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On an anisotropic area-preserving crystalline
motion and motion of nonadmissible polygons by
crystalline curvature®

HKE - T¥EH K BB (Shigetoshi Yazaki)
Faculty of Engineering, University of Miyazakit

Abstract

We split the present paper into two parts.

Part I: The asymptotic behavior of solutions to an anisotropic area-preserving
crystalline motion is investigated. In this equation, the area enclosed by the
solution polygon is preserved, while its total interfacial energy keeps on decreas-
ing. By the concept of mixed area and the Briinn and Minkowski’s inequality,
the anisoperimetric inequality is established. From this and the theory of dy-
namical systems, we show that the asymptotic shape of a solution polygon is the
boundary of the Wulff shape.

Part II: Behavior of solution polygons to a general crystalline motion is investi-
gated. Polygon is called admissible if its normal angle’s set is the same set of the
Wulff shape. Main result says that if initial polygon is nonadmissible polygon,
then edge disappearing occurs at most finitely many epochs and eventually a
solution polygon becomes an admissible polygon.

Part 1
On an anisotropic area-preserving crystalline

motion

1 Introduction and a main result

In recent over ten years, several authors have investigated motion of polygonal curves
by crystalline curvature in the plane. We refer the reader to the pioneer works for
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such motions by Taylor [11, 12] and Angenent and Gurtin [2], and also Taylor, Cahn
and Handwerker [14] for a geometric and physical background. Motion by crystalline
curvature, or crystalline motion, has been studied under various kinds of evolution
law by several authors (see, e.g., Giga [4], and references therein). In Yazaki [16], we
discussed the gradient flow of the total length functional of convex polygon keeping the
area enclosed by the polygon constant, and showed that any polygon which evolves by
this gradient flow converges to the circumscribed polygon of a circle (see Proposition
1.1 below). This result is corresponding to a semidiscrete version of Gage [3]. In the
present paper, we consider the anisotropic case of [16].

Let P be closed, convex and n-sided polygon in R?. We define ¢; by normal angle
of the j-th side and define its set by

On={0 <6 <0< <y <by+2r}.

Put §; = 6;—0;_1, then from the convexity of P, 9, < 7 holds and the angle between the
j-th side and the (j — 1)-th side is 7 — ;. Here and hereafter, suffix j means an integer
modulo n: (-)n = (-)o and (-)_1 = (-)n-1. The inward normal vector and the tangent
vector of the j-th side are given as n; = —*(cos6;,sin6;) and t; = *(—sin6;, cosf;),
respectively. Let x; be the point of intersection between the line containing the j-th side
of P and the line spanned by n; which through the origin. Define hj = (xj, —n;). Then
h; is the j-th support function of P. Here (-,-) is the Euclidean inner product in R2.
The enclosed region of P, say Q, is given as Q = { € R?|(z, —n;) < h;, 6; € 8,}.
Therefore, the shape of P is uniquely determined by A = (ho, b1, - -, hp—1) and B,,.

By geometry, the length of the j-th side, say d;, is given by d; = vj(Agh + h);.
Here

;= tan ’291'2.,.1 +tan & _ sin 19j + sin 7-9j+1 - sin(ﬂj + 1.9j+1)

2 sind; sind;; ’
and
_ (D4h)j — (Dyh)j _hii—hy
(Aﬁh)y = v d (D+h)1 = sin19,-+1 .

Therefore, the total length of P, say £, is
L= L[} = ;d,- = ;’Yj(ﬁ\eh +h); = ;’thj-
Here we have used the summation by parts:
;’YJ‘%’(A&'P)J' =~ %:(D#P)j(D#/))j sindjy, = ;%’(AG‘P)J"'!’J"
Here and hereafter we use the notation % for Yocj<n- The area of 2, say A, is

1 1
A= .A[h] = 5 Z hjdj = 5 Z ’)‘j(Agh + h),hj
J J
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For any ¢ = (0,1, --,¢¥n-1) and ¢ = (¥o,%1,...,%n-1), we define the inner
product on P by (@, %)z = X; p;1;d;. For a real valued function & [h], we defined the
first variation of £ with the metric (-, -); by

SE[R) ) |

d
Gl +ep])  =VEhep= (-‘gh—,sﬂ

e=0
The gradient flow of £[h] is hj(t) = —(6E[h]/6h);. Here and hereafter, we use the
notation u(¢) for du(t)/dt. Then the j-th normal velocity of the gradient flow of £[h]
is v; = (&, n;) = —h; = (6E[h]/SR);.

