ソボレフ空間による関数の近似について

群馬大学工学部 斎藤三郎、 松浦勉、 エムデー アサズザーマン

¹ S. Saitoh, ²T. Matsuura, ¹M. Asaduzzaman

Abstract. Let $H_K(E)$ be a reproducing kernel Hilbert space comprising complex-valued functions $\{f\}$ on E and L_j $(j = 1, 2, \ldots)$ be a bounded linear operator on $H_K(E)$ into a Hilbert space H_j . Then, for $d_j \in H_j$ we shall consider the simultaneous operator equations $L_j f = d_j$ $(j = 1, 2, \ldots)$ with the best approximation problem, for given $d_j \in H_j$

$$\inf_{f \in H_K(E)} \sum_j \|L_j f - d_j\|_{H_j}^2.$$

Furthermore we shall give a general idea and method for approximations of L_2 functions by Sobolev Hilbert spaces by using the Tikhonov regularization. We shall illustrate examples by figures for approximations of L_2 functions by the first and second order Sobolev Hilbert spaces.

Keywords: Reproducing kernel, operator equations, bounded linear operator, Tikhonov regularization, Sobolev space, best approximation, Green's function, simultaneous linear partial differential equation, generalized inverse.

1 Introduction and Background Theorems

We shall formulate our background theorem which has many concrete applications based on [2-6].

Let H_K be a Hilbert space comprising complex-valued functions $\{f\}$ on a set E admitting a reproducing kernel K(x, y) and let L be a bounded linear

operator on H_K into a Hilbert space H. We introduce the inner product in the space H_K , for any fixed $\lambda > 0$

$$\lambda(f_1, f_2)_{H_K} + (Lf_1, Lf_2)_H. \tag{1}$$

Then, it forms a Hilbert space and this Hilbert space $H_K(L;\lambda)$ admits a reproducing kernel $K_L(x,y;\lambda)$ on E. Then, we have the relation of K(x,y) and $K_L(x,y;\lambda)$

$$K_L(x,y;\lambda) + \frac{1}{\lambda}(LK_L(.,y;\lambda), LK(.,x))_H = \frac{1}{\lambda}K(x,y). \tag{2}$$

Theorem 1 The best approximation f_{λ,g,f_0}^* in the sense, for any $f_0 \in H_K$ and for any $g \in H$

$$\inf_{f \in H_K} \left\{ \lambda \|f - f_0\|_{H_K}^2 + \|Lf - g\|_H^2 \right\}
= \lambda \|f_{\lambda,g,f_0}^* - f_0\|_{H_K}^2 + \|Lf_{\lambda,g,f_0}^* - g\|_H^2$$
(3)

exists uniquely and it is represented by

$$f_{\lambda,q,f_0}^*(x) = \lambda(f_0(\cdot), K_L(\cdot, x; \lambda))_{H_K} + (g(\cdot), LK_L(\cdot, x; \lambda))_H. \tag{4}$$

As simple and typical reproducing kernel Hilbert spaces, we shall consider the Sobolev Hilbert spaces H_{K_1} and H_{K_2} admitting the reproducing kernels

$$K_1(x,y) = \frac{1}{2}e^{-|x-y|} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i\xi(x-y)}}{\xi^2 + 1} d\xi \tag{5}$$

and

$$K_2(x,y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i\xi(x-y)}}{\xi^4 + \xi^2 + 1} d\xi.$$
 (6)

The norms in H_{K_1} and H_{K_2} are given by

$$||f||_{H_{K_1}}^2 = \int_{-\infty}^{\infty} (|f'(x)|^2 + |f(x)|^2) dx$$

and

$$||f||_{H_{K_2}}^2 = \int_{-\infty}^{\infty} (|f''(x)|^2 + |f'(x)|^2 + |f(x)|^2) dx,$$

respectively. We shall examine the best approximation in (3) for some typical Hilbert spaces H and bounded linear operators L. In general, we are interested in the behaviours of the best approximation functions for λ tending to zero from the viewpoint of the Tikhonov regularization. So, we wish to illustrate the behaviours of the best approximations for λ tending to zero.

2 Typical Examples

See [3] for many concrete reproducing kernel forms for which Theorem 1 is applied. We can see a general example and a general approach for simultaneous linear partial differential equations in N. Aronszajn [1] who discussed deeply Green's functions in connection with reproducing kernels. We shall give typical examples.

