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1 Introduction and main results

Consider the one-dimensional compressible Navier-Stokes equations in the Lagrangian
coordinates

Vg — Uy = 0,
ut +pr = (W), , (1.1)
o+ %)+ ome = (o5 +055),.

where the unknowns v > 0,u, 6 > 0, p, e, and s represent the specific volume, the velocity,
the absolute temperature, the pressure, the internal energy, and the entropy of the gas
respectively. The coeflicients of viscosity and heat-conductivity, 4 and , are assumed to
be positive constants. We assume, as is usual in thermodynamics, that by any given two
of the five thermodynamical variables, v,p, €, 8, and s, the remaining three variables are
expressed.

The second law of thermodynamics asserts that
0ds = de + pdv,

from which, if we choose (v,0), (v, 5), or (v, €) as independent variables and write (p, e, s) =
(p e, 8)(v,0), or (p,e,0) = (p,¢€,0)(v,s), or (p,s,8) = (p,3,6)(v,e) respectively, then we
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can deduce that
5y(v,0) = py(v,6),

so(v,0) = 2@O) (1.2)
ex(v,6) = 6ps(v,8) — p(v,6),
év(v, 8) = —p(v, ), és(v,8) =0,
Bo(v,5) = pu(v,6) — LBLA 5, (1, 5) = o), (13)
Oy (v, 5) = — 2l 8y(v,8) = iz

or

A A 9
Se('U, e) = %’i S‘U(v» 6) = ﬂ%’_l’

. 6 . B(pe (v.8))? 0)pe(v,0

De(v,€) = zﬁ: Hg »  Du(v,€) = (Pv("’: 0) — ‘(g:%:ﬂ}z') + p_(_%_vee ’:,a,‘(Ygu ) (1.4)
A D ,0)—-8 0

Be(v,e) = o t,o ,  Oy(v,e) = B - vf;’ b4,

From (1.3) and (1.4), we get that

ﬁv('“: S) = ﬁv(vv 8) - p(”? e)ﬁe("), 6). (15)

What we are interested in this paper is to show that the strong expansion waves for
(1.1) are nonlinear stable. For this, it is convenient to work with the equations for the
entropy s and the absolute temperature 6, i.e.

_ 0z 93: ug
st—n(b—a>z+nv02 +pg (1.6)
and )
Opo(v,0) & (Bz ) Booug
ht ) " Gt \v ), T ) v (L)

In fact, for smooth solutions, equations (1.1);, (1.1)2, (1.1)3 are equivalent to equations
(1.1)1, (1.1)2, (1.6) or (1.1)1, (1.1)3, (1.7). In what follows, we will consider (1.1)1, (1.1)2,
(1.6) with the initial data

(v, u, 8) (¢, €)|s=0 = (vo, Uo, S0) () — (Vs,us,8+) as  — Foo. (1.8)

Here v4 > 0, uy, s+ are constants. Since we will focus on the expansion waves to (1.1),
we assume that sy = s_ = 3 in the rest of this paper.

For expansion waves, the right-hand side of (1.1) decays faster than each term on
the left-hand side. Therefore, the compressible Navier-Stokes equations (1.1) may be
approximated, time-asymptotically, by the compressible Euler equations

vi —uy =0,
Ut +ﬁ(’0, 8)z =0, (1.9)

Sg=0.
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There are two families of expansion (rarefaction) waves for (1.9) which are solutions
of the compressible Euler equations (1.9) with Riemann data (véi,u{f, 8(1)2) (z) (cf [1]),

(v—,u-,s-), z<0,
(v,u,8)(t, @)li=o = (v§h,uff, sF7) (@) = { e (1.10)
(U+,U+,S+), z>0.

For illustration, we only consider the l-rarefaction wave (VR,U R,SR) (t,z), which is
characterized by

SR(t,z) =3,
VER(t,x) vt
UR(t,z) - V—bu(2,3)dz = uys — / V—bu(2,3)dz, (1.11)
Mz (VE(t,2),87(,3)) > 0, M(v,8) = —y/=F5 (1, 9).