The first variation of £ is (6L[h]/dh); = &;, since

d
EE‘LVZ +epll =D miei = Kiwidi = (K, @)a-
e=0 Jj ! ] )
Here
PY-
K',j = a—::'

This is a discrete analogue to the first variation of total length of a smooth curve being
the curvature. In this sense, ; is a kind of curvature on the j-th side of P. We call ;
the crystalline curvature of the j-th side. On other characterizations of &;, see, e.g.,
Rybka [10] and Yazaki [15].

Let f; > 0 be defined on the j-th side of P. Assume (Agf + f); > 0 for all 5. In
the physical context, Q is a crystal and f; is the interfacial energy density defined on
the j-th side of P = (1, and v;(Asf + f); is the j-th length of the boundary of the
Wulff polygon Wy: Wy = {x € R?|(z,-n;) < f;, 6; € ©,}. The total interfacial
energy of P, say F, is

F=Fhl =3 fid; =37 fi(Beh+h); =3 v;(Bef + f)sh;,
J J J
and the first variation of F is (§F[h]/6h); = (Def + f);s;, since

gg}—[h +epll =D v(Def + £ = E(Aef + f)ikipid; = (Ao f + f)K, )2

e=0 J
Put w; = (Agf + f)jx;. We often call f; crystalline energy and also call w; crystalline
curvature.
Let ¢ be the direction of area-preserving:

d
a;A[h +epll =(Ly)=0.

e=0

Then we have the first variation of F in the direction ¢:

d
“Flh+egl] = w-w,0h

e=0




Here W = (1,w)2/L = Yx7xfe/L is the average of w;. Thus we have the area-
preserving gradient flow of F[h]:

‘sz'wj—w (OS]<‘n) (11)
From the relation d; = v;(Agh + h); and v; = —h;, we have
dj = —vj(Agv +v); (0<j<n) (1.2)

The time derivative of the energy F is

F == 7(8of + fyv; = % ((Z’ijj)2 =2 i(Bef + f)?"ijz:dj) :
2 J 2 J

From the relation 33; v;f; = ¥, v;(As f + f);, by using the Schwarz inequality, we have
F < 0. Equality holds if and only if (Agf + f);k; = const., namely P = const. x OW;.
Problem of the present paper is the following:

Problem 1 For a given n-sided polygon Py with its normal angle’s set being ©,,, find
a family of polygons {P(t)}oct<r satisfying (1.1) with P(0) = Py for some T > 0.

We note that normal angle’s set of P(t) is ©, as long as solution polygons exist.
A main result of the present paper is the following.

Theorem A A solution polygon P(t) of Problem 1 exists globally in time keeping the
area enclosed by the polygon constant A and, as t tends to infinity, P(t) converges to
the shape of the boundary of the Wulff shape OWjs« in the Hausdorff metric. Here

P/ SN S 1471 i e(Bof +

i=w A 24
Moreover, the constant W is asymptotically stable equilibrium point of evolution equa-
tions (see section 2) equivalent to Problem 1.

In [16], we treated the problem in the case where f; = 1 for all j and obtained the
isoperimetric version of Theorem A:

Proposition 1.1 (Yazaki [16]) Let f; = 1 (0 < j < n). Then o solution polygon
P(t) of Problem 1 ezists globally in time keeping the area enclosed by the polygon
constant A and, as t tends to infinity, P(t) converges to the shape of the boundary of
the Wulff shape OW;, in the Hausdorff metric. Here h, = \/2.,4/ Sk Yk
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2 Proof of Theorem A

2.1 Scenario of the proof

From (1.1), together with (1.2) and the length £ = ¥; v;(Asf + f);w;", we can restate
Problem 1 as follows. Throughout this paper, put a; = (Agf + f); for all 0 < j < n.

Problem 2 Find a function w(t) = (w;(t))e<j<n € (C[0,T) N C(0,T))" satisfying

w(t) = o7 'w(Dew +w); — ZZ,’;Z:‘Z’i 7wl 0<j<n, 0<t<T, (21)
w;(0) =a;xj, 0<j<n, (2.2)
w-l(t) = w,,_l(t), wn(t) = ’wo(t), 0<t<T, (23)

where £ is the j-th initial crystalline curvature of Po.