2.1 Let

$$G(x,y) = \frac{1}{2}e^{-|x-y|}. (7)$$

Then G(x,y) is the reproducing kernel for the Hilbert Sobolev space H_G comprising all absolutely continuous functions f(x) on \mathbf{R} with finite norms

$$\left\{ \int_{-\infty}^{\infty} (|f'(x)|^2 + |f(x)|^2) dx \right\}^{\frac{1}{2}} < \infty.$$
 (8)

Hence, we can examine the best approximation problem as follows: For any given $F_1, F_2 \in L_2(\mathbf{R})$,

$$\inf_{f \in H_G} \int_{-\infty}^{\infty} (|F_1(x) - f'(x)|^2 + |F_2(x) - f(x)|^2) dx. \tag{9}$$

For the first order Sobolev Hilbert space H_{K_1} we shall consider the two bounded linear operators $L_1: H_{K_1} \to L_1 f = f \in L_2(\mathbf{R})$ and $L_2: H_{K_1} \to L_2 f = f' \in L_2(\mathbf{R})$. Then, the associated reproducing kernels $K_{1,1}(x,y;\lambda)$ and $K_{1,2}(x,y;\lambda)$ for the RKHSs with the norms

$$\lambda \|f\|_{H_{K_1}}^2 + \|f\|_{L_2(\mathbf{R})}^2$$

and

$$\lambda \|f\|_{H_{K_1}}^2 + \|f'\|_{L_2(\mathbf{R})}^2$$

are given by

$$K_{1,1}(x,y;\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i\xi(x-y)}}{\lambda \xi^2 + (\lambda+1)} d\xi$$
$$= \frac{1}{2\sqrt{\lambda(\lambda+1)}} \exp\left\{-\sqrt{\frac{\lambda+1}{\lambda}}|x-y|\right\}$$
(10)

and

$$K_{1,2}(x,y;\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i\xi(x-y)}}{(\lambda+1)\xi^2 + \lambda} d\xi$$

$$= \frac{1}{2\sqrt{\lambda(\lambda+1)}} \exp\left\{-\sqrt{\frac{\lambda}{\lambda+1}}|x-y|\right\},\tag{11}$$

respectively. Hence, the best approximate functions $f_{1,1}^*(x;\lambda,g)$ and $f_{1,2}^*(x;\lambda,g)$ in the senses, for any $g \in L_2(\mathbf{R})$

$$\inf_{f \in H_{K_1}} \left\{ \lambda \|f\|_{H_{K_1}}^2 + \|f - g\|_{L_2(\mathbf{R})}^2 \right\}$$

$$= \lambda \|f_{1,1}^*(\cdot; \lambda, g)\|_{H_{K_1}}^2 + \|f_{1,1}^*(\cdot; \lambda, g) - g\|_{L_2(\mathbf{R})}^2$$
(12)

and

$$\inf_{f \in H_{K_1}} \left\{ \lambda \|f\|_{H_{K_1}}^2 + \|f' - g\|_{L_2(\mathbf{R})}^2 \right\}$$

$$= \lambda \|f_{1,2}^*(\cdot; \lambda, g)\|_{H_{K_1}}^2 + \|f_{1,2}^{*\prime}(\cdot; \lambda, g) - g\|_{L_2(\mathbf{R})}^2 \tag{13}$$

are given by

$$f_{1,1}^{*}(x;\lambda,g) = \int_{-\infty}^{\infty} g(\xi) \frac{1}{2\sqrt{\lambda(\lambda+1)}} \exp\left\{-\sqrt{\frac{\lambda+1}{\lambda}}|\xi-x|\right\} d\xi \tag{14}$$

and

$$f_{1,2}^*(x;\lambda,g) = \int_{-\infty}^{\infty} g(\xi) \frac{1}{2\sqrt{\lambda(\lambda+1)}} \frac{\partial}{\partial \xi} \exp\left\{-\sqrt{\frac{\lambda}{\lambda+1}} |\xi-x|\right\} d\xi, \quad (15)$$

respectively. Note that $f_{1,2}^*(x; \lambda, g)$ can be considered as an approximate and generalized solution of the differential equation

$$y' = g(x) \quad \text{on} \quad \mathbf{R} \tag{16}$$

in the first order Sobolev Hilbert space H_{K_1} . See Figure 3.

Figure 1: Examples of approximated functions in (9). (a) $F_1(x) = 0$ and $F_2(x) = \chi_{[-1,1]}$ (top thin curve). (b) $F_1(x) = F_2(x) = \chi_{[-1,1]}$ (middle bold curve). (c) $F_1(x) = \chi_{[-1,1]}$ and $F_2(x) = 0$ (bottom curve).

2.3 For the second order Sobolev Hilbert space H_{K_2} we shall consider the three bounded linear operators into $L_2(\mathbf{R})$ defined by

$$L_1:f\longrightarrow f$$

$$L_2: f \longrightarrow f'$$

and

$$L_3: f \longrightarrow f''$$
.

Then, the reproducing kernels $K_{2,1}(x, y; \lambda)$, $K_{2,2}(x, y; \lambda)$ and $K_{2,3}(x, y; \lambda)$ for the Hilbert spaces with the norms

$$\lambda \|f\|_{H_{K_2}}^2 + \|f\|_{L_2(\mathbf{R})}^2,$$

$$\lambda \|f\|_{H_{K_2}}^2 + \|f'\|_{L_2(\mathbf{R})}^2,$$

and

$$\lambda \|f\|_{H_{K_2}}^2 + \|f''\|_{L_2(\mathbf{R})}^2,$$

are given by

$$K_{2,1}(x,y;\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i\xi(x-y)}}{\lambda \xi^4 + \lambda \xi^2 + (\lambda+1)} d\xi,$$
 (17)

$$K_{2,2}(x,y;\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i\xi(x-y)}}{\lambda \xi^4 + (\lambda+1)\xi^2 + \lambda} d\xi,$$
 (18)

Figure 2: Graphs of $f_{1,1}^*(x;\lambda,g)$ in (14)(top) and $f_{2,1}^*(x;\lambda,g)$ in (20) (bottom) for $g(x)=\chi_{[-1,1]}$.

