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1 Introduction

The geometrical evolution law
V=-Ax

was derived by Mullins [7] to model the motion of interfaces in the case that the motion
of interfaces is governed purely by mass diffusion within the interfaces (for simplicity we
set the diffusion constant to 1). Here V is the normal velocity of the evolving interface,
A is the Laplace-Beltrami operator and & is the mean curvature of the interface where
we use the sign convention that a sphere with the normal pointing to the inside has
positive curvature.

In this paper we study the following problem. Given an open bounded domain Q ¢ R?
we look for evolving curves I = {T';}+50 (for a definition, see Gurtin [4]), which lies in Q
and satisfies OI'; C 0f2, with the properties for ¢t > 0:

V = —Kg, on I,
£(0Q,T;) =n/2 at QNI (1.1)
ks =10 at o0NTy,

where a subscript s denotes the differentiation with respect to the arc-length parameter.
Then we observe that the problem (1.1) has the basic properties:
d d

—Lr(t) < —Ar(t) = 0.
Here we denote by Ar(t) the area enclosed by the curve and 89 at time t and by Lp(t)
the length of I" at time t.

Our goal in this paper is to derive a linearized stability criterion based on the work
of [2], [3], [6] which deal with the mean curvature flow. The analysis in the case of the
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surface diffusion flow is more difficult because the surface diffusion flow is the gradient
flow with respect to the H~-inner product (see [8]) in contrast to the case of motion by
the mean curvature flow which is a gradient flow with respect to the L?-inner product.
Here, for the convenience of readers, we show some typical differences between the mean
curvature flow and the surface diffusion flow.

e The mean curvature flow: V =&
— The gradient flow of the length with respect to the L?-inner product.
— Not area-preserving.
— Stationary solutions are the line segments.

— A singular limit of Allen-Cahn equation.

e The surface diffusion flow: V = —kg,
— The gradient flow of the length with respect to the H ~Llinner product.
— Area-preserving.
— Stationary solutions are the line segments and the circular arcs.

— A singular limit of Cahn-Hilliard equation.

We remark that our results also have some relevance to isoperimetric problems which
give stability or instability for critical points of the length functional of curves that
enclose a fixed area. Since the surface diffusion flow reduces the length conserving the
ares at the same time, the stability analysis for the evolution problem can be reduced
to the study of critical points of the length functional under an area constraint .

" This paper is a survey of the article [5]. If readers are interested in the details of this
paper, refer to [5].

2 Parameterization and linearization
For a smooth function 9 : R? — R with Vi(z) # 0 if ¢(z) = 0, set

Q= {zcR?|¥(z) <0}, 8Q={zeR?|y(z)=0}

Let T, be a stationary solution, which is a part of circle or a line segment, and let o be
the arc-length parameter of T',. Then we denote an arc-length parameterization of ', as

T, = {®,(c) | o € [-1,]}.

Note that we can extend T', naturally either to the full circle when T, is a part of circle
or to the straight line when T', is a line segment. Also note that the curvature k. of T,
is a constant. We denote

J.— { m/|Kksl, Ku #0,

+00, K = 0.
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That is, [ is the length of the extension of T, to a full circle (if &, # 0). Define

{ €+(q) = max{o € (-1,]) | ®.(0) + qNu(0) € O},
€_(¢) = min{o € (=,1) | ®.(0) + ¢N.(0) € 02}.

where ¢ € [—d, d] for a small d > 0, and N,(c) is a unit normal vector of I'. at o and
is obtained by rotating the unit tangent vector Ty(c) of I'. with m/2. Then it holds
(P (€+(q)) + gN.(€+(q))) = 0. In addition, we have £.(0) = +I. Using the implicit
function theorem, we see that £, (g) and £_(q) are smooth. Let

Y(0,q) := D.(&(0,9)) + aNu(&(0,9))

with l
(0,9) = €-(0) + 5—(6+(@) ~ £- ().

Note that £(+l,q) = £+(g) and £(0,0) = 0.

