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Identification of a given Boolean function with a mixed-state
NMR quantum computer

Hiroshi Ozawa,
Information Technology Center, The University of Tokyo, Tokyo 113-0033, Japan

(NhE B WERRFEEHREREF-)

Any given Boolean function f(z) € {0,1}, z =1,...,2" —1, is identified with
n queries to the oracle which evaluates f with an n-spin mixed-state nuclear
magnetic resonance (NMR) quantum computer. This means that the database
searching problem to find z for which f(z) = 1 is solved with an exponential
speedup, compared to classical methods. The procedure is a physical imple-
mentation of the probabilistic ensemble computer model, where the uniformly
random input is realized by the mixed state of superpositions, to which function
[ is efficiently applied using quantum parallelism, and the exact probability of
the output is certified by the ensemble averaging.

1. Introduction

A quantum computer [1,2] uses a collection of coupled two-state quantum systems as
quantum bits (qubits), and executes computation by a sequence of unitary transforma-
tions on them; the result is obtained by measuring the final state (of a subset) of the
qubits. Quantum computing [3] is exciting because quantum computers could solve some
problems exponentially faster than by the best known classical methods. The algorithm
proposed by Deutsch and Jozsa [1,4] was the first explicit example of a computational
task which gained such a speedup, where an oracle (a black box) was used for function
evaluation. This speedup was experimentally demonstrated with a quantum computer
which employed nuclear magnetic resonance (NMR) spectroscopy [5,6]. [In the oracle
models, the efficiency of computation (the speedup) is analyzed by the number of in-
vocations (queries) to the oracle.] Another example of quantum algorithms to use the
oracle was proposed by Grover [7,8] for database searching. The problem is: ”for a
given unstructured Boolean function f(z) € {0,1}, z =0,...,N — 1, find z such that
f(x) = 1,” and the Grover’s algorithm solves this problem with O(v/N) queries to the
oracle which evaluates f. It is apparent that classically we require O(N) evaluations of
f, and therefore quantum effects provide a square-root speedup for this problem.

In these algorithms, the oracle to evaluate the given function f is a unitary transfor-
mation called f-controlled-NOT [1], which is defined by

Us: |z)ly) — D)y @ f(2)) . (1)
When |y) is a one-qubit superposition state (|0) — |1))/v/2, this transformation gives

-1 Y e [0 = 1)
>x> \/é - . ( 1)f( )]CL‘> \/é ) (2)
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meaning that Uy can equivalently be defined [9] by
Up: o) — (-1)/@|z). (3)

Geometrical interpretation of the Grover’s algorithm is as follows [10]. Assume that
among the N = 2" equally weighted superposition states |z) of the initial state | X),

N-1

X) = j—N > ). (4)

t states are the targets [f(z) = 1], and others are not [f(z) = 0]:

(N=t)
| Xo) = \/Nl_—t ; lz) = [H for non-target |x), (5)
(t)
|1 Xy) = %; lz) = [(1)] for target |z). (6)

Then we have

. _ |cosf ] t .t
|A>—{sin0]’ where cosf = 1—N, sinf = N (7)

The Grover’s kernel G is defined by G = D Uy, where Uy executes an “inversion of the
targets,” and D executes an “inversion about the average” [8]:

. 10 cos20 sin 26
Up=1-2[X1){Xi| = [0 ——1]’ D= 21XKX|-1= LinZO —COSQO:] L)

Notice that Uy of Eq. (8) is equivalent to that of Eq. (3) for the present case. With
quantum computers, transformation D, as well as Uy, can be applied to the superposition
states such as |Xy) and |X;); D is implemented by a phase-shift operation sandwiched
by the Hadamard transformations [8]. Then, using that

s |cos26 —sin20 k _ |cos2kf —sin2kf
G=DUs = [sin20 cos 26 } ¢ = [sin2k6 cos 2k0 } ©)
we obtain
kivy | cos(2k +1)8
GHIX) = {sin(2k+ 1)6 | (10)

This equation tells that, when 1 < ¢t <« N (le. 0 < sinf < 1), k = (7/4),/N/t
iterations of G, and therefore the same number of evaluations of f by Uy, brings the
initial state | X) to the target state |X;). If we observe this state, we obtain one of the
target values z, and the searching problem is solved. The square-root speedup obtained
by this algorithm is optimal [11]. We need a related procedure of quantum counting,
which uses quantum Fourier transformation [12], to know the number of the targets, t.

