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1 Causality in stochastic calculus

The SDE, short for the stochastic differential equation, may be viewed as a math-
ematical description for such stochastic dynamical systems driven or perturbed by
some random force. In many physical situations the random force can be represented

by the Gaussian white noise, that is the derivative a—th of the Brownian motion W;,

or more generally by the derivative %Mt of some martingales M, having appropriate
properties.

The traditional theory of the SDE introduced by K.It6 is constructed on such
implicit but essential hypothesis that all random functions should be adapted to
the so-called natural filtration {F;,t > 0}, F; = o0{M,;s < t} generated by the
driving process M;. As long as the principle of causality regimes the phenomena
in all levels of scale, microscopic or macroscopic, this hypothesis of causality could
not arise as veritable constraint for the stochastic theory. However in the analysis
of many phenomena of statistical nature where we can observe only the statistical
average of those underlying microscopic quantities, such as the pressure in statistical
physics or the temperature in thermodynamics, we might not need that the principle
of causality holds in all scale levels of phenomena. In other words, for the validity
of the causality in macroscopic scale it would suffice that the causality regimes the
phenomena only in that level and we need not care whether it still remains working
in microscopic level.

The stochastic analysis of some phenomena in social sciences would be the case.
One of such could be found in the analysis of the insider trading problem at the
stochastic theory of finances (cf.{3]). In a very primitive understanding of the ter-
minology ”insider” the corresponding SDE model would be of such noncausal type
that the parameters are no longer supposed to be adapted to the filtration. Since
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this violates the fundamental hypothesis of causality at the It6’s theory, we need to
prepare a new stochastic calculus that can be developed without that hypothesis.
The noncausal stochastic calculus introduced by the author in 1979 [11] would serve
for this purpose. Already in 1985, this noncausal theory was applied by the author
to the study of the Cauchy problem for the SDE with noncausal initial data and
some basic results about the existence and uniqueness properties of the solution were
established.

The aim of the present article is to develop the study for a more general case,
namely for the Cauchy problem of an SDE with noncausal initial data and coefficients.
For the simplicity of the discussion, we would be contented to treat the case of real
SDE that is driven by the Brownian motion. However the results, except the Corollary
5 given in the last paragraph, might be extended to the case of multi-dimensional
SDE:s.

2 Noncausal SDE and the Cauchy problem

Let Wi(w) (t > 0, w € Q) be the real Brownian motion defined one a probability
space (2, F, P) and let {F;} be the natural filtration of the o-fields generated by the
W, that is, Fy = o{W,;s < t}. By the random functions we understand those real
valued functions f(,z,w) which are measurable in (¢, z,w) with respect to the field
Bjp,71 X Br x F and satisfy the condition,

T
P{/ f(t,z,w)dt < o0} =1, for each z € R
0

A random function f(t,z,w) is called causal (or anticipative) if, for each (t,z) €
[0,T] x R! it is adapted to the filtration JF;.

Given real valued functions a(t, z,y), b(t, z,y) ((t, z,y) € [0,T] x R?) and arbitrary
real random variables £(w), n(w), we are to study the SDE of noncausal type as follows,

{ dX; = a(t, Xs, n(w))dt + b(t, X;, n(w))dW4, t € (0,T), )
Xo(w) = &(w)

Notice that the random variables £(w), 7{w) are not supposed to be independent of
the Brownian motion W;,t > 0. Thus the SDE should be treated in the frame work
of the noncausal stochastic calculus, in other words the stochastic integral in the

equation should be understood in that sense. In stead of the usual notation / aw;

the symbol like / d,W; will be used for this purpose, where the {¢,} is a c.o.ns. in

L%*(0,T). We will give in the next paragraph a short review of the noncausal calculus
based on that integral.



As we have noticed, the stochastic calculus of noncausal type, introduced by
the author ([11], [7],[10],[9] and [5], etc.), will play a principal role throughout the
discussion. We are going to give in this paragraph a very rapid review of some
fundamental results in the theory of noncausal stochastic, mainly following the recent
article [4].