Let T" be curves in the neighbourhood of I',, which touch the boundary 62 and are
contained in 2. For some functions p : [-,I] — [—d,d], we define ®(o) := ¥(o, p(0))
for o € [-1,1], which denotes a parameterization of such curves I'. Thus we set

Ty = {®(0,t) | o € [-1, 1]} (2.1)

with ®(o,t) := ¥(0, p(0,t)) for a function p depending on o and ¢t. We remark that
p = 0 means that curves I'" coincide with a stationary curve T',.

Let us derive the representation of (1.1) to the parameterization (2.1). For the arc-
length parameter s of I', we have

ds _
do

@] = 1/1%o]2 + 2T, T)mapo + [Wgl202 (=: J(p)). (2.2)

Here and hereafter (-, )2 denotes the inner product in R2. Then we find

1 1
T=——&, N=-——R®,,
J(p) - J(p)

where T' and N are the unit tangent and normal vector of I" respectively, and R is the
rotation matrix with 7/2. The normal velocity V of I'; is denoted by

V= (&, N)gs = 7(1‘5@“ RO, )gs = 7(15)-(\1:q, RU)msps.

Moreover, since (2.2) gives

a_ L (1 \__ 1 ., 1 1 _ |
%= 757 (705%) = ot 75 (07) & 000 @
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the curvature k of T'; is written by

k(p) = (A (p)CI) N)g:

e < 0100 Ehdi

(J (/o))3 [
+{(‘I’qq’ RY,)g2 + 2(‘I’oq’ R\I’q)lk2 + (‘Iqu, R‘I’q)R’Pa}P?y

+(Tyo, R\pa)m] . (2.4)

(‘Ilqa R\I’a)Rzpao‘ + {2(‘I,aq, R‘Ilo)lk2 + (\pom R\Ilq)Rz}pa

Thus the surface diffusion flow equation is described by

pr = —A(p)A(p)s(p), (2.5)
where
M) = e (2.6)

Let us derive the representation of the boundary conditions which are the Neumann
boundary condition and the no-flux condition &, = 0 on 9. Since the Neumann bound-
ary condition (®,, Ton)gz = 0 is equivalent to (R®,, Vi)(®))rz = 0, we have

(R¥4 + RYpg, ViH(¥))g2 = 0.
By (2.2) and (2.4) the no-flux condition &, = 0 is denoted by
d-k(p) = 0.
Consequently we have the following proposition.

Proposition 2.1 For a parameterization (2.1), the problem (1.1) is denoted by

Pt = —A(p)A(p)K(p) fO’I‘ o€ (_lal)7 t>0,
(R¥Y, + R¥Yp, V)(¥))re =0 at o =i, (2.7)
Osk(p) =0 at o= =l

where A(p), A(p) and x(p) are defined by (2.6), (2.8) and (2.4) respectively.

To study the linearized stability of a stationary solution I'., the curvature &, of which
is a constant, we linearize (2.7) around p 0. For this purpose we need the properties
of\I!atq—Oasfollows

{ U(0,0) = @.(0), ¥o(0,0)=Tu(0), ¥,(0,0) = Nu(0), (2.8)
U,s0(0,0) = kaNu(0), U0q(0,0) = =k Tu(0), Youq(0,0) = —kZN.(0). '
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Let us consider the linearization of (2.7). Set"

A(p) == —A(p)A(p)r(p),
B, (P) = (R\I’m V¢(‘I’))R2 + (quqa V¢(W))Rzpa,
Bs(p) := 0:k(p),

and denote zF := ®,(+!). Then we define
A = 3A(0),

._ { 9B:(0 Vy(zE))) —
e (PO o

where 6A(0), 8B;1(0) and 8B,(0) are the Fréchet derivatives of A, B; and B, at 0,
respectively. By using (2.8), we have the following representations of .A and B.

Lemma 2.2 (i) It holds
A= —0%(82 + K2).

