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State Extension from Subsystems to the Joint
System

Huzihiro Araki * and Hajime Moriya

1 Introduction

In algebraic approach to quantum systems, a system is described by a C*-
algebra A and its state is a normalized positive linear functional ¢, its value
¢(A) for A € A being the expectation value of A in that state. Subsystems
are described by C*-subalgebras A; of A, ¢ = 1,2-... Their joint system
is the total system described by A if the subalgebras A; generate A as a
C*-algebra. Restrictions ; of a state ¢ of A to subalgebras A; are states of
A;, 1 = 1,2---. Conversely, suppose that states ¢; of A;, ¢ = 1,2.--, are
first given. Then a state ¢ of A is called a joint extension of states ; of A;,
i =1,2,---, if the restriction of ¢ to .A; is the given state ¢; for each i.

For spin or Boson lattice systems, algebras A; of subsystems with mu-
tually disjoint localization mutually commute and form a tensor product
system. If A is the tensor product of A4;, i =1,2, -+ and

w(H A) = H«p(Ai), A € A (1)

holds, then ¢ is called the tensor product of ¢;, i = 1,2---. Otherwise ¢ is
said to be entangled if ¢ is pure. Entanglement in tensor product systems is
widely studied.

For Fermion lattice systems, algebras of subsystems with mutually dis-
joint localization do not mutually commute due to the anticommutativity of
Fermion creation and annihilation operators. As electrons are Fermions, a
study of Fermion systems seems to have a practical significance. Entangle-
ment for Fermion systems is studied by one of the present authors recently

[2].
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The present work studies the problem of joint extension of states from
subsystems to the joint system for (discrete) Fermion systems and generalizes
some results in [2].

2 The Fermion Algebra

We consider a C*-algebra A, called a CAR algebra or a Fermion algebra,
which is generated by its elements a; and a},7 € N (N = {1,2,-- . }) satisfying
the following canonical anticommutation relations(CAR).

{a’:aaj} = 5i,j1
{a:3a’;} = {ai,aj}=0,

(4,7 € N), where {4, B} = AB + BA (anticommutator) and &, = 1 for
¢ = j and d;; = 0 otherwise. For finite subset I of N, A(I) denotes the
C~-subalgebra generated by a; and a}, i € . A crucial role is played by the
unique automorphism © of A characterized by

O(a:) = ~a;, ©(a]) = —a;
for all 4 € N. The even and odd parts of A and A(I) are defined by
Ar = {Ae€ A|6(4) = 2A},

For any A € A (or A(I)), we have the following decomposition
1
A=A, +A, A.= §(Ai O(A)) € Ay (or A(l),).

A state ¢ of A or A(I) is called even if it is ©-invariant:

¢(0(4)) = »(4)

for all A € A (or A € A(T)).

For a state ¢ of a C*-algebra A (A(I)), {H,, 7y, €2, } denotes the GNS
triplet of a Hilbert space H,,, a representation w, of A (of A(I)), and a vector
), € H,, which is cyclic for 7,(A) (7,(A(1))) and satisfies

p(A) = (Q, m(A)Q)
for all A € A (A(I)). For any z € B(H,,), we write

w(z) = (Qsos zQw)-



3 Product State Extension

As subsystems, we consider A(I) with mutually disjoint subsets I's. For a
pair of disjoint subsets I; and I, of N, let ¢, and ¢, be given states of A(I;)
and A(Ip), respectively. If a state ¢ of the joint system A(I; UIy) (which is
the same as the C*-subalgebra of A generated by A(l;) and A(I,)) coincides
with ¢; on A(I;) and @, on A(ly), i.e.,

o(A1) = @i1(A1), A e Ay,
©(A2) = @A), A e A(ly),

then ¢ is called a joint extension of ¢ and @s. As a special case, if

©(A142) = 1(A1)pa(A2)

holds for all 4; € A(L;) and all Ay € A(Iy), then ¢ is called a product
state extension of ¢; and . For an arbitrary (finite or infinite) number of
subsystems, A(I1), A(l),- - with mutually disjoint I's and a set of given
states ¢; of A(L;), a state ¢ of A(U;1;) is called a product state extension if
it satisfies (1).