The case for the 3-rarefaction wave can be discussed similarly.
Before stating the main results, we first list the assumptions on the pressure function
p(v, ) and the internal energy e(v, #) used throughout this paper:

(Hy) polw,0) = 2L <o ep,0)= 20 5 g
and
(Hp) PV, 8) = -62—‘2%;’—8) >0 and p(v,s) is convex with respect to (v,s).
From (1.3) and (H;), we can deduce that
Bu9) = (0, 0) - 20 <, (112
€ss(v,8) = mf,—m- >0,
s 0,5) = feledl,
€vu(v,8) = —py(v,8) + ﬁ%z-g%ﬁ >0,
- . ~ 0pu(0,6) _
Ess(v, 8)Eyy (v, 8) — (Eys(v,8))? = T eo.0) > 0. | (1.13)

Equation (1.13) implies that é(v, s) is convex with respect to v and s. Consequently,
é(v, s) + %uz is a strictly convex function of (v,u, s). Now we can construct the following
normalized entropy n(v,u, s; V,U, S) around (V, U, S)(¢, z), which is the smooth approxi-

mation of the 1-rarefaction waves (VR, UE SR) (¢, z),

n(v,u,5V,U,8) = (e(v,6) + %) - (e(v,0) + §)

(1.14)
_{ —-p(V,0)(v-V)+U(u-U)+0(s - S)}-
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Here we have used the fact that é,(v,s) = —p(v,8), és(v,s) = 6. And the approximate
rarefaction waves V (¢, z),U(t, z), S(t, z), and ©(t, z) are constructed as follows ( cf. (20]).

Given a suitably small but fixed constant € > 0, let w(t, z) be the unique global smooth
solution to the Cauchy problem

w; + wwy = 0,
N \ M (0s )1 (v 3 (1.15)
w(t, @) |emo = wo(z) = Mle=SiN0ed) 4 190 (v=5) tanh(ez),
then, V(t,z),U(t,z), S(t,z), and O(t, ) are defined by
(M (V(t,2),8) = —/=bu(V (£, 2),3) = w(t, z),
V(t,z)
Ut,z) = ux +/ V—Pv(2,3)dz,
va (1.16)

S(t7 .’B) =38,
\ o(t,z) = é'(V(t7 z),’g).

Under the above preparation, for the general gas, our stability result on strong rar-
efaction waves (VR, UE, SR) (t,z) can be stated as in the following.

Theorem 1.1 (Local Stability Result for General Gas) Assume that (VR,UR,

.S’R) (t,z) is the 1-rarefaction wave solution to the Riemann problem of the compressible

Euler equations (1.9), (1.10) and that the initial data (vo,ug, 80)(z) of the compressible
Navier-Stokes equations (1.1)1, (1.1)s, (1.6) satisfies (1.8),

0< 2V < w(z),V(t,z) < 3V,
_ (1.17)
0 < 20 < 6p(z),0(t,z) < 1O
)

for all (t,z) € R, x R and some positive constants V, V,0, and ©, and

N(0) = ||(vo(z) — V(0,2), wo(z) ~ U(0,2), 50(2) — )l 2w

is sufficiently small. Then the Cauchy problem (1.1), (1.8) admits a unique global smooth
solution (v,u, s)(t,z) satisfying

lim sup { (v(t, z) — VE(t, ), u(t,z) — UR(t, z), s(t, z) — 5)

t—+00 xR

} =0. (1.18)

Note that the essential meaning of nonlinear stability of rarefaction waves to the
compressible Navier-Stokes equations (1.1), (1.8) in [12], [15], [20], [21], [22] is that if
(vo,up, 0)(z) is a (small or large) perturbation of (V(0,z),U(0,z),3), the smooth ap-
proximation of the rarefaction wave solutions (VZ(t,z),UR(t, :c),E), then the Cauchy
problem of the compressible Navier-Stokes equations (1.1), (1.8) admits a unique global
smooth solution (v, u, 8)(t, z) which tends time-asymptotically to (VR(t, z), UR(t, a:),ﬁ).
In this sense, the result obtained in Theorem 1.1 does imply the nonlinear stability of
strong rarefaction waves for the compressible Navier-Stokes equations. But, due to the
assumption that the initial perturbation (vo(z) — V(0, z), uo(z) —U(0, z), so(z) —3) should
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be small, the nonlinear stability result obtained in Theorem 1.1 is essentially local. Then a
natural question of importance and interest is how to get the global stability result which
is for large perturbation. Qur second purpose is to devote to this problem and show that,
for the ideal polytropic gas, such a global stability result indeed holds for v near 1 without
the weakness of the rarefaction waves. To state the result precisely, we recall that for the
ideal polytropic gas, (p, €)(v, ) have the following special constitutive relations

RO v-1 RO
= — = It = —_—
p(v,6) " Av™ 7 exp ( 7 s) , e(v, ) Py ¥ (1.19)
where R > 0 is the gas constant, v > 1 the adiabatic constant, and A a positive constant.
Our second result is stated as follows.