(%) Let hy be the curvatures of OQ at z¥ € T', NS, respectively (where we use the sign
convention that hy < 0 if Q is convez). Then

O, +th

By the Lemmas 2.2, we see the linearization of (2.7) around p = 0.
Theorem 2.3 The linearization of (2.7) around p = 0 is as follows:

pr=—02(02+kKk¥)p for o€ (-I), t>0,
(Bs £ hy)p=0 at o=, (2.9)
0,(02+KkY)p=0 at o=l

Remark 2.4 The linearization of the area-preserving property is
!
/ pdo=0 (2.10)
-1

(see Section A). Since the original problem (1.1) has the area-preserving property, we
need to analyze the linearized problem (2.9) for functions p satisfying (2.10).
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3 Gradient flow structure

The surface diffusion flow can be interpreted as the H~!-gradient flow of the length
functional in R? (see [8]). In this section we demonstrate that the linearized problem
(2.9) can also be interpreted as a gradient flow. This observation will be important for
our stability analysis.

In what follows we need the duality pairing (-, -) between (H*(—(,1))" and (H'(=(,1));
and the following weak formulation.

Definition 3.1 We say that u, € H'(—1,1) for a given v € (H'(=l,1))" with (v,1) =0

is a weak solution of

Optuy, =0 at o=+l

{ —0%u, =v for oe(-1), (3.1)

if u, satisfies
_ [ dyusie
<v,£>_-/-:l o UyOg
for all € € HY(—1,1).

Definition 3.2 For a given v € (H'(=1,1)) with (v,1) = 0, we say that p € H3(-1,1)
with fiz p =0 is a weak solution of the boundary value problem

O £ he)p=0 at o==l, (3.2)

v=—02(2+nr)p for o€ (L),
0,(02+Kk)p=0 at o==Hl

if p satisfies
. .
0,6 = [ 0@+ o0k, and (8% ha)p=0 at o=
-l
for all € € HY(-1,1).

In addition we also need the symmetric bilinear form on H*(~I,1)

!
Honpa) = [ {0epi0up = Renpaddo + hemDpald) + o (Dpal=D) - (39
and the inner product :
(p17p2)-1 = /,aauplaaupg

where u,, € H'(=1,1) for a given p; € (H'(=1,1))’ with (p;,1) = 0 is defined as the
weak solution of (3.1). The bilinear form I is defined on H 1(—1,1) and the inner product



(+,-)-1 is defined for all pairs of elements in (H*(—1[,[))’ with (p;,1) = 0. We remark
that by Definition 3.1

(01,92)«1 = <p1:up2) (3-4)
holds for p; € (H'(-1,1))’ with (p;, 1) = 0.

Remark 3.3 If p = 0 is the ertremal value of the length functional under the area
constraint, the bilinear form I is derived from the second variation of such a functional
(see Section B). This means that our linearized stability analysis has a close relation to
isoperimetric problems which give a criterion for the stability of critical points of the
length functional of curves that come into contact with the outer boundary and enclose
a fized area.
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Now we are going to show that the linearized problem (2.9) is the gradient flow of

E(p) := I(p, p)/2 with respect to the inner product (-,-)_;. Let us review the concept
of gradient flows. For a given functional E on a linear space X and an inner product
(*,+)x on X we say that a time dependent function p with values in X is a solution of
the gradient flow equation to E and (-,)x if and only if

(pe(t),€)x = —0E(p(2))(€)

holds for all £ € X and all t. Here OF(p(t))(¢) denotes the derivative of E at the point
p(t) in the direction £&. The fact that the linearized problem (2.9) is the gradient fow
of I(p, p)/2 with respect to the inner product (-,-)-; follows from the following lemma.
This is true since the derivative of E(p) = I(p, p)/2 in a direction £ is given by I(p, £).

Lemma 3.4 Letv € (H*(—I,1)) with (v,1) = 0 be given. Then a function p € H3(—l,1)
with fiz p =0 is a weak solution of (8.2) if and only if

(vag)—l = '—I(pv é)
holds for all € € H'(~1,1) with [* € = 0.