The Grover’s algorithm outlined above is bases on the assumption that amplitude
amplification to obtain |X;) is necessary in order to obtain the target values z with
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certainty. This situation is illustrated as follows. If we observe, for example, a one-qubit
superposition state

[¥) = leole®|0) + lerfe?* (1), Jeof® +erf* =1, (11)

we obtain either of the eigenvalues of the eigenstates |0) and [1), with the respective
probability [co|? or |c1]?; if either state is not the target, we cannot obtain the target
value with certainty. However, in NMR quantum computer experiments where bulk
number of molecules are used as an ensemble of spin (qubit) systems, the situation is
different. The magnetization we observe along the external magnetic field (the z axis)
for a spin ensemble is proportional to the expectation value (I,) of the spin angular
momentum I, [13], and, using the density operator p = |1)(¢| for the pure ensemble of
Eq. (11), (I,) is calculated (see Sect. 2) as

(L) = Trpl] = S (leol” ~ ler?) (12)

This is the weighted average of the eigenvalues 1/2 and —1/2, i.e. the eigenvalues of the
states |0) and |1) for the spin operator I,. Similarly, we can observe the magnetization
along the z axis, which is proportional to

{Iz) = Tr[ple] = |collcs] cos(¢1 — ¢o) - (13)

This means that observation of a superposition state for an ensemble gives a deterministic
result of the exact probability. Therefore, in NMR, amplitude amplification can be
unnecessary for the database searching, and we have a prospect that we can solve this
problem with less number of evaluations of f than in the Grover’s algorithm.

In this work, we will show that, with an n-qubit mixed-state NMR quantum computer,
we can identify any given unstructured Boolean function f(z) € {0,1}, z=1,...,2"—1,
with n queries to the f-controlled-NOT oracle U defined by Eq. (3). [We assume f(0) =
0.] To solve this problem by classical methods we need O(2") evaluations, and therefore
we obtain an exponential speedup. When this procedure is applied to the database
searching problem described above, it is also solved with an exponential (rather than a
square-root) speedup, where the number of the targets ¢ can be arbitrary (0 <t < 27),
and ¢ is automatically counted without resorting to a related procedure.

Our NMR procedure of the Boolean function identification [Sect. 2] is to apply an f-
controlled-NOT transformation Uy of the given function f to a mixed superposition state
Pini, and observe the NMR spectrum of the resulting state; the spectrum is obtained by
a slightly modified version of the conventional pulsed-Fourier transformation technique
[13]. This procedure is different from some other NMR quantum procedures in that we
use mixed states, rather than “effective pure (pseudo-pure) states” [5,6]. The speedup
is exponential, because, when the problem size is 2", we obtain the spectrum which has
the one-to-one correspondence to the given function f in n experiments (in practice, in
a single experiment) [Sects. 2.1—2.3], and we can implement any U; in NMR [Sect. 3].
Although this speedup is basically provided by the power of the probabilistic ensemble
computation, we need quantum parallelism [1], which is a major origin of the power of
quantum computation, in implementing such computer model, and our procedure makes
use of both the ensemble and the quantum nature of spins [Sect. 4].
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2. NMR procedure

In this work, we denote the eigenstates of a spin-1/2 by

= =[g] wa 1w-m=]3]. (14

where z is the direction of the quantization axis, i.e. the external magnetic field applied
to the spin. The bases of single-spin operators in the Cartesian coordinate are given by

1
1 and Ia=§0a, oa=zv,z2, (15)
where 1 is a 2 X 2 unit matrix, and o, are the Pauli matrices:
10 01 0—1 10
e e R (T Sl F )

We express the density operator of a spin system in the product operator formalism [13]
of single-spin operators.

We assume to use an NMR quantum computer, where of the order of Avogadro’s
number of identical molecules in liquid state and at room temperature are placed in an
external static magnetic field along the 2z axis; each molecule forms a homonuclear n-
spin system, and spins of different molecules have no interaction. Such sample makes an
ensemble of n-spin systems. The density operator p of the total spin-system ensemble,
at thermal equilibrium, is described by the Boltzmann distribution,

1
p= 26_%/’6’11 . (17)
Here, H is the n-spin Hamiltonian
H
== Zwoﬂ + Z?wJUI’IZ, (18)

1>7

where w} is the Larmor precession frequency of the ith spin, and Ji; is the spin-spin
coupling constant between the ¢th and jth spins. We assume that all spins have different
Larmor frequencies (chemical shifts), and the spins are fully coupled for all spin pairs.
We further assume that the spin-spin coupling constants are much smaller that the
chemical-shift differences, i.e. |J;;| < |wf — w}|. We choose such molecule for our NMR
quantum computer. Then, in the high temperature limit, i.e. at room temperature, the
density operator of Eq. (17) is given, to a good approximation, by

p=1 1+%zzz (19)

where hwy/kT ~ 107° when wy = 27 x 400 MHz, which is the resonance frequency of
protons at 9.4 T filed. This means that the energy levels of spins are almost equally
populated, and the phases of spins are random. The magnetization we observe in NMR,
at thermal equilibrium and at room temperature, is what corresponds to the magnetiza-
tion that would be observed when a 10~° portion of the total spins was polarized along
the z axis. This state is described by the mixed-state density operator

ply) = Z (20)
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where we omitted the proportionality constant. The density matrix of Eq. (20), which
corresponds to the traceless part of the density matrix of the total spin-system ensemble,
is called the deviation density matrix [5] in the NMR terminology. We treat this density
operator throughout this work.