In what follows, we will fix the probability space once for all (2, F,P) on which is
defined the real or R%valued Brownian motion. We will denote by H the totality of

all random functions f(¢,w), measurable in (¢,w) with respect to the field Bz, x F,
T

such that P{ / |f(t,w)|?dt < oo} =1, and by M the subset of all causal random
0
functions that satisfy the following conditions;

(M.1) measurable in (¢,w) with respect to the field Bz, x F, and especially
(M.2) adapted to the family of o-fields {F;}, where F, = o{W,;0<s <t},

T
(M.3) belong to the class L? in t, P{/ |f(t,w)|?dt < o0} = 1.
0

2.1 Causal functions and B-differentiability

An H-class random function g¢(t,w) is said to be differentiable with respect to
the Brownian motion W; (or B-differentiable) provided that there exists an M-class

random function say §(t,w) such that, for small enough A > 0,
t

sup Elg(t,w) — g(s,w) — [ §(r,w)dW.|* = o(h)

t,s,|t—si<h 8

where the integral / d®W stands for the It6’s stochastic integral. The function

§ is called the B-derivative of the g. It is not difficult to see that if the function
g(t,w) is B-differentiable then its B-derivative is uniquely determined (see [12]). The
B-differentiability of the random function with respect to the multi-dimensional Brow-
nian motion is defined in a similar way.

Remark 1 Let g(t,w) be a functional of the multi-dimensional Brownian motion,
W, = (WL W2,--- ,WP") where the W, (1 < i < n) are independent copies of
the 1-dim. Brownian motion W;. Then the B-derivative of such function, say Vg,
can be defined in the following way: the V,g = (5‘%5 g, a—g,—;,ég, e ,g%g)t is a causal
random vector such that,

sup FElg(t,w) — g(s,w) — ———g(r,w)d’WF|?> = o(h)
> [

t,s|t—s|<h

Here we notice that the Ité integral is defined for the causal random functions f (t,w) €
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M and roughly speaking the symmetric integrals (i.e. Iy, of Ogawa [12] and Stratonovich-

Fisk integral) are defined for the causal and B-differentiable functions.
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2.2 Noncausal stochastic integral

Given a random function f(t,w) € H and an arbitrary complete orthonormal system
{pn} in L*(]0,1]), we consider the formal random series

> /0 1 f@t,w)en(t)dt /0 1 On(t)dW,.

The stochastic integral of noncausal type was introduced by the author in 1979 ([11}),
in the following way,

Definition 1 : A random function f(t,w) € H is said to be integrable with respect to
the basis {¢,} (or p-integrable) when the random series above converges in probability
1

and the sum, denoted by / f(t,w)d,W;, is called the stochastic integral of noncausal
0 ;
type with respect to the basis {¢n}.

In general case, the way of convergence of the random series being conditional, the
integrability and the sum may depend on the basis. If the function is integrable with
respect to any basis {¢,} and the sum does not depend on the choice of the basis,
we will say that the function is universally integrable (or shortly u-integrable).

Here are some equivalent expressions and a possible variation of the above definition,
which are worth to be remarked so that we may have better understanding of the
nature of our noncausal integral.

(a) As a limit of the sequence of random Stieltjes integrals;
1 1
/ fd,W; := lim / fdW2(t) (limit in probability),
0 0

n ot 1

where W2(t) = Z / or(s)ds / ©r(s)dW, is a pathwise smooth approxi-
k=10 0

mation of the Brownian motion W (¢, w).

(b) Riemannian definition: As a special case of the above expression, let us take
the Haar functions {H,;(t), 0 <i< 2" -1, 0 < n} as basis {¢,}. Then we
easily see that,

1 2n-1 —m(i+1)
/ fdaW; = lim 3 2° / T syds - W@+ 1)) - W),
0 n—bo0 £~ 9-ng

This type of definition can be found in recent publications of some authors.
However as we notice here, this is a special case of our integral.

(c) Let D,(t, s) be the kernel given by, D,(t,s) = Z er(t)pr(s), (t, s €[0,1]).

k=1
Then we have the following representation for the noncausal integral,



1 1 1
/ fd,W(t) = li)m / dt / f(t,w)D,(t, s)dW, (limit in probability).
0 e Jo 0

For the case of trigonometric functions, the kernel D,(t,s) is the Dirichlet
kernel appearing in the theory of Fourier series.

(d) A generalization of the above view: Replace the kernels {D,(t, s)} in the above
interpretation by any d- sequence say {K,(t, s)}, then we will get a generalized
formula for the noncausal integral;

1 1 1
/ fdeW = lim f it / F(t,w)Kalt, s)dW,

2.3 Condition for the integrability

.
Let Hy be the totality of all random functions f(t,w) € H such that, E / |f(t,w)|%dt

0
< 0o. By Wiener-It6’s theory of Homogeneous Chaos, we know that such function
f € Hy can be decomposed into the sum of multiple Wiener integrals, that is:

There exists a set of kernels, say {kf(t; 2, -+ ,t.)}3,, such that kf € L?([0,1]"*!)

with Zn‘”kﬂli +1 < 00, symmetric in n-parameters (t;,-,t,) € [0,1]* and that,

n

F60) = SR E), BEEN = [ [ [Hsn o W, .o,

where || - || stands for the norm in L?([0, 1]")-space.

