O0oo00oOooDoooO 13550 2004 0 24-32

24

On the solution to nonlinear Schrodinger
equation with superposed J-function as
initial data

UM AR - BEZEMAR db EF (Naoyasu Kita)
Faculty of Mathematics, Kyushu University

1 Introduction

We consider the Cauchy problem for the nonlinear Schrodinger equation with very singular
initial data described as the superposition of point mass measures:

{ i0u = —Au + N (u),

u(0, ) = pobo(z) + 16a(z). (1.1)

In the above equation, u is a complex valued unknown function of (¢,z) € RxR" (n > 1).
The nonlinearity A (u) is of gauge invariant power type, i.e.,

Nw) = Muffluy,

where A € C and 1 < p < 1+ 2/n. The functional &(z) denotes Dirac’s J function
supported at x = b and the coefficiet u; (j = 0, 1) belongs to C. Some generalization of
the initial data will be given as the remark later.

The nonlinear evolution equations with measures as initial data are extensively su-
tudied. For nonlinear parabolic equations, Brezis-Friedman [2] gives the critical power of
nonlinearity concerning the solvability and unsoluvability of the equation. For the KdV
equation, Tsutsumi [5] constructs a solution by making use of Miura transformation.
Recently, Abe-Okazawa [1] have studied this problem for the complex Ginzburg-Landau
equation. The idea of the proof for these known results is based on the strong smoothing
effect of linear part or the nonlinear transformation of unknown functions into the suitably
handled equation. In the present case, however, the nonlinear Schrédinger equation does
not posesse the useful smoothing properties and the transformation into easily handeled
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equation. Therefore, it is still open whether we can construct a solution when the initial
data is arbitrary measure.

The author considered the case in which the initial data is single delta function sup-
ported at the origin. In this case, the solution is explicitly described as

u(t,z) = A(t) exp(itA)dy , (1.2)
= A(t)(4mit) ™2 exp(iz?/4t),

where the modified amplitude A(¢t) is
exp (’\5-—)——-———4" e D | -1/ 2t) if ImA =0,

i 1-n(p-1)/2

Alt) = 13
exp (—1—1) log(1 —Cn,pIm/\lt]""(P-l)/z’t)) if TmA 0,

where Cpp = (p — 1)(4m)™P~1/2(1 — n(p — 1)/2)~1. We note that (1.3) gives the global
solution if ImA = 0 and the blow-up solution at positive (resp. negative) finite time if
ImA > 0 (resp. < 0). In fact, by substitute the expression (1.2) into (1.1), we have the
ordinary differential equation of A(t) such that

dA

Vit

with the initial data A(0) = 1. This ODE is easily solved as we obtain (1.3). In [4],

we also study the case in which the initial data cosists of the superposition of dy and

L%*(R™)-perturbation. In this case, the global existence in time follows if A € R and sme
additional conditions on the power of nonlinearity are imposed.

Our concern in this proceeding is to construct a solution to (1.1) with the formar

L*(R™)-perturbation replaced by & functions supported away from the origin. Before
stating our main theorems we introduce the space of sequences:

& = {(Ak)kez; l(Ax)kezllez < oo},

where ||(Ak)kezll?y = Tkez (1 + k2)*/2A,[?. The first main theorem is concerning the
local existence of the solution.

[amt| =D\ (4),

Theorem 1.1 For some T = T(u) > 0, there exists a unigque solution u(t,z) to (1.1)
described like

u(t, x) Z A (t) exp( ztA)&ka, (1.4)
kez

where (Ax(t))kez € C([-T,T); ) NC([-T, T)\{0}; £2) with Ao(0) = o, A1(0) = w1 and
Ad(0) =0 (k#0,1).
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The idea of the proof is based on the reduction of (1.1) into the system of ordinary
differential equations (see section 2). ‘

Remark1.1. Let us call Ay(t) exp(itA)dy, the k-th mode. Then, (1.4) suggests that
new modes away from 0-th and first ones appear in the solution while the initial data
contains only the two modes. This special property is visible only in the nonlinear case.
We can not expect this kind of phenomena in the linear case (A = 0). The representation
(1.4) is deduced by the following rough consideration. Since the nonlinear solution is first
well-approximated by the linear solution u(t,z) = exp(itA)(uodo + p16,), the second
approximation uy(t, z) is given by solving

(z@t + A)UQ = N(ul)
- N((Zﬂ')_"/zeizz/‘“D(uo + ule—ia-meiaz/u))
|47.rt|—n(p—l)/2(271.)—71/261’1:2/4tDN(1 + e—ia«xeia2/4t), (15)

where we have used u; = e® /% DFei=’%y(0,z), Df(t,z) = (2it)~"/*f(t,z/2t) and F
“denotes the Fourier transform. Let us replace a - by 6. Then, the nonlinearity in (1.5)
is regarded as a 2m-periodic function of 8, and hence the Fourier series expansion yields

(the right hand side of (1.5)) = |4mt[*®~1/3(2r)~"/2¢*/%D ¥ By (t)eitka)* /4t g =ikt
; keZ
= |47rt|”"("”1)/2 Z By (t) exp(itA)diq,
k€Z

where By(t)ei*®)*/4 is the Fourier coefficient. By the Duhamel principle, we can imagine
that the solution to (1.1) has the description as in (1.4).

