
onal pair z,y € H and any A € [0,1], the Schatten decomposition of p is
uniquely determined by

p = AEog+ MEx,

where two eigenvalues A\g and \; of p are
1 2
5{1+\/1—4,\(1—>\) (1= [z, )| )}=|Ipl|,
1
A = 5{1—\/1—4,\(1—A»)(l—l(z,y)lz)}=1—||»0H-

Ao

I

Moreover two projections Ej, E; are constructed by the eigenvectors |e;)
with respect to A; (j =0,1)

Ey = leo) (eo| = (alz) + bly)
E1 = le) (e1| = (c|z) +dly)

Ne” N
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where the constants a, b, c,d are given as follows:
2

|a|2 = . ’
7242 {z,y)| 7+ 1
|b|2 = L )
7242 {z,y)| T+ 1
- L, T
~(1-2)) + /1= 4\(1 = N1~ [{z, 1))
T = ,
2(1 = ) [{z, )|
off = N
1242 |{z, )|t + 1
1
d? =
i 242 {z,y)t + 1’
cd = &d t

T PRzt + 1

14l —(1=2) = 1-00 -3 - eyl
T+ [z, y) 2(1 =) (=, )l '

Let p be an input coherent state given by

p = A0)(0] + (1 - A)|6)(0)]

where |0) is a vacuum state vector in H and |#) is a coherent state vector in
H. From the above proposition, the Schatten decomposition of p is obtained
by

p=MEY® + \EX,
where the eigenvalues Ag and A; of p are

1

o = S{1+VI=DT-N (1 —exp(-[FP)},

1
Moo= {1 VIS DTN T - (P |
and the two projections Eg?, E®? are

00 _ .08\ /.08
Ey” = leg <eo’

I

0,0 0,6 0,0
E; ler”) € l
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The eigenvector |e)?) with respect to ) is

leg®) = ag,e|0) + boe|6),

where
2
7'
lagel* = — O’f 2
o9 +2exp(—35/0/?)700 + 1
1
Ibo’glz =3 1ig|2 1
| To9+2exp(—3160/2) 70, +

70,8
89 +2exp(—31012)m00 + 1
—(1-2X) + /1 —4X(1 = N)(1 — exp(—|6]?))
2(1-X) exp(—%|9|2)

ag,9bp g = Ggebp e =

To,6 =

The eigenvector |e?) with respect to ), is
g 1

|€3%) = co,6|0) + dosl6),

where
t2
leoel® = = Of 2
1
|do.sl* = 2 1g2
tge+2exp(—3|0%)top + 1

to,0
td g+2exp(—31012)t0 + 1
1 +exp(—3|61*)70,e
Too+exp(—3[0/2)

Co,ajo,a = Cpedog =

tog =

In order to compute the quantum capacity, we use the following two subsets
of & (H;) according to the energy constraint:

Se
Si

e

I

{p=N0)0| + (1 - N)[6)(6] € & (H:) ;A € [0,1],0 € C,E (p) = |6 < e},
{p=X0)(0] + (1 = A\)|6)(8] € & (H1); A€ [0,1],0 € C,E (p) = (1—A) [0 < e}.

IH



152

5.1 Noisy quantum channel:

When A* is the noisy quantum channel with the transmission rate n and the
coherent noise state |)(x/|, the output state A*p is represented by

A*p = AyT=ne) (/T = 16| + (1 = A)|v/A8 + /T = ne)(v/a8 + /T 7x.

From the above proposition, the eigenvalues of A*p are given by

iael = 1 {1 ¥ \/1 -1 (1= (VT vi0-+ \/1_—%}]2)} ,
,{1 H1-00-3) (1- e (- WP))} ,

- Al = 5 {1 - \/1 —4(1-)) (1 = (VT =Tim, v/ + ﬁ‘—"nn)F)},
- {1 — (1= 003 (1-em (- w'ﬁel?))}.