In the Grover’s algorithm, the initial state |X) of calculation is the Hadamard trans-
form of an n-qubit pure state |00 - - -0); the Hadamard transformation H is defined by

H=s1 ) ey

In NMR, several methods have been proposed to prepare, from the thermal equilibrium
state of Eq. (20), “effective pure states” [5,6] which transform identically to pure states.
For example, by the method of spatial labeling [6,14], “effective pure |00---0) states”
are known to be prepared for any number of spins [15]. In this work, however, we
will skip preparing such state, and use, as our initial state of calculation, the direct
Hadamard transform of the thermal equilibrium state. When we apply the Hadamard
transformation to each term on the right-hand side of Eq. (20), we obtain the density
operator pi(n"i) of our initial state,

pi(r;li) = Z Igic- (22)
i=1

Experimentally, we obtain this spin state by applying a non-selective (—m/2),(I*) pulse
(see Sect. 3), which implements a simplified version of the Hadamard transformation,
to all spins of our total spin-system ensemble. The state of Eq. (22) is also mixed, in
contrast to the pure state of | X).

When the size of the Boolean function identification problem is N = 2", as in Eq. (4),
we define the given function f by

fagoan_, () =a,, z=0,...,.N—1, (23)
where

ai,...,an-1 € {0,1}, (24)
and we assume

ap = 0. (25)

This means that we have 2¥~! different functions f. Then, by the definition of Eq. (3),
the f-controlled-NOT transformation Uy for fo, a,_, is given by

Upey o = Z (—1)%[z) (2] (26)

As briefly described above, our procedure to identify the given function fu. ay_,
[Eq. (23)] by NMR is to apply an Uy, , transformation [Eq. (26)] to our initial

state pi(n’? [Eq. (22)], and observe the (frequency-domain) NMR spectrum of the result-

ing state. The spectrum is obtained as follows. If we neglect the decoherence (our
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computation is assumed to be complete within the decoherence time), time evolution of
the density operator p is given by the Liouville-von Neumann equation

dp ., H

a =gl (27)
whose solution is

p(t) - e—i(?-l/h)tp(o)ei(%/h)t . (28)

When we denote, by p(0), the density operator of our spin system just after we applied
Utugay_, 1O pi(,ﬁ), it evolves according to this equation, where H is the time-independent

Hamiltonian given in Eq. (18). We observe the x component of the spin angular mo-
mentum of the sth spin, I, whose expectation value evolves according to

(L)) = Te[p(t) T3], (29)

and collect the (time-domain) free induction decay (FID) signal M! which is proportional
to (I:)(t). We finally Fourier transform M? to obtain the NMR spectrum of the ith spin
along z, which reflects information on p(0), and therefore on f,, oy ;-

2.1. Problem of size N = 22

We will first consider identifying a given Boollean function of size N = 2% with an
NMR quantum computer of two-spin systems. We denote the first and second spins by
and S, respectively. The density operator (and its matrix) of our spin system at thermal
equilibrium is given by

1 1

1 1 1

2 -1 2 1 :
—1 -1

D=1, 48, = (30)

which, when the Hadamard transformation is applied to each spin, transforms to our
initial state

0010 0100

@ ~1{0001] 1|1000

Pis =12+ 5= 511000 T3]0001 | (31)
0100 0010

When n = 2, we have eight different functions f, 4,450, For example, foi100 is defined by
fo100(0) =0,  for0(1) =1,  fo100(2) =0, for00(3) =0, (32)
and the f-controlled-NOT transformation Uy [Eq. (26)] for fo100 is
1

Uforoo = 100)00] — [01){01] + [10)(10] + [11)(11] = (33)
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When we apply Ug,,q, to Pi(yfi) , we obtain pg10:
0010 010 O
Uforoo 1100 0-1 11100 0
0-100 00-10

For the general case of function fy,4 4545, the f-controlled-NOT transformation given
by