We will denote by H; the totality of all Hop- functions f(¢,w) such that,

- oo
Znn'”k,{lli +1 < oo. Given a function f € H; we introduce its stochastic

n=1
derivative Df by the following formula,

Df(t,s) = an (Kl (t;s,4)).

1 p1

Since f / (Df(t,s))*dtds = Znn!”k,{] 2,1, wenotice that the stochastic deriva-
0o Jo

tive Df(t, s) is well defined for the f € H;. Now we can state the condition for the

-integrability of the H;-class functions in the following theorem that was established

by the author in 1984.

233
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Theorem 2.1 ([10]) Let f € H; and let {p.} be an arbitrary orthonormal
basis. Then the necessary and sufficient condition for the random function f to be

1 pl
p-integrable is that the lim / / Df(t,s)Dn(t, s)dtds exists in probability.
n—ee Jo Jo

2.4 Relation between symmetric and noncausal integrals

We call a random function f(¢,w) semi martingale when it admits the decomposition,
t

ft,w) =a(t,w)+ / fd®Wt where f € M and a(t) is such that almost every sample

path is of bounded variation in t over [0,1]. Notice that if sup FEa(t) —a(s)|* =

t,8lt—s|<h
o(h) then f is B-differentiable.

The followings are the basic results concerning the relation between the symmetric
integrals with the noncausal integral.

Theorem 2.2 ([7]) Every causal B- differentiable function is integrable in noncausal
sense with respect to the system of Haar functions and the sum coincides with that of
the symmetric integrals:

/oldeW=/:fd°W+—;—/olfdt

We say. that a c.o.n.s basis {,} is regular provided that it satisfies the next condition:

sup [unll < 0, 10(t) = 0 x(9) [ )i @

k<n
Remark 2 Notice that this condition 2 is equivalent to the fact that,
1
w— lim Un =5 (in L?)

n—o00

namely to the fact that, for any f(t) € L*(0,1) it holds the following,

lim [Cun@fa =3 [ e

Theorem 2.3 ([7]) Every semi martingale (causal or not) becomes p-integrable, iff
the basis {¢n} is reqular. In this case the noncausal integral coincides with the sym-
metric integrals.

Related to this result is a natural and interesting question asking whether there can or
can not be a basis {¢,} which is not regular. This question is affirmatively answered
by P.Mejer and M.Mancino [1]. We can go on further. The next result shows that
a smoothness in W, of the integrand ensures the integrability with respect to any
orhtonormal basis.

Theorem 2.4 ([7]) Every semi martingale that is twice B-differentiable, namely the
B-derivative f is again a semi martingale, is u~integrable.



235

3 Cauchy problem for the noncausal SDEs — Known
results

First notice that the SDE in (1) becomes meaningful in the frame work of the non-
causal stochastic calculus, that is;

{ X, = a(t, Xy, n(w))dt + b(t, X, n(w))d,Ws, t € (0,T], (3)
Xo(w) = ¢(w)

here the {¢,} is a regular basis in L?(0, 1), which we will fix throughout the discussion.

We notice at this stage that when the parameters £(w), n(w) are not random and
the solution X; can be supposed to be causal, then by virtue of the Theorem 2.3 the
SDE in (3) is reduced to the usual SDE with symmetric integration,

{ dX; = a(t, X;,n)dt + b(t, Xz, n)dW,, t € (0,T), @)
Xo(w)=¢

The Cauchy problem for the noncausal SDE was first studied by the author [8] for such
simple case where the parameter 7 is not random or does not appear in a(t, z), b(t, z)
and only the initial data £(w) arises as a noncausal factor.