A*E'?’o can be written by

DO =

ANE)® = XEjo + (1 — X)) Ejp,
where A; (j = 0, 1) are given by

fo = 5(1+ep(~301- o)

T¢g + 2€xp (—% |\/ﬁ9{2) To6 + 1
39 + 2exp(—3|01%) 100 + 1

%= (1= ep(—5(1 - m)oP)

2o+ 2exp (—3 [y/78]*) o0 + 1
ta g +2exp(—3101*)top + 1

DO =

and each projection Ej is constructed by each state vector |Z;;) as

Ejx = |Z) (Zjx| (G, k = 0,1)
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satisfying the following conditions:

(Ejkaijk> =1 (J?k=0>l)’

12,1
(Zoo, Zo1) = 20 # 0,
/(o + 1) — dexp(~ 16, )73,
t3o—1

(%10, Z11) £ 0.

V(B + 17— dexp(~16, )

From the above proposition, the eigenvalues Aj; (j,% = 0,1) are obtained as

N Z;50,%51 1 ' ~x Y — —

e = 5 {14 - =30 e am |
N Zj0,%5 1 Y I — —

A 25{1—\ﬁ‘4’\j<1_)‘j)(1—|(xj0’mjl>!2)}-

The quantum mutual entropy (3.6) with respect to the input coherent states
p and the noisy quantum channel A* is uniquely obtained as

I(p; A%) = S(A*p) — llplIS(A*Ep®) — (1 — |lo])S(A”E7*)
for j,k = 0,1. Moreover
S(A*p) = - IIA*PII log ||A*pl| — (1 — [|A"p]|) log (1 — [|A"pl]) ,

S(A*E}®) = Z NPT og X (j,k=0,1).

i=0

From the above result of the quantum mutual entropy I(p; A*), we expricitly
compute the quantum capacity for the noisy quantum channel A* with the
coherent noise state |k) (k| such as

Co=(A*) =sup {I(p;A*);p € S}

C5:(A%) < C%(A").
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Next we discuss what is the most suitable modulation in OOK, PPM,
PWM, PSK for the noisy quantum channel. The subsets with respect to the
optical modulations OOK, PPM, PWK, PSK are given by

82K = {p=X0)(0] + (1 - N)|8)(B] € & (H1);A €[0,1],0 € C,|8]* < e}
SePM = {p=X0)0]®16)(8] + (1 — N)|6) (8] ® [0){0] € & (H1) ® & (H1);
Ae0,1],0€C, |8 <e}

{p = Al0)0] ® |6)(6] + (1 — A)|6){0] ® |6)(6] € & (H1) ® & (Ha);
Ae[0,1],0 €C, |0 <e}

SP = {p= MO0l + (1 —A)| —0)(—6] € &(H1);A€[0,1],0 € C, |8]* < e}

I

PWM
Se

Calculating the capacity of the noisy quantum channel for the above subsets
consisted by the optical modulations, we have the following theorem.

The capacities of the noisy quantum channel for the subsets SP°%, SPPM
and SPSK satisfy the following inequalities

Q0K
2e

Cre

SPPM

A%) < CSF

SPSK( SPWM(

(A*) = A*) < OSEVM(AY).

6 Quantum channel for Fredkin-Toffoli-Milburn
gate

Fredkin and Toffoli [4] proposed a conservative gate, by which any logical
gate is realized and it is shown to be a reversible gate in the sense that
there is no loss of information. This gate was developed by Milburn [11] as
a quantum gate with quantum input and output. We call this gate Fredkin-
Toffoli-Milburn (FTM) gate here. In this section, we first formulate the FTM
gate by means of quantum channels and discuss the information conservation
using the quantum mutual entropy in the next section.

The FTM gate is composed of two input gates I; I, and one control
gate C. Two inputs come to the first beam splitter and one spliting input
passes through the control gate made from an optical Kerr device, then two
spliting inputs come in the second beam splitter and appear as two outputs
(Fig.2.1). We construct quantum channels to express the beam splitters
and the optical Kerr medium and discuss the works of the above gate, in
particular, conservation of information.
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|[BS1 . Optical Kerr Device | p1inH,
In=0.5 | painHz
M2< n=0.5 BS, ;$__+02
O,