(~1)e
—1)%
Ufaoawzaa = ( ) (_l)az (35)
(~1)
transforms each term I, and S, of Eq. (31) as follows:
fagarazas c0da 1 01 @a 1
I, —— (-1)*% ZIZ(§1+SZ)+(—1) ! 311(51—52), (36)
er“ﬂ“1“2°‘3 1 1
S, —— (—1)%@“1(51 +1,) Sy + (—1)“2@“3(51 ~-1,)S;. (37)

Using these relations, we obtain the following density operators, Pagaazas, 10T the states
after we apply Uy, . 0,0, 10 pi(,fg:

poooo = Iz + Sz, poco1 = 21,8, + 21,5, , pooto = —21,S, + 21,5, ,

poorr = —I, + S5, poroo = 21,S, — 2I,S,, poror = I — S,

porro = —Ie — Sy, ponn = —21,5, —2L,S,. (38)

We will next calculate time evolutions of two of the terms, I, and 21,S,, which appear
on the right-hand sides of these equations, due to the two-spin system Hamiltonian

% = —wé[z —wgSz +27nJ1sl, S, . (39)
We here use the following equations of spin operators in the exponential form [16]:
. 0 .. 0 , 6 .. 6
explifl,] = cos 5 1+ 2isin 3 I,, exp[ifl,S,] = cos 1 1+ 4isin 1 LS,; (40)

these equations are derived from the definition of exponential operators, i.e. exp[iA] =
e ol(zA)*/n!], and the relation I2 = 1/4, a = z,y, z. Using Eq. (40) and the commu-
tation relations I I, = —I,I, = (i/2)l,, etc., we obtain [13] exp[ifl,] I, exp[—ifl,] =
I, cos — Iysinf, exp[—ifl,S,] I, exp[ifI,S,] = I, cos(8/2) + 2I,S,sin(0/2), etc., and

time evolutions of I, and 21,5, are calculated as follows:

exp[—i(H/h)t]
s — (I coswt — I, sinwft) cosmJrst
+(21,S, sinwit + 21,8, coswit) sinwJyst, (41)
exp[—i(?{/h)t] . I I .

2I.S, ——  (Isinwyt + I, coswyt) sinwJrst

+(21,S, cos w{)t — 21,5, sin wét) cos st . (42)
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Figure 1. NMR spectra expected in identifying a given N = 22 Boolean function f using a
two-spin system IS, where an f-controlled-NOT transformation Uy is applied to the Hadamard
transform of the thermal equilibrium state, and the FID signal is collected and Fourier trans-
formed. Left patterns show the I spectra, at the frequencies wi —7Jrs (left lines) and wi+mJrs

(right lines). Right patterns show the S spectra, at the frequencies wy — wJrg (left lines) and
wy + wJis (right lines).

14 kB4
444 -

As previously described, the collected FID signal M of spin I along z is proportional to
the expectation value (I,)(t) [Eq. (29)]. Using that only the first terms on the right-hand
sides of Eqs. (41) and (42) give nonzero traces for Tr[p(t)I;], M} due to the two terms
are calculated as

1
MX(I,) o« coswit cos T Jrst = 3 [cos(wy — J1s)t + cos(wi + mJrs)t], (43)

: 1
M!(2I,S,) « sinwt sinwJygt = 5 [cos(wi — mJ1s)t — cos(wl + wJis)t]. (44)

These equations tell that, when we Fourier transform M/, we obtain two upward spectral
lines at the frequency positions w{ — 7 Jrs and w{ +mJ;s for MI(I,), and an upward and
a downward line at the same respective positions for M!(2I,.S,).

With these and similar considerations for the S spectrum, i.e. M?(S,) and M3 (21,S,),
we see that the spectral patterns for the eight states whose density operators were given
in Eq. (38) are as shown in Fig. 1. This figure clearly shows that, if we look at spectral
patterns of I and S spins, we know which U fagayage; WS applied to pi(,fg, and the given
function fa 6,000, is identified. Here, if we obtained the I and S spectra by separate
experiments, we evaluated the function twice (n = 2). In practice, we obtain the I and
S spectra in a single experiment, by collecting the mixed FID signal of the two spins and
Fourier transforming it; in this case the function was evaluated only once. In both cases,
we could identify the given Boollean function with an exponential speedup, compared
to classical methods.