Remark1.2. Reading the proof of Theorem 1.1, we see that it is possible to gener-
alize the initial data. Namely, we can construct a solution even when point masses are
distributed on a line at equal intervals — more precisely, the initial data is given like

u(0,7) = Y ukba(T),

keZ

where (ux)rez € £2. In this case, the solution has the description similar to (1.4) but
{Ak(0)} = {m}. The decay condition on the coefficients described in terms of £ is
required to estimate the nonlinearity. This is because we will use the inequality like
IN(@)lzz < CliglEz llgllzz where g = g(t,0) = T Ave™*0ei)*/4 and § € [0,27]. Ac-
cordingly, to estimate ||g||zg, We require the decay condition of {Ax}.
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Remark1.3. Actually, we can construct a solution in more general situation on the
initial data. There is no need for the point masses to be distributed on a line at the equal
interval. For instance, even when the initial data is given as

u(0, ) = pgodo(x) + p108a(z) + Ho105(z),

where a and b are linearly independent on the quotient number field, i.e., a # gb for any
q € Q, we can construct a solution to (1.1). This solution is described as

u(t iE Z AJ]C exp ’LtA)(SJcH,kb,
Hk€Z
where the coefficients A;, satisfy the following ordinary differential equation:
dA;
gk
dt

|4mt| =D/

— (27.‘.)-»2 1(Ja+kb)2/4t/ / 1(791+k02)N ZA Ik,e i(§'61+k'62) ’l.(_‘l a+k/b)2/4t) d91d02

Jlkl

The above ODE is time-locally solved under some special conditions on pu;; which we
want to get rid of. -

If A € R, then we obtain the time global result given below.

Theorem 1.2 In addition to the assumptions of nonlinearity, we let A € R. Then,
there erists a unique global solution to (1.1) described in the similar way to (1.4) but
{Ac(t)}rez € C(R; £7) N CH(R\{0}; 1)

2 Proof of Theorem 1.1

In this section, we reduce (1.1) into the system of infinitely many ordinary differential
equations of Ag(t). We first prove a simple lemma which gives the useful representation
of nonlinearity. This lemma is a by-product of the argument with Takeshi Wada in Osaka
University.

Lemma 2.1 Let {A} € C([-T,T);£3). Then, we have
N (S Ak(t) exp(itA)drs) = |[4mt] P72 5™ A(t) exp(itA)da, (2.1

keZ keZ
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where

A’k(t) — (27r)'1ei(k“)2/4t(e"“‘9,N(Z Aje—ijBe—i(ja)2/4t)>a,
J

with {f, 9)e = f§" F(6)g(6)db.
Proof of Lemma 2.1. Note that

exp(itA)f = (4mit)™/? / exp(ilz — y|*/4¢) f (y)dy
— MDFMF,

where

Mg(t,z) = €/*%g(z),
Dg(t,z) = (2it)™"*g(z/2t),
Fq(&) (2m) /2 / e %%g(z)dr (Fourier transform of g).

Then, we see that
N (O Aj(t) exp(itA)dsa)
k

= _/\/’((2”)—"/2MD Z A; (t)e—ija-m—i(ja)2/4t)
J

il

= |amt|"ED2(2n) " 2MDN (Y A;(t)e om0 /4, (2.2)
J

Note that, to show the last equality in (2.2), we make use of the gauge invariance of
the nonlinearity. Replacing a - z by 6, we can regard N(X; A;(t)e~79-1i2)*/4) a5 the
2n-periodic function of 8. Therefore, the Fourier series expansion is allowed, i.e.,

N(Z Aj(t)e—ija—i(ja)2/4t) - Z Ak(t) g~ i(ka)? /4t ,—ike
J k
= (271')"'/2 E z‘ik (t)}'Méka.
k .
Plugging this into (2.2), we obtain Lemma 2.1. O

We next consider the reduction of (1.1) into the system of ODE’s. By substituting
u = Y Ak(t) exp(itA)dr, into (1.1) and noting that 79, exp(itA)dk, = —A exp(itA)dxa,
Lemma 2.1 yields

Zi%GXp(itA)Jka = [4nt| MY Ay exp(itA)dea.
k k
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Recalling that exp(itA)éi, = (2m)""2MDe~* M and considering the uniqueness of the
Fourier series expansion, we arrive at the desired ODE:

z'%’i = |4rt|TMPD/2 4, (2.3)

with the initial condition Ag(0) = ux. Now, showing the existence and uniqueness of
(1.1) is equivalent to showing those of (2.3). To solve (2.3), let us consider the following
integral equation.