Theorem 1.2 (Global Stability Result for the Ideal Polytropic Gas)  Assume
that (VR(t, z), UE(t, a:),E) is the 1-rarefaction wave solution of the Riemann problem of
the compressible Euler equations (1.9), (1.10) and that (p,e){(v,0) satisfy the constitu-
tive relations (1.19). Then for any (vo(z) — V(0, ), uo(z) — U(0, ), so(z) — 3) € H3(R)
satisfying (1.17) and its H'(R)—norm to be bounded by a constant independent of %,
the corresponding Cauchy problem (1.1), (1.8) admits a unique global smooth solution
(v,u, s)(t, x) satisfying (1.18) provided that v — 1 is sufficiently small.

In the proof of Theorem 1.2, the assumption that 7 is close to 1 is used for obtaining
the a priori assumption 0 < @ < 6(t,z) < © for (t,z) € [0,00] X R so that 6(¢,z) —
©(t,z) is small. Hence, one can image that for the isentropic polytropic gas, such a
smallness assumption can be removed and this has been obtained by A. Matsumura and
K. Nishihara in [21], [22] by cleverly introducing another type of smooth approximation
of the rarefaction wave solution. That is, wo(z) in (1.15) is replaced by

M(v=,3) + A (v+,8)  M(v4,3) = A (v-,F £z -
w(t, z)le=0 = wy(x) = et 2 toed) , o) 3 . )Kq/O (1+y°)%dy,
(1.20)

where K, > 0 is a constant satisfying

K, /0+°°(1 +y%) "y =1 (1.21)

for some suitably large constant g > 0.

Our third purpose is to show the global stability result on strong rarefaction waves for
p—system with viscosity with a general pressure p = p(v). To state this result, we recall
that the isentropic compressible Navier-Stokes equations in Lagrangian Coordinates can

be written as
Vg — Ug = 0,
(1.22)

ut + p(v)e = p (&),
with the initial data

(v, u)(t,z)|t=0 = (vo,u0)(z) = (vi,us) as z — foo. (1.23)

Here v+ > 0 and uy are given constants so that the Riemann problem of the isentropic
compressible Euler equations
{ v — Uy =10,
(1.24)

Uy + p(v)z = 0’
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with the Riemann data
(v=,u-), =<0,

(v, u)(t, @m0 = (35,%) (@) = { (1.25)

(’U+,U+), z >0,

is assumed to admit a unique 1-rarefaction wave solution (VR,WR) (¢, ).
We only assume that p(v) is a positive smooth function for v > 0 and satisfies

p'(v) <0, p'(v)>0 for v>0. (1.26)
Under the above assumptions, we have the following theorem.

Theorem 1.3 (Global Stability Result for General Isentropic Gas) Assume that
the Riemann problem (1.24), (1.25) to the compressible Euler equations admits a unique 1-

rarefaction wave solution(VR,TJ-R) (t,z) and that (V, —U_) (t,z) is a smooth approzimation

of the Riemann solution (VR,UR) (t,z) constructed by

Vit,o) =\ (@(t2), M) = —V/ PO,
V(t2) (1.27)

U(t,z) = us +/ VP (8)ds.
C
Here W(t, z) is the unique smooth solution to the following Cauchy problem

{ w + wwg =0,

(1.28)
w(t, z)|s=0 = Wo(z) = 2ule=liN(vs) 4 Au(v4)-2102) anh(ez).