2.2. Problem of size N = 23
We will next consider solving the N = 23 problem with a three-spin NMR quantum
computer. Here we denote the third spin by K. When we apply the f-controlled-NOT
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transformation
(~1)
(=)= -
Ufgooar = . (45)
(~1)
to our initial state
P =1, + S, + K, (46)
each term on the right-hand side of Eq. (46) transforms as follows:
Uf““"'” aoPa. 1 1 a1ha 1 1
I, ——— (=1)%%], (51 + Sz)(—2—l + K,) + (=1)n®%], (51 + Sz)(§1 - K,)
1 1
HED L (51 - S (514 K2 + ()L (01 - S)(G1- K, (47)
Utay o woiay 1 1 sy L 1
1 1 1 1
D)™ (GL - L) So (514 Ko) + (1) (51 = L) S (51— K) . (48)
Uteo...or wodar s 1 1 cag 1 1
Ko =25 (C19 (014 L)1+ 82) Ke + (-5 (314 L)(31 - S.) K,
1 1 1 1
HEDH G- L) (514 S:) Ko + ()97 (51 - L)(51 - S:) K. (49)

Using these relations, we obtain the density operators p,,._ ., of the states whose spectra
we are going to observe. Some of them are as follows:

poooooooo = Ip + Sz + Kz,
P00000001 = %(Ix +20L,S, + 21, K, — AL,S. K, + S; + 21,5,

+25;K, - 4,5, K, + K, + 2I,.K, + 2S,K, — 41,S.K,),
oo = 5 (L + 21, — 2L K, + ALS.K. + S, + 21,5,

—28. K, + 41,5 K, + K, +2I,K, + 2S,K, — 4.5, K,),
poooooo1r = 21,5, + 21,5, + K, ,
oo = 5(I — 21,8, + 2K, + 415K, + S, +2LS,

+2S5, K, - 41,5, K, + K, + 2ILK, — 2S,K, + 4I,S,K,) ,
poocooror = 21, K, + S, + 2K, ,
pocoootio = 41,S. K, + 21,5, + 2I,K, ,

1
Pooooot1l = 5(—& + 21,8, +2I. K, +4I,S,K, + S, + 21,5,
—28,K, + AL S, K, + K, + 21K, — 28,K, + 4L,S,K,) . (50)

Among terms which appear on the right-hand sides of these equations, we will here
consider four of them, S, 21,S,, 25.K,, and 41,5, K,, which decide the spectral pattern
of spin S. The Hamiltonian of the three-spin system is

% =—wil, — w3 S, — wEK, + 2nJ1s 1S, + 2n Jix LK, + 21 Jsk S. K, , (51)
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Figure 2. Some examples of the NMR spectra expected in identifying a given N = 23 Boolean
function using a three-spin system ISK. Middle patterns show the S spectra, at the frequencies
wOS —7ndis — sk, wﬁg —ndrs + sk, w(‘)g + nJs — wJsk, and wé" + s + 7Jsk (from left
to right). Left (right) patterns show the I (K) spectra, at the frequencies w{ — 7J;x — nJrg
(W& —nJsg — nJrK), etc.

and, using Eq. (40), etc., time evolution of S, for example, due to the Hamiltonian is
calculated as

exp[—i(H/h)t] s . g
S: ——  (Spcosw”t — Sysinw”t) cosmJyst cosmIskt

+2K,(S, sinw’t + Sy cos wSt) cosmJyst sinmJskt
+21,(S, sinw’t + S, cos w t) sinwJygt cos Tkt
—4I,K, (S, cos w®t — Sy sin wSt) sinwJyst sinw gkt . (52)

Therefore, when we collect the FID signal M7 of spin S along the z axis, the contribution
from this term to M? is given by

M3 (S,) o« coswit cosmJygt cosmJskt . (53)

Similarly, the contributions from the other three terms, 21,S,, 2S5, K,, and 41,5, K, to
M3 are calculated as

MZ(21,8;) « sinwjt sinwJrst coswJskt, (54)
M3 (2S,K,) o sin wgt cos mJrst sinmJgkt, (55)
Mf (41,5, K,) o< — coswyt sinwJyst sin mJgkt . (56)

These equations, when modified as in Eqgs. (43) and (44), tell that, when we Fourier
transform the FID signal M2, we obtain a quartet of spectral lines of spin S, at the
frequency positions wjy — 7Jrs — 7 Jsk, wy — 7Jis + 7Isk, wy +7Jis — TJsk, and w§ +
nJrs + mJsk, whose patterns are (+, +, +,+) for M3(S,), (+,+,—, —) for MJ(21,5,),
(+,—,+,—) for M3(25,K,), and (+, —, —, +) for M5 (41,5, K,), where + and — denote
an upward and a downward spectral line, respectively. It should be apparent that similar
results are also obtained for the spectra of I and K spins. In Fig. 2 are shown the
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spectral patterns of I, S, and K spins for the states whose density operators were given
in Eq. (50).