4 Eigenvalue problem

In this section, we study the eigenvalue problem corresponding to the linearized problem
(2.9). By choosing an appropriate domain of definition, the linearized operator of (2.9)
is given by

1
ADA) =B, (4= [ 0,8+ Dp0nt

with

{ D(A) ={pe€ H¥(-L1)| (8, £ hs)p=0 at o=+l and filp= 0},
H={pe (H'(-,1)) | (p,1) = 0}.
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Then it follows from this definition and Lemma 3.4 that

(-Ap’é)—-l = —I(p, 6)

for all ¢ € HY(—1,1) with [*, £ =0.

Let us analyze the spectrum of A in order to decide on the stability behaviour of the
linearized problem (2.9). Using classical principles of the variational calculus, we can
describe the spectrum of A with the help of the inner product (-,-)—; and I. In fact, if
p is an eigenfunction to the eigenvalue A, it holds

)\(p,ﬁ)-1 = (Apag)—l = _I(p’ E) .

We remark that eigenvalues A # 0 always correspond to eigenfunctions which have the
mean value zero. In what follows we will only study eigenvalues which have eigenfunc-
tions with mean value zero. This is a natural request for the linearized problem (see
Remark 2.4). First we have the following lemma for the operator A.

Lemma 4.1 (i) The operator A is self-adjoint with respect to the inner product (-,)-1-
(ii) The spectrum of A contains a countable system of real eigenvalues.

In addition, we have the following lemmas for the eigenvalues of A.

Lemma 4.2 Let
A2 A 2A32-

be the eigenvalues of A (taking the multiplicity into account).
(i) Then it holds for alln € N

_)\n = inf sup i_(._p’_e)_ ,
WEEn pew\(0} (9, P)-1
I
~A, = su inf M

We):I:_l peWi\(0} (p,0)-1

Here &, is the collection of n-dimensional subspaces of V and W+ is the orthogonal
complement with respect to the inner product (- ,+)—-1.
(ii) The eigenvalues An depend continuously on h,, h_ and k2; and are monotone de-
creasing in each of the parameters hy, h_ and (—K2).

Lemma 4.3 (i) Assume K, # 0 and k.l < . Then the operator A has a zero eigenvalue
if and only if

% + g(m +h)+hiho=0 (4.1)
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where

a = —2k2lsin(k.l) cos(k.l),
b = k.l(cos?(k.l) — sin’(k.1)) — sin(k.l) cos(k.l)

c = 2{_% sin?(k.l) + I sin(k,l) cos(fs*l)} .
Furthermore, it holds the inequality
a
T _%,0. 4.2
~>0 (4.2)
(i) Assume that k. = 0. Then the operator A has a zero etgenvalue if and only if
3 2

(i1) If we interpret a, b, and c as functions of k«, we obtain

—>§ and é-—->g s K,—0.
[2 c l

(iv) The multiplicity of a zero eigenvalue is equal to one for all hy, h_, and k..

ole

Set

b
D(hy, he, k) = % +~(hy +h_) + hyhe
for all Ay, h_, and k,. Note that the extension to k, = 0 is well defined by the above
lemma. '

Remark 4.4 The equations (4.1) and (4.3) define hyperbolas in the (h—, hy)-plane (see
Figures 1-5). The hyperbolas are symmetric with respect to the h_ = h, line and the
inequality (4.2) implies that the line defined by h+ = h_ always has two intersection
points with the hyperbolas.

5 Main result

To obtain a linearized stability result for stationary solutions of (2.7), it is enough to
show that I(p, p) is positive for all p € V \ {0}. Then A; < O which implies stability.
This is true since \; allows the characterization

A= inf L&)
peV\{0} (p, P)—1

and the infimum is in fact a minimum. Therefore it is enough to show the positivity
of I pointwise. The following lemma shows that for given k, the stationary solution is
always stable provided h.,h_ are large enough.
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Lemma 5.1 Let k.l < w. Then there exists a constant K > 0 such that

I(p,p) >0 forall peV\{0}

provided that hy,h_ > K.