Then for any p(v) satisfying (1.26) and (vo( ) = V(0,z),up(z) — U(0, a:)) € H%(R) sat-
isfying 0 < 2V < vp(x), V(t,z) < -V for all (t,z) € R4 X R and some positive constants
V., V and with its H*(R)—norm bounded by a constant independent of the quantzty , the
Cauchy problem (1.22), (1.23) admits a unique global smooth solution (v, u)(t, ) satzsfying

lim sup
t=+00 zeR

(v - VR, u— ﬁR) (t, :z:)

}:a (1.29)

Remark 1.1 In [21] and [22], the assumption that p(v) = v~ 7(y > 1) plays an essen-
tial role in the analysis and it is worth to pointing out that even by using their smooth
approzimation of the Riemann solutions, their arguments can not be applied to the case
when p(v) satisfies only (1.26). However we have assumed that the H*(R)—norm of the
initial perturbation is bounded by a constant independent of % with small fized number
€ > 0. This implies that the data (vo,uo)(z) for (1.23) is initially rather flat though
( o(z), V(0, z), uo(z) — U(0, a:)) may be large. So, we should seek for the global solution
and its behavior for any data (vo, uo)(z) with ||(vo(z) — v, uo() — ux) g1 (Ry) bounded.
This will be done under some additional assumptions on p(v) in Theorem 1.4.

In Theorem 1.1, 1.2, and 1.3, we assume that the solutions to the corresponding Rie-
mann problem of the compressible Euler equations consists of only one rarefaction wave.
In fact such a restriction can be removed by suitably modifying the arguments used in
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the proof of the theorems. To simplify the presentation, we use the isentropic compress-
ible Navier-Stokes equations to explain this. Suppose that the solution (VR,UR) (t,z) to

the Riemann problem (1.24), (1.25) consists of one l-rarefaction wave (V?,Uf) (t,z)

and one 2-rarefaction wave (Vf ,ﬁf) (t,z). That is, there exists a unique constant
state (T,%) € R? such that (v_,u-) and (¥,%) are connected by one l-rarefaction wave
(Vf,ﬁf) (t,z), i.e., (T,%) € Ry(v-,u_), while (7,7) and (v4,u4) are connected by one

2-rarefaction wave (‘175‘ Rizs ) (t,z), i.e., (v4,us) € Ro(,u). Here

Ry(v—,u.)=1¢(v,u) | u=u_ +/U \/ =P (s)ds, u > u_},

(1.30)
Ry(7,u) =< (v,u) | u ='H—-/_ —p'(8)ds, u 2U}.

Consequently
(V50" (o) = (V2 + Vo62) -3, 006 2) + T3 (h2) —w) . (131)

Let w;(t,z)(: = 1,2) be the unique global smooth solution to the following Cauchy
problem

(1.32)

{Wit + WWiz = 0,
Wi(t, T)|t=0 = Wip(z) = T=FTit 4 Tub=Biz ganh(ez), i=1,2,

then, as in [20], the smooth approximate solution (V, U) (t,z) of (VR,UR) (t,z) is con-
structed as follows:

(7,0) (t.2) = (Va(t:2) + Va(t,2) - 0,0s(t,2) + Ualty2) ~ @), (1.33)
where (Vl,ﬁl) (t,z) (resp. (Vz,?j2) (¢, :z:)) is defined by

A1 (Vl(ta m)) = (t» .’12), (resp. A2 (—VZ(t, x)) = —’1172(t, .’B))
_ Vi(t,z) . Va(t,z) (134)
Ui =u- +/ V-r(8)ds, (resp. Us(t,z) =2 — [ \/—p’isids)

and Wy (¢, z) (resp. Wa(t,z)) is the solution of (1.32) with @, = Aj(v_) and W4 = A (D),
(resp. W = A2(T) and Woy = Ag(v4)).
It is easy to deduce that the smooth functions (V, ﬁ) (t,z) satisfies the system

Vt_ﬁz=0,

it0(7), =a(9).

T

(1.35)

where g (V) =p (V) -p (Vl) —p (Vz) +p (7) . Hence, we only need to control g (V(t, z))x
suitably in this case. Notice that from the properties on the smooth approximation of the
rarefaction wave solution stated in [19], we only have
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/ ng HL ®) dr < 0(1)5_%. (1.36)

From this observation together with the fact that, in deducing our main results, we need
the smallness of €, a quantity introduced in the construction of the smooth approximation
to the rarefaction wave solutions, to close the energy estimates, it seems hopeless to use
our method to deal with the nonlinear stability of the superposition of rarefaction waves
of different families.