{ dX, = a(t, X,)dt + b(t, X;)d,W;, t € (0,T), (5)
Xo(w) = £(w) |

For this case, the existence and a kind of uniqueness property of the solution are
proved under a milder assumption on the regularity of the coefficients a(-),b(-) as
follows;

Assumption 1 The coefficients a(t, ), b(t,z) are sufficiently regular in such sense
that,

1. a(t,z), %b(t, z) are of C-class,

2. a(t,z),b(t,x) are sufficiently reqular in the sense that the causa.l.C’auchy prob-
lem 4 admits the unique strong solution X (t,w;&) and that the X (t,w;€) is
continuous in (t,€) with probability one.

derivatives are bounded on [0,1] x R!. Notice that under such conditions the com-
posite ’
X(t,w) = X(t,w;§(w))

of the strong solution X (¢, &, w) of the (4) and the random variable {(w) is well defined,
which we expect to be a solution of the noncausal Cauchy problem (5). In fact we
have the following,
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Theorem 3.1 (1985 [8]) The composite X (t,w) is a solution of the noncausal Cauchy
problem (5).

We have also found that this solution X (¢,w) verifies the Ité formula of noncausal
type, that is;

Proposition 3.1 (1985, [6]) For any function F(z) € C* it holds the equality,
dF(X,) = F'(X){a(t, X,)dt + b(t, X;)d,W:} 0<t<1

As an application of this we can show the following result that concerns the uniqueness
of the solution for the noncausal problem (5),

Corollary 3.1 ([6]) When theb(x) # 0, the composed function X (t,w) = X (t,w; &(w))
is the unique solution among all random functions verifying the Ité formula 3.1 of
noncausal type.

The proof of this together with that of the previously presented Proposition 3.1 will
be given in the next paragraph for a more general case.

4 Discussion for the more general case

We are going to give in this paragraph the results on the Cauchy problem for the
more general case (3).

Assumption 2 We suppose that the coefficients a(t,z;n),b(t,z;n) are sufficiently
reqular in such sense that, for an arbitrary couple of parameters (€,m) the causal
Cauchy problem 4 admits the unigue strong solution X (t,w;&,n) and that the X (t,w; &, n)
is continuous in (t,&,n) with probability one.

Remark 3 The assumption is satisfied when, for ezample, the a(t, z; 1), b(t, z; 1) are
of the C*-class in z, of C*-class in n and all derivatives are bounded on [0,1] x R!.

We also notice that under the Assumption 2 the composite

X (t,w) = X (t,w; £w), n(w))

of the strong solution X (t,w;¢,n) of the (4) and the random variables §{(w), n(w) is
well defined, and as in the previous case we expect this composite X (t,w) to be a
solution of the noncausal Cauchy problem (3). In fact we have the following,

Theorem 4.1 The X gives a noncausal solution of the noncausal Cauchy problem
3.

For the verification of this, we need some preparations.
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Proposition 4.1 Let f(t,w;&,n) (£,n € [—A, A]) be a semi-martingale such that for
each fized (€,m),

df (t,w; €,m) = g(t,w; &, m)dt + h(t,w; & n)d°W, (6)

where g(-), h(-) are causal random functions satisfying the following condition,

A A 1
P| / K / dn / (6(b,w; €,m) + R3(t, w3 €,m)}dt < 00] = 1

(i) Then for any regular basis {¢,} in L%(0,1), it holds the following equality,

A A 1
tim [ e [ anl [ f(6wi& (W) - dWOH =0 (in probability)
—~A ~-A 0 (7)

(it) Moreover if the coefficient h(t,w;€,n) in the decomposition (6) again becomes a
semi-martingale satisfying the same condition as the f(-), then the equality (7)
still holds true for any basis {¢n}.

(Proof) Put f = f; + f, where,

filtsw;€,m) = £O,06,m) + /0 o(s,w;€,7m)ds

and

fZ(t) w3 é.’ ’I']) = Al h(31 w3 Ev n)dOWs .
. Then we have for fi, the equality;
1
| A miawie) - awze)
= fiL,w; & n{W(1) - Wg(1)} - fo {W(s) — Wg(s)}tg(s,w; €, m)ds

Hence with the help of the Theorem of Nishio-Ité6 we confirm that,

A A 1
im [ de [ an( [ e, i€ m}d W) ~ WO =0 (in probabiliy)

n—>oo §_ A

For the term f, we have the decomposition,

[ At wemidw© - awpe) = S ke
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where,

L= 3 ALeEME0 7 @)= [ ex(s)ds)

k~n+1

Z / Br(t)on (t)h(t, w; €, m)dt

k~n+1

= / o)W (1) / Bu()h(s, w3 €, )W (5)

k—n+1

-3 / Bu(A(E, w3 &, M)W (1) / ou(5) W (5)

k=n+1
1
and here, Z,, = / ©n(t)dW ().