Fig 2.1 FTM gate
(1) Beam splitters: (a) Let V; be a mapping from H; ® H; to H; ® Ho
with transmission rate 7; given by

n1+n2

Vi(jn) ®na)) = ) CJ™ 15) @ |ma + 1 — 3) (6.1)

j=0

for any photon number state vectors |n;) ® |na) € H; ® Ha. The quantum
channel I}, expressing the first beam splitter (beam splitter 1) is defined
by

1 (1 ® p2) = Vi (p1 ® p2) V' (6.2)

for any states p; ® ps € &(H; ® Hy). In particular, for an input state in two
gates I; and I, given by the tensor product of two coherent states p; ® py =
161)(01] ® |62)(62], s, (1 ® p2) is written as

351 (p1 ® p2) k\/—91+\/1—77192> <\/_91+\/1 ?7192|
® |—\/1 by + Vs ) {—/T— by + \/mezl(ﬁ.s)

(b) Let V; be a mapping from H; ® H, to H; ® H, with transmission rate
72 given by

ni+n2
Va(Im) @ [na)) = ) CF*™ fn1 + g — j) ® |5) (6.4)
=0
for any photon number state vectors |n;) ® |ne) € Hi ® Ha. The quantum
channel I}, expressing the second beam splitter (beam splitter 2) is defined
by

185
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Mggs (p1 ® p2) = Va (p1 ® p2) Vo' (6.5)

for any states p; ® p2 € G(H; ® Hy). In particular, for coherent input states
1 ® pa = |61)(01] @ |62) (62|, IT55(p1 ® p2) is written as

Mpsa(pr @ po) = |Vits — /T =mba) (Viaty — VT=
® ’M&l + \/77;92> <\/T-—_17291 + \/%92| .(6.6)

(2) Optical Kerr medium: The interaction Hamiltonian in the optical
Kerr medium is given in [11] by the number operators N; and N, for the
input system 1 and the Kerr medium, respectively, such as

Hins =hix (M@ L ® N,), (6.7)

where £ is the Plank constant divided by 27, x is a constant proportional

to the susceptibility of the medium and I, is the identity operator on H,.

Let T be the passing time of a beam through the Kerr medium and put

VF = hxT, a parameter exhibiting the power of the Kerr effect. Then the
unitary operator Uy describing the evolution for time T in the Kerr medium

is given by '

Uk = exp (—z'\/F MeL® Nc)) . (6.8)

We assume that an initial (input) state of the control gate is a number state
£ = |n) (n|, a quantum channel A} representing the optical Kerr effect is
given by

Ak(p1® p2 ®€) = Uk(p1 ® p2 ® §)Ug (6.9)

for any state p; @ pa ® € € & (H; ® H2®K) . In particular, for an initial state
p1® p2 ® & = |01) (01] ® |62) (62| ® |n) (n|, Ak (p1 ® p2 ® €) is denoted by

Ak (p1 ® p2 ® )
= | exp(<ivFn) 6 ) ( exp (~ivFn) 0 | @16:) (B:] @ In) (] (6.10)

Using the above channels, the quantum channel for the whole FTM gate is
constructed as follows: Let both one input and output gates be described by
H,, another input and output gates be described by H; and the control gate
be done by K , all of which are Fock spaces. For a total state p; ® p; ® £ of



two input states and a control state, the quantum channels Agg,, ALg, from

S(H1 ® H, ® K) to G(H;, ® Hy ® K) are written by

Agsi(pr @ 2 ® &) =pa(p1 ® p2) ® (k=1,2) (6.11)
Therefore, the whole quantum channel Ajpy of the FTM gate is defined by
™ = Apgs 0 Ak © Apgy. (6.12)

In particular, for an initial state p; ® p2 ® € = |61) (61] ® |62) (62| ® |n) (n],
Aprm(p1 ® p2 ® £) is obtained by

Arrv(p ® p2 ® §)
|16 + vOs) (ub: + vbs| ® |6, + 1) (V6 + 1| ® |n) (n| (6.13)

where

DO =t DO

{ (—z Fn) } (6.14)
{ ( )—1} - (6.15)

7 Information change in optical Fredkin-Toffoli-

Milburn gate

In this section, we examine information conservation in the FTM gate by
computing the mutual entropy.