The experimental procedure to determine the values of ay,..., a7 is as follows. (We
assumed ag = 0.) As an example, let us consider the case we observed an S spectrum
of a pattern (+, +,—, +), see the middle spectra of 00000010 and £00000111 in Flg 2. This
pattern occurs only when the four contributions to the spectrum described above are

positive for (+,+,+,+), (+,+,—,—), and (+, —, —,+), and negative for (+, —, +, ).
This means that

( )ao@az + ( 1)a169a3 ( 1)(14650,6 + (_1)a563a7 _ 2,

( )ﬂoﬁBaz + ( l)aléaaa ( 1)a4€9a6 _ (_1)a5@a7 — 2’

( l)aoéﬁaz ( 1)a1€3a3 ( 1)0469116 _ (_1)!15@&7 — 2,

( )1106302 _ ( 1)a1€Baa _ ( )M@ae + (__1)@5607 =9 (57)
in Eq. (48), and these equations lead to

aPa=0, a1@Pa3=0, as@ag=1, asPa,=0. (58)

Patterns of the S spectrum have 16 variations, and by the procedure described here, we
can identify whether each of ay @ as, a) & a3, ay © as, and as @ a7 is 0 or 1. Similarly,
observation of the I spectrum gives information whether each of ay @ ay, a1 B a5, as & as,
and a3z @ ay is 0 or 1, and observation of the K spectrum gives information whether each
of ag @ a1, a3 ® a3, as D as, and ag B ay is 0 or 1. Therefore, by using a selection of seven
equations from these, we can uniquely determine each value of a,, ..., a7 in {0,1}, and
the given function f,, ,, is identified.

2.3. Problem of any size N = 2"

The procedure described above can be extended to any problem size. To solve a
problem of size NV = 2", we use an NMR computer of n-spin systems. We apply an f-
controlled-NOT transformation Uy, . of the given function fu,. ay_, to the Hadamard
transform of the n-spin thermal equilibrium state, and obtain the NMR spectrum by
collecting and Fourier transforming the FID signal. This type of spins gives n spectra,
each of which is made up of 2"~! spectral lines. [The intensity (or signal-to-noise ratio)
of each spectral line scales by 1/2"~!. This magnitude of scaling also takes place in
other NMR quantum procedures to use “effective pure states” [5,6].] By observing the
spectral patterns of all spins, we obtain 2""!n equations on a,, and we can determine
2" — 1 values of ay,...,ay—;. Since this procedure is executed in n experiments (or, in
practice, in a single experiment, as described previously), we can solve the problem to
identify any given Boolean function of any size with an exponential speedup, compared
to classical methods.

3. Implementation

We will next show that any f-controlled-NOT transformation Uy, ., can be imple-
mented in NMR. We here calculate, using Egs. (15), (16), and (40), the matrix repre-
sentation of spin exponential operators. Some of the results are as follows:

s I1x: |1
ti—1,| = — N
P = [ 4:2}’
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1 1
141 Fi . -1
7 = | exp[+i271,S,] = +i _1

1 1

exp[+irl,S,| = (59)

The f-controlled-NOT transformations Uy are then expressed by the products of the spin
exponential operators; for example,

1 1 1 1
-1 1 1 ? .1 1
Ufomo = 1 = —F 1 i = exp[m(-z- + Iz)(§ - Sz)} ;
L 1 —1 ) 1
1
-1 1
Ufono = -1 = eXp[”r(:?‘ - QIzSz)] . (60)
| 1
The general forms of Uy for the cases of n = 2 and 3 are calculated [17] as
T 1 1
= 21— (=1)%)(= h
Uty = €0 131 = (=1)*)(5 + I)(5 + 52)]
™ 1 1 7r 1 1
y 1 N a1 — - y [ a2 . _
xexp [iZ[1 - (~)%)(; + L) - 5] exp [iZ11 = (-1)](5 - L) +5.)
™ 1 1
T ety s,
xexp [iZ[1~ (~1™I(G - L)(5 - 5] | (61)
T 1 1 1
= exp [it]1 — (=1)%](= - -
Uty = exp i1 = (~1%](5 + L) (5 + S)(5 + K2
T 1 1 1
—1 = (=1)“](5 z)\5 zJ\ g — 2
xexp [iZ[1 = (-1)*](5 + 1) + (5 - K2)]
T 1 1 1
S — (=)= = L) = — -
xexexp izl = (<17 ~ )5 - 85 - Ko (62)
Notice here that, for example, exp[i(7/2)1,] is equivalent to
exp[izlr] exp[—izIy] exp[—zj—rlm], (63)
2 2 2
and exp[—i271,S,K,] is equivalent [18] to
exp[-iglx] exp[—inl, K,] exp[-—ig—ly] exp[—inl,S,]
x exp[igly] explin, K] exp[ig—fz] . (64)

In this way we see that any f-controlled-NOT transformation Uy, , — of any size can
be expressed by the product of spin exponential operators of the forms

explifI}], explifl}], and exp|—igl.I]]. (65)

In NMR, exp[iﬁfé], B = r,y, is implemented by a selective pulse (§)5(I?), i.e. a radio-
frequency pulse applied selectively to the ith spin to “rotate” it through 6 about the 3
axis of the rotating frame of reference. The condition to be satisfied here is

0= ’)’Hltp s (66)
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where 7 is the gyromagnetic ratio of the spin, H; is the strength of the magnetic field of
the radio-frequency pulse, and t, is the pulse duration time.