We are to show that; hm / d¢ / n({ n) = 0 (in probability), (1 < i < 4).

Since for the quantities I., » (i =1,3,4) this could be easily done by a usual routine,
it would suffice to show the result only for the term I ,.
By taking the Remark2 into account, we see that for each fixed (£, n) we have,

1
. . 1
lim I »(§,7) = lim / h(t w; &, m{5 — un(t)}dt =
n—roo n—o00 0

On the other hand we have,

I, <(z +2U2)/ h%(t,w; &, n)dt where, U —sup||un||Lz < 00.

Hence we confirm the result, lim / / 12 ,.(&,m)dédn =0 O
noo J a4

Now given the unique solution X (¢,w;€,n) of the causal problem 4, we introduce the
sequence of random functions in the following way,

X2t wibym) = € + / als, X (s,w;€,m); m)ds + / b(s, X (s,0; £, 7 MdW2(s)  (8)

where W is the approximate process of the Brownian motion introduced in the pre-
vious paragraph.

We easily see by the Theorem 2.3 that for each fixed ¢, (£, ), we have li_)m Xo(t,w;&,m) =
X(t,w;&,7n), (in probablity). Moreover we can see that this convergence is uniform
in (£,7) on every finite set C4 = [—A4, A] X [-A4,4].

Proposition 4.2 For an arbitrarily large A > 0 it holds the following relation at
each fized t € [0,1],

lim sup |X7(t,w;€,m)— X(t,w;&,m)| =0 (in probability)

N0 (¢n)eCa



(Proof) Put
An(t,wién) = Xo(t,w;€,m) — X(t,w;€,n)

From equations (4),(8) we obtain the following;

Anlt,w;6,m) = / b(X (3; £,m); MWD () — d, W (s)} (9)

On the other hand we have the following expression,

'3 n 62
An(i)wag’n) :‘/O‘ d&l‘/o‘ dﬂlggﬁAn(t,%&,ﬂl)
0 o
+_/0 %An(t,w,&,O)d{mL/o. EEA”(t’w’ 0,7:1)dm

which implies that,

sup |An(t,w; €, n)| < Ji(n) + Jo(n) + J3(n)
(Ean)ECA

where

2 4 4 62 2

Ji(n =4A/ / dn|—=—An(t, w; &,

1(n) dj » 171'05317 (t, w; &1, m)] .,

Jo(n) = 24 / 12 ALt w1, 0)2dE,, Jo(n) = 24 / 19 A (t, w30, my, 0)2dy
_a On _a 0

We are to show that for each fixed ¢ these J;(n), J2(n), J3(n) tend to zero in proba-
bility as n — oo. Since at this stage the parameters £, n remain as deterministic
constants, we notice that the X (¢,w;€,n) is causal and derivable in &, 7. In fact under
the assumption (3) on the regularity of the coefficients a(-),b(-) it is easy to verify
that the derivatives,

X0) = S XGwibn), Xolt) = o X(bwi&n), Xalt) = o X (i)

are given as the solutions of the following symmetric type SDEs, which can be solved
explicitly;
dX1(t) = a,(t, X, n)X1(t)dt + by (t, X, n) X1 (t)dW,,

{ dXa(t) = {a,(t, X,n)dt + b,(t, X, n)dW,}
+{az(t, X, n) Xa(t)dt + b (t, X, n) Xa(t)dW,},
Xz(O) - 0,

dXs(t) = {am(t, X, ’I’])Xz(t) + am,,,(t, X, ’I'])}Xl(t)dt
H{bex(t, X, 1) X2 (t) + ba g (t, X, 1)} Xa(t)dAW:
+a¢(t7 Xa ﬂ)X3(t)dt + bx(t7 X: W)X3 (t)dm’
X3(0) =0 ‘

239
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This combined with the expression (9) would imply that the quantity A,(t,w;§,7)
is derivable in &, 77 and that the order of the derivation in £,n and the integration is
exchangeable. For example,
2 t 82

Tg'_An

0&0n o 0&0n
Hence by virtue of the Proposmon 4.1 we only need to show that the following
quantities,

77 0(8, X (5 &, m{dW(s) — dW,,(s)}

agan ;1) b(X (;€,0);0), b(X (¢;0,7);m)

are semi-martingales satisfying the condltlon in that Proposmon. Since this can be
verified by a simple routine work, we see that we are done. O