Theorem 1. LetI;,15, -+ be an arbitrary (finite or infinite) number of mu-
tually disjoint subsets of N and ¢; be a given state of A(1;) for each i.

(1) A product state extension of p;, i = 1,2,---, exists if and only if all
states ; except at most one are even. It is unique if it exists. It is even if
and only if all ¢; are even.

(2) Suppose that all p; are pure. If there exists a joint extension of ;,
1=1,2,---, then all states p; except at most one have to be even. If this is

the case, the joint extension is uniquely given by the product state extension
and is a pure state.

Remark. In Theorem 1 (2), the product state property (1) is not assumed
but it is derived from the purity assumption for all ;.

The purity of all ¢; does not follow from that of their joint extension ¢
in general. For a product state extension ¢, however, we have the following
two theorems about consequences of purity of ¢.

Theorem 2. Let ¢ be the product state extension of states @; with disjoint
I;. Assume that all @; except v, are even.

(1) 1 1s pure if @ is pure.

(2) Assume that m,, and m, e are not disjoint. Then ¢ is pure if and only
if all ¢; are pure. In particular, this is the case if ¢ is even.
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Remark. If I, is finite, the assumption of Theorem 2 (2) holds and hence the
conclusion follows automatically.

In the case not covered by Theorem 2, the following result gives a complete
analysis if we take U;>ol; in Theorem 2 as one subset of N.

Theorem 3. Let ¢ be the product state extension of states ¢, and @y of
A(ly) and A(ly) with disjoint I, and Iy where @, is even and @y is such that
T, and T, e are disjoint.

(1) @ is pure if and only if o1 and the restriction woy of g to A(lp), are
both pure.

(2) Assume that ¢ is pure. p, is not pure if and only if

1 . -
P2 = 5(402 + 920)

where $y is pure and mg, and wp,e are disjoint.

Remark. The first two theorems are some generalization of results in [3]
with the following overlap. The first part of Theorem 1 (1) is given in [3] as
Theorem 5.4 (the if part and uniqueness) and a discussion after Definition
5.1 (the only if part). Theorem 1 (2) and Theorem 2 are given in Theorem
5.5 of [3] under the assumption that all p; are even.

4 Other State Extensions

The rest of our results concerns a joint extension of states of two subsystems,
not satisfying the product state property (1). We need a few more notation.
For two states ¢ and 9 of a C*-algebra A(I;), consider any representation
of A(L;) on a Hilbert space H containing vectors ® and ¥ such that

p(4) = (2, 1(A)®), (A)= (T, n(A)D).
The transition probability between ¢ and 1 is defined ([4]) by

P(p, ¢) = sup|(®, ¥)|*

where the supremum is taken over all H, w, ® and ¥ as described above. For
a state ¢ of A(I;), we need the following quantity

p(p1) = Plpy, 901@)1/2

where ©,© denotes the state p;©(A) = ¢1(0(A)), A € A(T}).
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If ¢y is pure, then ¢;0© is also pure and the representations 7,, and 7,,e
are both irreducible. There are two alternatives.

(a) They are mutually disjoint. In this case p(yp;) = 0.
(8) They are unitarily equivalent.

In the case (§), there exists a self-adjoint unitary u; on H,, such that

ulﬂ.‘ﬁl(A)ul = Trlpl(e(A))’ AEA(II)7
(R, u1Qp,) > 0.

For two states ¢ and v, we introduce
A, ) =sup{A € R; ¢ — M > 0}
Since ¢ — Ay > 0 and lim A, = A imply ¢ — Ay > 0, we have

© = A, P).
We need

AMp2) = A2, 920).

The next Theorem provides a complete answer for a joint extension ¢ of
states ¢ and s of A(I;) and A(L,), when one of them is pure.