To implement exp[—i¢I'I], we make use of time evolution due solely to the spin-spin
coupling between the ith and jth spins of the spin Hamiltonian [Eq. (18)], for a time
period 7 such that

¢ = 271'.]”‘7', (67)

where the effects of all other spin-spin couplings and all Zeeman evolutions are negated.

To implement this type of time evolution, we make use of the property of a sequence
[19,20]

T

(MalI) = % = (m)a(), (68)
where 7/2 is half of the evolution period. Its effect on the Zeeman evolution is given by
exp[ir ] exp[z’wég—fﬂ explinlt] = exp[—iwé%fi] : (69)

which tells that the direction of time evolution is now reversed. Therefore, this sequence,
when preceded by another Zeeman evolution of a 7/2 period, causes the cancellation of
the evolution during the first 7/2 period:

(exp[z’w[i] exp[z’wé%[ﬁ] exp[z’w[é]) exp[iwé%fﬁ] =1. (70)
Similarly, the effect of Eq. (68) on time evolution due to the spin-spin coupling is
(exp[mlﬂ exp[—iQinjglilj] exp[-iw[i]) exp[—i27r]z~j—g-lilg] =1, (71)

and, when the (7), pulses are applied both to the ith and jth spins, time evolution due
to the spin-spin coupling between this spin pair survives:

<exp[i7r[£] expliTI:] exp[—i27rJij—;—IiI§] explinI.] exp[iw[i])
X exp|—i27J; -Zfilj} = exp|—i2nJyTI.II].  (72)

Uzzz

Using Egs. (70), (71), and (72), we see that exp[—i¢I,S,], for example, is implemented
by the sequence

5~ Ma(l.8) = 5 — (®):(,9) (73)
for the case of a two-spin system, and
7~ @eE) = 7 = (a1, K) = 7 = (ma(K) = 7 = (Ma(I.S.K). (74)
"8‘ - (ﬂ')z(L) - g - (ﬂ)z(Kv L) - g - (W)x(L) - g - (W)z(lvsa K’ L) - g
— (m)a(L) - g — ()a(K, L) — Tg — (m)a(L) — % — (m)s(I,S,K,L) (75)

for three- and four-spin systems, etc., where the evolution period 7 is equal to ¢/(27Jrs).
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To summarize, since any f-controlled-NOT transformation Uy of any size is given by
the product of spin exponential operators, and spin exponential operators of any size
can be implemented in NMR, we can implement any Uy in NMR, without the help of
an additional spin in the state (|0) — |1))/+/2 as used in Eq. (2).

[It has been shown [21] that a set of one-qubit rotations and two-qubit controlled-NOT
transformations is the necessary and sufficient condition for a universal quantum com-
puter. The latter transformation is defined by CNOT : |z)|y) — |z)|y @ x), which flips
(10) <> |1)) the target qubit |y) if and only if the control qubit |z) is in the state |1). In
NMR, a CNOT(I, S) transformation where I and S are the control and the target spin,
respectively, is given by exp[i(n/2)1,] exp[—i(m/2)];] exp[—i(n/2)1,] exp[—i(n/2)5,]
exp(i(7/2)S,] exp|—inl,S,] exp[—i(n/2)S,] (up to the overall phase) [17]. Therefore,
the ability to implement spin exponential operators in Eq. (65) leads to that an NMR
quantum computer is universal.]

4. Discussion

The quantum nature of NMR computation as used in this work should be verified
by the microscopic analog experiment [22] of the Greenberger-Horne-Zeilinger (GHZ)
measurement [23,24]. To do this experiment, we use a four-spin system ISK L, and set
up a maximally entangled GHZ state |000) — |111) of the first three spins, and |0) of the

fourth spin. Such state can be prepared from the “effective pure [0000) state,” as follows
[19]:

H(I) cnNor (I,\S) CCNOT (Ié:, K) |000) — |111)

\/53
Here H(I) is the Hadamard transformation on spin I, CNOT(I,S) is the controlled-
NOT transformation on S with I as the control, and CCNOT(IS, K) is the controlled-
controlled-NOT transformation on K with I and S as the controls; the last transformation
flips spin K if and only if spins I and S are both in the state |1). [The GHZ state thus
prepared from an “effective pure state” should not be confused with the GHZ state (which
could be prepared from a pure state) [25], although the former transforms identically to
the latter in NMR.| Notice here that the GHZ state is the eigenfunction of the operators
0'31:(750’;{, aéaiaf, aéafaf, and olosoX with respective eigenvalues +1, +1, +1, and
—1, and that the relationship

|0000)

~

0) . (76)

(010305 (o} 0% (ohoSof) (osel) = -1 )
holds identically for any three-spin state [23,24].