Let Ny be the number of the unstable eigenvalues and also let Ny be the number of
the zero eigenvalues (counting the multiplicity). Then, by virtue of Lemmas 4.1, 4.2, 4.3
and 5.1, we are led to the following theorem.

Theorem 5.2 Case A: If D(h_,hy,k,) > 0 and if h_ > —b/c, then
Ny =Ny =0.
Case B: If D(h_,h4, k) =0 and if h_ > —b/c; then
Ny=0,Ny=1.
Case C: If D(h_, h4, k) <0, then
Ny=1, Ny=0.
Case D: If D(h_,h4,k,) =0 and if h_ < —b/c, then
Ny=1,Ny=1.
Case E: If D(h_,hy,k.) > 0 and if h_ < —b/c, then
"Ny=2,Ny=0.

Remark 5.3 (a) In the cases A,B,D and E the condition, h_ > —bfc (h_ < —b/c
respectively) can be replaced by hy. > —b/c (hy < —b/c respectively).

(b) Theorem 5.2 says that above the upper arc of the hyperbola (see Figures 1-5 ) we have
only negative eigenvalues, which imply the stability of stationary solutions. Underneath
of it and above the lower arc of the hyperbola, we have one positive eigenvalue, which
means that the number of unstable modes is one. Furthermore, underneath of it, we have
two positive eigenvalues, which mean that the number of unstable modes 1s two.

Proof of Theorem 5.2. The proof is a simple consequence of the Lemmas 4.2, 4.3 and 5.1.
For large h, and h_ we have stability. If we decrease hy or h_, the stability behaviour
only changes on the curves defined by D(h_, h,, k.) = 0. By virtue of Lemma 4.3(iv),
only one eigenvalue can pass through zero when crossing the curves D(h_,hs, k) = 0.
The monotonicity of the eigenvalues with respect to h4 and h_ implies that the number
of unstable modes can only increase if we further decreasé hy or h_. This proves the
theorem. O
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Figure 1: k.l < 7/2,a < 0,b<0,c<0
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D<0 D>0
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Figure 2: k.l =7/2,a=0,b = —kK.l,c = —-2/k,
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Figure 3: k.l > 7/2,a>0,b<0,c<0
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D>0
D=0

Figure 4: sk, > 7/2,a>0,b=0,c<0
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h,
D<0 D>0
_ a’,'bo —blc h
D>0
-§D=o

Figure 5: k. > 7/2,a>0,b>0,c¢ <0

A Linearization of the area functional

In this section we show that the linearization of the area-preserving property implies the
mean value zero, i.e. (2.10).
Let Ar be the area of a domain enclosed by I and 8. Then Ay is represented as

| |
A(e) = [ (U0, N (oI (o) dor + / (Q(s), Non(s))xs ds,
-1 9Q:5*(p)—=S—(p)

where ()(s) is the parameterization of 8Q with respect to the arc-length parameter s and
also satisfies

QUS*(p) = T(, p) - (A.1)

In addition, let Ar, be the area of a domain enclosed by I', and Q. Then Ar, is
represented as

l
tr= [ @ Nywdot [ QL) Noalo)has ds,
-1 st —sy

where it holds at s = s
Qs%) = ®. ().
Thus the area-preserving property is denoted by

Z(p) := Ar(p) - Ar, = 0. (A.2)



Set

Fio) = [ (0N e)aeT(e) do

)
Glo) = / (Q(s), Noa(s))ge ds
S+ (p)—S~(p)

Then we have the following lemmas.