Although the control gate, hence the Hilbert space K, is necessary to
make the truth table, the original information is carried by the input states,
so it is interesting to study conservation of the information from the input
to the output. For this purpose, we need the quantum channel A* describing
the change of states from the input gate to the output gate, which is defined
as

A*(p1 ® p2) = trcAprv(p ® p2 ® §) (7.1)

for any input states p; ® ps.

The total channel A%, is obviously unitarily implemented from the con-
struction discussed in the previous section, but the channel A* is not so as
seen below:
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When A* is unitarily implemented, that is A* (p) = UpU*, p € & (H; @ H2)
with a certain unitary operator U, the dual A is written as A(A) = U*AU
for any A € B(H; ® Hs) . Therefore for the CONS (complete orthonormal
system) consisting of number vector states, namely, {|n1)} in H; {|n2)} in
H,, an equality

trA(|n1) (k1| ® |n2) (k2|) = 6nyki Onaks

should be satisfied. However the direct computation according to the defini-
tion of A* implies the equality

trA(Ini) (k1| ® |n2) (k2l)
= D ) trA(jma)(my| @ [ma)(mal)|n) (k| ® Ing) ® (ko

m1 mg
mi1+ma m1+ma
Mg TNILTE . . .
=22 Y X O exo(-Fn(i - 1))
my me j=0 3'=0
m1+mg mi+my _—
E : } : m1+mae—3j,j +mg—j'j’
X Ci ! 2 JJCZ/M 277 6k1,m1+m2—i6k2,i6m1+m2—-i’,m612’,132)
=0 =0
where Y |m;)(m;| = I; , identity operator on H; (j = 1,2). The above

equality is ‘not zero if and only if

n + ng = k1 + ks.

Thus A* is not unitarily implemented.

The next question is whether the information carried by two input states
is preserved after passing through the whole gate, that is, whether the fol-
lowing equality is held or not for a certain class of input states p = p; ® ps.

S(p) = S(p) + S(p2) = I (p; A")

This equality means that all information carried by p = p; ® p. is completely
transmitted to the output gates. If the channel A* is unitarily implemented
as Ayry, then the above equality is satisfied [18]. However, our A* is not, so
it is important to check the above equality.

- Let us consider any state p; given by

pi = Ai]0)(0] + (1 — A)[6:)¢6:| , (i =1,2) (7.2)



with A; € [0,1]. Such a state is often used to send information expressed
by two symbols 0 and 1. In order to compute quantum entropy and mutual
entropy, we need the Schatten decomposition of p = p; ® py, which is uniquely
given in [19] such that

pi = |lpill Eg + (1 — |lpil) B, (i = 1,2) (7.3)

where)||p;|| is one of the eigenvalues of p; and E} is its associated one dimen-
sional projection;

_ 1+ /1 - 400 = W) - exp(=(|6:[*)))

ol = 5 (7.4)
The Schatten decomposition of p = p; ® p; is written by
11
p=>_> wiiE; ® E,
§=0 k=0

where u = ||p;]| and u} =1 —||ps]| (¢ = 1,2). Then von Neumann entropy

of p becomes
2 1 ) .
=Y ilog .

i=1 j=0

We assume ¢ = |n) (n| (n #£0) and vVFn = 2m+1)7 (m=0,1,2,---) .
For the input state p = p; ® ps, the output state A*p is given by

A*p =09 & 01,
where o; = X\[0){0] + (1 — \)| — 6;)(—6;| , (¢ = 1,2). Then von Neumann
entropy of A*p is
S (A*p) = 8 (a2) + S (1) = S(p). (7.5)

Since A* (E} ® E}) is pure state, .S (A* (E] ® E})) = 0 for each j,k. Thus
the quantum mutual entropy is

I(pA") = S(A*p)~ {ZZ#; S (EeE) (16

7=0 k=0

= S(A*p)=S5(p).
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This equalities means that there does not exist the loss of information for the
quantum channel of the FTM gate. Therefore the information is preserved

~for A* through the FTM gate. From this result, the FTM gate is considered

to be an idealistic logical gate for quantum computer.
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