Ak(t) = i((Ax(t))kez)
= ,uk——z'/o |47 |- D/2 4, (1) dr. (2.4)

We here require the contraction property of (®x)icz.

Lemma 2.2 Let I = [-T,T) and (Ax) = (Ax)kez. Then, we have

I{AH o2y < CIH{ARN o 1.2y (2.5)
ALY ~ (A2 iira
< Clmax [[{AP o) I{ALY = {A e i) (2.6)

Proof of Lemma 2.2. According to the description of A; as in Lemma 2.1 and the
integration by parts, we see that

k/ik — (2,n.)—1ie—i(ka)2/4t<e-iko’ 66/\/(2 Aje_ijoei(ja)z/“))o.
J
Then, Parseval’s equality yields

kAl = (2m)~Y2|0pN (X Age=i90eiia/any|
J

[

IA

—1:‘ i. —_ . _.. Y 2
Ol Y Aje 0 /4|52 S jA;em 9000 /4)|
i i
< Cl{A}z-

Thus, we obtain (2.5). The proof for (2.6) follows similarly. Since there is a singularity at
u = 0 of the nonlinearity (1), we do not employ £2-norm to measure {A{"} — {4®}. O

Proof of Theorem 1.1. Let |[{ux}llz < po. Then, in virture of Lemma 2.2, it is
easy to see that, for some T' = T'(py) > 0, {®r({A;})} is the contraction map on the
closed ball Byp, = {{Ak}; [[{Ar} Lo (r,2) < 200} With the mertic H{AS) }- {Ag)}H Lo (Iito)-
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Therefore, we first obtain the solution {Ax} of (2.4) which belongs to L*(I; £2). Since this
solution satisfies the integral equation (2.4), we see that it actually belongs to C(I;¢?)
and, moreover, belongs to C*(I\{0};¢}). D

Remark We can continuate the local solution as long as ||{A4k(t)}||z < oo. This follows
by solving

Adt) = Axlto) + /t:|4ﬂr"@-1>/2/ik(+)df.

The method to construct the solution is similar to the proof of Theorem 1.1.

3 Proof of Theorem 1.2

In this section, we derive the a priori estimate of {A(t)}, which yields the global existence
of the solution.

Lemma 3.1 Let A € R and let {Ax} be the solution to (2.8). Then, we have

I{Ax®)Hlez = {ee}lez, | (3.1)
I{EARD NG + KnpaXt?"CD/2)] 3 Agem e /)70,

keZ
< Cpuy (0072, (32)

where Knga = 8/((4m)"#0/2a2(p + 1)) and (£) = (1+2)!/2

Proof of Lemma 3.1. Then, by multiplying Ax on both hand sides of (2.3) and
taking summation with respective to k € Z, (3.1) follows. We next prove (3.2). Let
g(t,0) = ¥ Apeik0ei(ka)*/4 gand write

d“{kAk(t)}Hgg
dt

= 2ReY Ak?i
- dt

2|drt)"P-V2Im S Axk? Ay
k

We here note that

—i(ka)?/4t

S AR = (@2/ima?)(¥ AT o)

- dt

= (/i) (22, M)
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t2/27ra Z k e~ k0 gi(ka) )y2/4t N(g))

= (2t*/ima® )( N(g)>
—(2 t2/7ra2)l47rtl v/ 22! N ( Dl

Thus,

+1
d”{kAk}”?g BV —n(p—1)/2 ”glig‘i-l
dt Knpa dt

This identity gives, for t > 0,
d —n(p—
Z(H{kALHIG + Knpat* e 2||g||’f§il)
(2= n(p = 1)/2) Knp o 02 gl 82,
< (2-nlp-1)/2)t7 ({kAR} 2 + Kn,p,akllgllﬁ“gil)- (3.3)

Let E(t) = H{kAk}Hfg + Kupahl glliﬁl. Then, applying Gronwall’s inequality to (3.3),
[}
we have

E(t) < E(to)(t/to)>™® V2 for t > to with to > 0 small. (3.4)

On the other hand, for ¢t € (0,%0), the proof for the local existence result as in Theorem
1.1 yields

E®t) < [{HA®MNE + ClI{A®}IE"
< (200)" + C(2p0)P. (3-5)
Combining (3.4) and (3.5), we obtain (3.2). O
Proof of Theorem 1.2. If A > 0, Lemma 3.1 gives |[{A:}|lz < C(t)"P~D/% < c0.

Thus, the local solution is continuated to the global one. If A < 0, Lemma 3.1 (3.2) and
Gagliardo-Nirenberg’s inequality yield

”{kAk}||33 < C(t>2'n(p_1)/2+C|t|2_n(p_1)/2(”g”%gHaag"}:ga)pﬂ,

where 1/(p+1) = a/2+ (1 —a)(1/2—1). We here remark that (1 —a)(p+1) < 2. Then,
by Young’s inequality, we have

{kARHIz < Ct)™ + ell{kAx}Iz3-
This implies that ||[{Ax(t)}lez < oo for any t. Hence, we obtain the global solution. O
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