In one type of the experiment [22], we correlate the state of spin L with the result that
would be obtained if measurements were made of the polarizations of spins I, S, and K
along different axes, and the results were multiplied together. For example, if we follow
the three steps: (i) flip spin L if and only if spin I is in the state | |;), (ii) flip spin L
if and only if spin S is in the state | |,), and (iii) flip spin L if and only if spin K is in
the state | |,), then spin L should be flipped an even number of times to result in the
original state, corresponding to that the eigenvalue of oiaj Uf for the GHZ state being
+1. Here, the step (i), for example, may be implemented [22] by: (a) first “rotating”

spin I through 7/2 about the y axis (| J;) — | {.) = |1)) by applying a (7/2),(I) pulse,
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(b) then applying a CNOT(I, L) transformation, which flips spin L if and only if spin I
is in the state [1), and (c) finally restoring spin I to its original state by a (—m/2),(I)
pulse. The GHZ state should remain intact after these operations, and be ready for the
successive measurements of o,050 K, ete.

The experimental success [26] to verify Eq. (77) (rather than that the right-hand side
of this equation is +1) shows a contradiction to the existence of classical “hidden vari-
ables” for the spin operators as used in the NMR quantum computer experiments, and,
therefore, the density operator I, which was prepared by “rotating” I, through —m/2
about the y axis, should represent, not some classical state with an angular momentum

along the z axis, but a polarization along the superpositions of the eigenstates, |0) and
11), of I:

_ Loy o+l 0 -1y o= g 78)
20 V2 V2 V2 V2
[A mixed state can be represented as a sum of pure states in infinitely many ways

[24]. Equation (78) is one of the simplest representations of I,.] This means that when
we apply an f-controlled-NOT transformation Uy, . [Eq. (26)] to our initial mixed

I;

state pl) = Y It [Eq. (22)], we make use of quantum parallelism (i.e. the ability to
manipulate superpositions) for an efficient manipulation of (the off-diagonal elements of)
pi(TZ)-

Mathematically, the problem to identify a given Boolean function as treated in this
work belongs to the complexity class NP-complete (within the oracle model). A related
problem to count the number of satisfying assignments to a given Boolean expression
is also NP-complete, and NP-complete problems are known [27] to be reducible, in
polynomial time, to the satisfiability (SAT) problem on Boolean expressions. It can be
shown [6] that a mathematical model of a probabilistic ideal (i.e. infinite-size) ensemble
computer for which the exact probabilities of each bit are available at the end of the
computation is extremely powerful. For example, with such a computer, we can efficiently
solve the assignment counting problem mentioned above; prepare the input in a uniformly
random state, apply the expression P, and calculate the probability p that P is 1,
then the answer is p times the number of possible inputs. Our NMR procedure to
use an ensemble of bulk number of spins in the mixed state is a quantum mechanical
implementation of such mathematical model (up to the noise present in any physical
system); the uniformly random input is realized by the mixed state of polarizations along
the superpositions, to which the f-controlled-NOT transformation is efficiently applied
using quantum parallelism, and the exact probability of the output is certified by the
ensemble averaging. Considering that even a probabilistic ensemble computer, which
is the classical analogue of an ensemble quantum computer, can solve the assignment
counting problem with an exponential speedup (within the bounded error model), the
speedup we obtain by our NMR procedure in identifying a given Boolean function should
basically due to the ensemble (rather than the quantum) nature of spins. It should,
however, be noted that we cannot implement an exponentially efficient probabilistic
ensemble computer without making use of quantum parallelism.

The ability of our procedure to solve the database searching problem with an expo-
nential (rather than a square-root) speedup should tell that quantum procedures to use
mixed states can be more powerful than “traditional” quantum procedures to use “ef-
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fective pure states.” Obviously, obstacles in the experiment, such as noise, decoherence,
etc., are of the same order in magnitude for these types of procedures. Therefore it is
concluded that a mixed-state NMR quantum computer, which is an implementation of
the probabilistic ensemble computer to use quantum parallelism, is powerful enough to
efficiently solve NP-complete problems, within the cost level of “traditional” quantum
computers.
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