Theorem 4. Let ¢1 and p, be states of A(11) and A(1y) for disjoint subsets
I; and I. Assume that ¢, is pure.
(1) A joint extension ¢ of w1 and @, exists if and only if

1 —ple1)

(2) If eq. (2) holds and if p(¢1) # 0, then a joint extension ¢ is unique and
satisfies

: (2)

1

(A1 4g) = <P1(A1)902(A2+)+p(§01)

f(A) = Bi(my, (A)w)

fOT Al € A(Il) and A2 = A2+ + Ag_, AQ:E € A(Ig)i
(3) If p(p1) = 0, (2) is equivalent to evenness of @,. If this is the case, at
least a product state extension of Theorem 1 exists.
(4) Assume that p(p1) = 0 and @2 is even. There exists a joint extension

f(A1)<,02(A2-),
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of 1 and o other than the unique product state extension if and only if o,
and o satisfy the following pair of conditions:

(4-1) 1y, and m,,e are unitarily equivalent.

(4-it) There ezists a state @y of A(Ly) such that @y # $,© and

1, ~
P = *2'(@2 + 720).

(5) If p(¢1) = 0O, then corresponding to each @, above, there exists a joint
extension ¢ which satisfies

p(A1As) = 1(A1)p2(Asy) + Bi(myp, (Ar)uy)Pa(Az-). (3)

Such extensions along with the unique product state extension (which satisfies
eq. (8) for 8o = o) exhaust all joint extensions of p1 and py when p(p;) = 0.

Remark. The eq.(2) is sufficient for the existence of a joint extension also for
general states ¢; and s.

We have a necessary and sufficient condition for the existence of a joint
extension of states ¢; and ¢, under a specific condition on ;.

Theorem 5. Let p1 and ¢, be states of A(ly) and A(Ip) for disjoint subsets
Iy and 1. Assume that m,, and m,,e are disjoint. Then a joint extension of
©1 and g exists if and only if @, is even.

5 Examples

Ezample 1
Let I; and I, be mutually disjoint finite subsets of N. Let o € A(I; UI;) be
an invertible density matrix, namely ¢ > A1 for some A > 0 and Tr(p) = 1,
where Tr denotes the matrix trace on A(I; UIy). Take any z = z* € A(I;)_
and y = y* € A(ly)_ satisfying ||z||||y]] < A\. Let ¢1(A;) = Tr(pA4,;) for
A; € A(Ly) and ¢(Ag) = Tr(pAy) for Ay € A(1l;). Then

©,(A) =Tr(dA), o =o+izy.

for A € A(I; Ul) is a state of A(I; UIy) and has ¢; and ¢, as its restrictions
to A(Iy) and A(I,), irrespective of the choice of z and y satisfying the above
conditions.

Ezample 2
Let I; and I, be mutually disjoint subsets of N. Let ¢ and 1 be states of
A(I;) and A(Ly) such that

PZZ/\%P'“ ¢=Z/\ﬂ/)i, (0 < A, Z)w: 1),



where ¢; and ¢, are states of A(I;) and .A(I,) which have a joint extension

x; for each 1.
X =Y Aixi
i

is a joint extension of ¢ and .

This simple example yields next more elaborate ones.

Ezxample 3
Let ¢ and 9 be states of A(I;) and A(Iy) for disjoint I; and I with (non-
trivial) decompositions

e=Ap1+ (1= A, ¢¥=p1+(1—pmtps, (0<Apu<l)
where ¢, and ¢, are even. Product state extensions y;1; of ¢; and ; yield
X = (Aut+r)orh + (A1 —p) — k)1
(L= Np = r)pathy + ((1 = A)(1 = p) + K)pava,
which is a joint extension of ¢ and ¢ for all k € R satisfying
—min(, (1= A)(1 - ) < & < min((1 = A, AL - ).

Example 4
Let g, k=1,--- ,mand ¢, I = 1,--- ,n be states of A(I;) and A(I,) for
disjoint I; and I5. Let

m n
0= o, V=)
k=1 =1

with Ak, g > 0, Y. Ax = > gy = 1. Assume that there exists a joint extension
xx of or and 4 for each k and [. Then

X = Z()\km + Kkt) Xkl (4)
Kl

is a joint extension if

(Arpu + Krt) > 0, Z Kkl = Z ki = 0.
7 %

Since the constraint for mn parameters {ky} are effectively m +mn — 1 linear
relations (because Y, ki = 0 is common for Y,k =0 and Y, ki = 0),
we have mn—(m+n—1) = (m—1)(n—1) parameters for the joint extension
(4).

The above is an excerpt from the paper “State Extension from Subsystems
to the Joint System” submitted to Commun.Math.Phys.
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