Lemma A.1 [t holds for a smooth function p
1

p do — [(®., T)rep) 0.
l

o=-1’

OF(0)p = 2 /
where OF(0) is the Fréchet derivative of F.
Proof. Note that

J(0) =1, \IJq(-,O) = N,,

d
%7 (ep)

= —pgT,.

e=0

d
= —Kxp EE‘N(EP)

e=0
Then it follows that

] ] !
= / pdo — / (®+, T )R2ps do — n*/ (®., N.)rap do.
-1 -1

d
EF (ep) =L

Integrating by parts in the second term with ®,, = T, and T, , = k.., we are led to
the assertion. U

Lemma A.2 It holds for a smooth function p
8G(0)p = [(@v, TYwar] .,
where 8G(0) is the Fréchet derivative of G.

Proof. Note that the identity (A.1) implies

Q(S%(0)) = (-, 0)|,_,, = u(ED). (A.3)
Since Q(S*(0)) = Ton(st) = FN.(+£l), we also have
(8% (0)p = Fo(£). (A4)

Then it follows that

FOEn)| = (@S0, Nan(S Owe(S Y O)p
~(Q(S*(0)), Non(S* (0)))aa(S* O)p.
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By means of (A.3), (A.4) and Npa(S*(0)) = Naq(sE) = £T.(£l), we derive

LGEn)| = —(@u(-1), T(~)mep(=1) + (O (1), T.(D)msp(l)

de e=0
= [(q’*’ T*)RZP] Z:I.z
This completes the proof. O
These lemmas imply the following proposition.

Proposition A.3 (The linearization of =) It holds for a smooth function p

!
0=(0)p = 2/ p do,
-l

where 82(0) is the Fréchet derivative of =.
Proof. Since Z(p) = Ar(p) — Ar,, we have

d d d d

——8(ep)] =-—Ar(ep)] = -F(ep)| + 5-Glep)

de e=0 de ) =0 de e=0 de e=0

The assertion follows from Lemma A.1 and Lemma A.2. O

Thus it follows from (A.2) and Proposition A.3 that the area-preserving property gives

!
/ p do =0.
-1

B Second variation of length under area constraint

In this section we show that the second Qariation of the length functional under the area
constraint gives the bilinear form I defined by (3.3).
Let Ly(p) be the length of I'. Then the length functional Lr(p) is represented as

!
Le(o) = [ (e) do
where J(p) is defined by (2.2). Using (2.8), we derive

= —Kxf
e=0

l
= —K, / p do.
e=0 -l

-;—EJ (ep)

so that the first variation of Lr is

d
EE‘LI‘ (en)



According to Section A, the area constraint is denoted by Z(p) := Ar(p) — Ar, = 0.
Note that the first variation of the functional Z(p) is

1
=2 / p do.
=0 —i

If p = 0 is the extremal value of the length functional Lr(p) under the area constraint
Z(p) = 0, we have

d .
EEH(EP)

d
25 Lr(en)

! l
=——n,./ pda+2'y/ pdo=0
e=0 -l ~l

where v € R is Lagrange multiplier. Since p is arbitrary, we see v = &,/2.
Let us derive the second variation of Lr(p) and Z(p). We first observe

{ ‘I'qq(" O) = qu(',O)T*v ‘I’aqq(',o) = 5644('1 O)T* + §qq('a 0)k«N.,

d_
. + ’YEu(EP)

€

B.1
€eq(0,0) = ~h_+ %ill(m +h_). (B.1)

Then (though we omit the details of the calculation) it follows from (2.8) and (B.1) that

2
O¢ 1 Oc 2
62

861662

Lr(e1p1 + €2p2)

{
- j | BrrBupz do+ a2 + h-pr (DD,
e1=e2=0 -

1
= —2K, f p1p2 do.
€1=€2=0 ~i

Thus the second variation of Lr(p) under the constraint Z(p) = 0 is

[} =e2=0 €1 =52=0}

! . !
= / 0sp10:p2 do + hypi(1)pa(l) + hp1(=1)pa(-1) + 5 {—2'9*/ p1P2 dU}
-1 -l

E(e1p1 + €2p2)

2
661662

Ko o _
+ = E(e1p1 + €2P2)

Lr(e1p1 + €202) 5 \ 5e.10¢,

= I(Phpz)-

This is the desired assertion.
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