We note, however, that g (V(t, .1:))m satisfies the following estimate(cf. [20]): There

exist constants C > 0, > 0 such that for t > 0,z € R
’g( (t,z) ) l < Ceexp(—oae(|z| + t)). (1.37)

From (1.37), we can see that, like those for the study of nonlinear stability of travelling
wave solutions to dissipative hyperbolic systems of conservation laws, if we give the smooth
approximation V(t,z) a shift, that is, if we let v (t z) = V(t + to, z) with £y > 0 being a
suitably chosen fixed constant, then we have for v (t,z) that

[ s (™),

If we let for example to = €72, the right-hand of (1.38) is controlled by O(l)e—% exp (-2

which can be as small as we wanted if we choose £ > 0 sufficiently small. Consequently,
our method can indeed be applied directly to deal with the nonlinear stability of the
superposition of rarefaction waves of different families provided that we approximate the
rarefaction wave solutions by V' (¢, z) (Note that in this case, the initial data (vq,ug)(z)

of the compressible Navier-Stokes equations (1.24) is a perturbation of (7, ?7) (to,w).)

In Theorems 1.2 and 1.3, we assume that the H'—norm of the initial perturbation is
bounded by a constant independent of %, which is excluded under additional assumption

1
o) < 0(1)5 ? exp(—aety). (1.38)

p(v) 2 CT'v?, Cip(v) 2 ol (v)| = —vp/(v) 2 C7" (0 <w <), (139
1.39
-Pv) 207w (v21)
for arbitrarily fixed constant C; > 2. Note that (1.39) derives
Crlv™l < p(v) <p()v=C (0<wv<l),
=01 (1.40)
p(v) 2 p(0) + giermy (v2 1)

Hence, though (1.40) is not sufficient condition for (1.39), the assumption (1.39), roughly
speaking, seems to be reasonable including the typical pressure model p(v) = v~7(y 2 1).
Then we have the final theorem.

Theorem 1.4 Assume that p(v) satisfies (1.26) and (1.39) and that the solution (VR,
UR) (t,z) to the Riemann problem (1.24), (1.25) is given by (1.31). Let (ﬁ,ﬁ) (t,z) be
a smooth approzimation of the Riemann solution (VR, ﬁR) (t,z) constructed by (1.33)-
(1.84) with Wio(z) in (1.82) being replaced by

Wi— + Wiy | Wiy —
2 T 3

i, [ ey
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for ¢> 3 and K, satisfying (1.21).
Then for any (vo(a:) - V(0,z), uo(z) - U(O,m)) € H%(R) satisfying 0 < 2V < vy(z),
V(t,z) < LV for all (t,z) € Ry x R and some positive constants V, V, the Cauchy

problem (1.22), (1.23) admits a unique global smooth solution (v,u)(t,z) satisfying (1.29)

Now we outline the main ideas we used in proving our main results. The main new
ingredient in our analysis is to introduce two quantities € and ¢y in the construction of
the smooth approximation of the rarefaction wave solutions to control the possible growth
caused by the nonlinearity of the systems and by the interactions of waves from different
families respectively. As to the global stability results, the key point is to get the uniform
lower bound for v(¢,z) and our main observation for the isentropic case is that if p(v)
satisfies (1.26), then we can deduce that there exists a positive conctant Cy > 0 such that
22
z+2V°
Such an estimates plays an important role in our proving Theorem 1.3 and Theorem 1.4.

V+z
Here ®(V,2) = p(V)z — /‘; p(s)ds.

o(V,2) 2 Cy

(1.41)

Remark 1.2 It is worth to pointing out that the large time behavior of solutions to the
compressible Navier-Stokes equations (1.1), (1.8) has been studied by many people, cf.
[1-24] and the references cited therein. When the initial data (vo,uo,S0)(z) is a small
perturbation of a non-vacuum constant state, i.e., v_ = vy > 0,u_ = uy,s_ = 84, quite
perfect results have been obtained, cf. [10] and [17]. In the case when the far fields of
the the initial data are different, i.e., (v_,u_,s_) # (v4,u+, 84+), many interesting results
have been obtained: When the solutions to the corresponding Riemann problem consist in
only shock waves, the nonlinear stability of travelling wave solutions has been established by
[11], [14], and [19], etc. While, when the solutions to the corresponding Riemann problem
consist in only rarefaction waves, the corresponding nonlinear stability results are obtained
by [12], [15], [21], and [22].
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