Figure 3: Graphs of $f_{1,2}^*(x; \lambda, g)$ in (15)(top) and $f_{2,2}^*(x; \lambda, g)$ in (21) (bottom) for $g(x) = \chi_{[-1,1]}$.

Figure 4: Graphs of $f_{2,3}^*(x; \lambda, g)$ in (22) for $g(x) = \chi_{[-1,1]}$.

Figure 5: Examples of approximated functions in (25). (a) $F_1(x) = F_2(x) = F_3(x) = \chi_{[-1,1]}$ (top bold curve). (b) $F_1(x) = \chi_{[-1,1]}$ and $F_2(x) = F_3(x) = 0$ (the second bold curve) (c) $F_1(x) = F_2(x) = 0$ and $F_3(x) = \chi_{[-1,1]}$ (the thin curve). (d) $F_1(x) = F_3(x) = 0$ and $F_2(x) = \chi_{[-1,1]}$ (the rest curve).

and

$$K_{2,3}(x,y;\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{i\xi(x-y)}}{(\lambda+1)\xi^4 + \lambda\xi^2 + \lambda} d\xi.$$
 (19)

Then, the corresponding best approximate functions $f_{2,1}^*(x;\lambda,g)$, $f_{2,2}^*(x;\lambda,g)$, and $f_{2,3}^*(x;\lambda,g)$ are given by, for any $g \in L_2(\mathbf{R})$

$$f_{2,1}^{*}(x;\lambda,g) = \int_{-\infty}^{\infty} g(\xi)d\xi \cdot \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-i\eta(\xi-x)}}{\lambda\eta^{4} + \lambda\eta^{2} + (\lambda+1)} d\eta, \qquad (20)$$

$$f_{2,2}^*(x;\lambda,g) = \int_{-\infty}^{\infty} g(\xi)d\xi \cdot \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{-i\eta \cdot e^{-i\eta(\xi-x)}}{\lambda\eta^4 + (\lambda+1)\eta^2 + \lambda} d\eta, \tag{21}$$

and

$$f_{2,3}^{*}(x;\lambda,g) = \int_{-\infty}^{\infty} g(\xi)d\xi \cdot \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{-\eta^{2} \cdot e^{-i\eta(\xi-x)}}{(\lambda+1)\eta^{4} + \lambda\eta^{2} + \lambda} d\eta, \tag{22}$$

respectively. We shall give another type applications of Theorem 1. Note that

$$K(x,y) = \frac{1}{4}e^{-|x-y|} \left\{ 1 + |x-y| \right\}$$
 (23)

is the reproducing kernel of the Sobolev space H_K with finite norms

$$\left\{ \int_{-\infty}^{\infty} (|f''(x)|^2 + 2|f'(x)|^2 + |f(x)|^2) dx \right\}^{\frac{1}{2}} < \infty.$$
 (24)

Therefore, we can examine the approximate problem as follows:

$$\inf_{f \in H_K} \int_{-\infty}^{\infty} (|F_1(x) - f''(x)|^2 + 2|F_2(x) - f'(x)|^2 + |F_3(x) - f(x)|^2) dx. \quad (25)$$

References

- [1] N. Aronszajn, *Green's functions and reproducing kernels*, Proc. of the Symposium on Spectral Theory and Differential Problems, Oklahama A. and M. College, Oklahama (1951), 355–411.
- [2] D.-W. Byun and S. Saitoh, Best approximation in reproducing kernel Hilbert spaces, Proc. of the 2nd International Colloquium on Numerical Analysis, VSP-Holland (1994), 55-61.
- [3] S. Saitoh, Integral Transforms, Reproducing Kernels and their Applications, Pitman Res. Notes in Math. Series **369**, Addison Wesley Longman Ltd (1997), UK.
- [4] Saitoh, S., Approximate Real Inversion Formulas of the Gaussian Convolution, Applicable Analysis, (to appear).
- [5] Saitoh, S., Matsuura, T., and Asaduzzaman, M., Operator Equations and Best Approximation Problems in Reproducing Kernel Hilbert Spaces, J. of Analysis and Applications, 1(2003), 131-142.
- [6] S. Saitoh, Constructions by Reproducing Kernels of Approximate Solutions for Linear Differential Equations with L_2 Integrable Coefficients, International J. of Math. Sci. (to appear).

¹Department of Mathematics
Faculty of Engineering
Gunma University
Kiryu 376-8515
Japan
E-mail:ssaitoh@math.sci.gunma-u.ac.jp
E-mail:asad@eng.gunma-u.ac.jp

²Department of Mechanical Engineering Faculty of Engineering Gunma University Kiryu 376-8515 Japan E-mail:matsuura@me.gunma-u.ac.jp