Now we are going to give the proof for our Theorem,
(Proof) Fix a positive A in an arbitrary way and put,
€a(w) = E(W)1c, (€(W)) — AL(—oo, -4 (§(W)) + ALja,00) (§(W))
na(w) = N(w)lo,(Nw)) = AL(—so,-4(N(w)) + Al{a,00) (7(w))

For an arbitrary positive ¢ we have,
P{IX5(t w; §(w),n(w)) — X (8, w;§(w), n(w))] > €}
< P{IX3(t, w; a(w), na(w)) — X (¢, w; €a(w) na(w, ega))| > €}
+P(|§(w)| > A) + P(In(w)| > A4)
Since |€4(w)], [na(w)| < A, we confirm that
lim PRt 56(), 14(w)) = X (b w5640 ma(@))] > ¢} =0
by virtue of the Proposition 4.2. The A being arbitrary this implies that,
lim P{IX7(t,w3£), () - X(t,wi@),n(w)] >} =0 O

5 On the question of uniqueness
The noncausal solution of the problem (3), X (t,w) = X (t,w;&(w), n(w)) constructed
in the Theorem 4.1, has a remarkable property as stated in the next,

Theorem 5.1 (Noncausal Ité formula) For any random variable ((w) and any
function F(z,y), which is differentiable in (z,y) and of C*-class in z with bounded
derivatives, it holds the following equality;

dF (X, () = (0. F)(X:, ((w)){a(Xs; n(w))dt + b(Xe; n(w))d,We}  (10)



(Proof) Let X(t,w;&,n) be the unique solution of the causal SDE (4) with deter-
ministic parameters (§,7). Then by the usual It formula for causal functions, we
have for each fixed deterministic parameters (£,7, {), the following relation;

F(X(t;€,m),¢) = F(§,¢) + /Ot(axF)(X(s,w;£,n),C){a(Xs; n)ds + b(X; n)dW,}
(11)

Here the stochastic integral | dW, stands for the causal symmetric integral.

Given this we introduce the approximation sequence as follows,

F(t,w;€,m,¢) = F(¢,¢) + /Ot(amF)(X(s,w;ﬁ, 1), O{a(Xsi mds + b(X,; n)dW(s)}
(12)

Following the same argument as in the proof of Proposition 4.1, we would eas-
ily verify that for each fixed ¢t € [0,1] the sequence F™(t,w;&,n,{) converges to
F(X(t,w;&,m),<) in probability as n — oo, uniformly in (§,7,{) € C’; on any finite
set Cy = [—A, A]®. Hence we confirm, again following the same argument as in the
proof of the Theorem 4.1, that for each fixed t the sequence F"(¢,w;&(w), n(w), {(w))
converges in probability to the F(X (t,w;&(w), n(w),¢(w)) = F(X(t,w),(w)). Now
from the equation (12) we see that the following limit,

t

lim [ (8, F)(X (8, w; §(w), n(w)), ((w))b(X (5, w; §(w), n(w)); n(w))dW (s)

n—00 0

should converge in probability to the limit,
t
/0 (0. F)(X (5,), C(@))b(X (5, w); n(w))dW,(5)

by definition of the X(t,w) and by definition of the noncausal integral with respect
to the basis {pn}

Thus from this fact we get the desired equality (10 ), by letting n — oo on both sides
of the equality (12). a

As we have mentioned in the previous paragraph, this fact that the solution X (¢, w) =
X (t,w; &(w), n{w)) of the noncausal problem (3) satisfies the Itd formula of noncausal
type (10) would give us a partial answer to the question of uniqueness of the solution
of our noncausal problem. In fact we have the following result that is valid for the
case of 1-dimensional SDE.

Corollary 5.1 If the b(t, ;) does not depend on the t and b(z;n) > 0 (or < 0) for
all (t,z,n), then the solution X (t,w) is unique among the all random functions that
verify the noncausal It6 formula (10).

241



242

(Proof)  Without loss of generality we suppose that b(-) > 0. Put Y (t) = F(X(t))
where F(z) is as follows,
F@) = [ 52
0

b(y,n)

. Then we have, X (t,w) = F~(Y(t,w)). By applying the noncausal It6 formula to
the function Y (t) we get,

Vi) = Fle@) + [ G @)snwds + W)

Since this is merely a family ordinary integral equations parametrized By the w, we
see the uniqueness of its solution Y(¢) for each fixed and hence the uniqueness of the
X(t,w). This completes the proof. O
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