Problem 1 and Problem 2 are equivalent except the indefiniteness of position of a
solution polygon. See Yazaki [16, Remark 2.1]. Since Problem 2 is the initial value
problem of ordinary differential equations, there exists a unique time local solution.
Moreover, by using a similar argument as in Taylor 13, Proposition 3.1], Ishii and
Soner [7, Lemma 3.4}, Yazaki [16, Lemma 3.1}, we obtain the time global solvability.

Lemma 2.1 (time global existence) A solutionw of Problem 2 and a solution poly-
gon of Problem 1 exist globally in time, i.e., a solution polygon does not develop singu-
larities in a finite time. ‘

In the following, we will show three lemmas, which play an important roll in a
scenario of the proof of Theorem A.
Let the anisoperimetric ratio be

}'2
T= 4w, 14

for a polygon P with the normal angle’s set being 6,. Here |W| is the area of the
Wulff polygon Wy. The first key lemma is the anisotropic version of the isoperimetric
inequality.

Lemma 2.2 (anisoperimetric inequality) For a polygon P with the normal angle’s
set being ©,,, the anisoperimetric inequality

J 21

holds. The equality J(t) = 1 holds if and only if w; = (Def + f);jk; = const. for
all0 < j < n i.e., S (the enclosed region of P) satisfies 3 = kWy for some constant
k> 0.



We will prove this lemma in the next section by using the mixed area and the Briinn
and Minkowski’s inequality.
From this lemma and Lemma 2.1, for a solution polygon P(t),

F(t)? o1

TO= gw,ja 2

holds for ¢ > 0. Moreover, we have the following second key lemma.

Lemma 2.3 limyo, F(t) = 2¢/|WylA and limyoo T (t) = 1 hold.

Proof of this lemma closely follows [16, Lemma 5.6].

From this lemma, if a solution polygon P(t) is n-sided polygon at the time infinity,
then Q(t) approaches to kW; (k > 0) as t tends to infinity. Therefore, for the assertion
of Theorem A, it is required that the estimate infocicoo ming<j<n d;(t) > 0 holds. As
a matter of fact, the following the third key lemma holds. This lemma is a strong
assertion compare with the above estimate.

Lemma 2.4 Let the equilibrium point of (2.1) in Problem 2 be W. Then W =
\/ |Wrl/A. Moreover, The equilibrium point W is asymptotically stable and

frg st = W
holds for 0 < j < n.

One can prove this lemma by the general theory of dynamical systems or the Lyapunov
theorem (see (16, Lemma 5.8]).
Proof of Theorem A. From Lemma 2.4, we have

Jim (Aoh(t) + h(); = 32, 0<j<n.

From this limit and the theory of the generalized eigenvalue space, there exists a vector
c(t) = Yei(t), ca(t)) € R? such that hj(t) — (c(t), —n;) converges to fi = fi/W for
all 0 < j < n ast tends to infinity. Hence for any € > 0 there exists t' > 0 such that
P(t) C Ware)s«\W(1-e)s+ holds for ¢ > ¢'. Then the assertion holds. (]

2.2 Proof of Lemma 2.2

The result of Lemma 2.2 follows from a classical convex geometry by using a concept
of mixed area and the Briinn and Minkowski’s inequality.

Let Qp and Q; be polygons with the normal angle’s set being ©,. For i = 0,1,
denote the j-th support function and length of the j-th side by h( 9 and d( 9 , respectively.
Note that d(’) = 7;(Agh® + M), holds for 0 < j < n. Let the enclosed region of P;

be U = {z € R?|(x,—n;) < h§'), 6; € ©,} for i = 0,1. Define the linear interpolant
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of and O by Q;, = (1 — )+ s = {(1 - s)z + sy|z € Qo,y € O}, and
Qs = (1 —8)Qy+ 59, for 0 < s < 1. Then the j-th support function and length of
the j-th side of Q, are given as h§~3) =(1- s)h}o) + sh§~1) and dg-") =(1- s)dgo) + sd§1),
respectively. The area of Qs, say A(Q,), is

1 8)s (s 1-
AQ) =3 ng. B = (1 - 5)2A(Q) + sA() + s( . s) > (dVR + dPRD).

J J

By summation by parts:

Zd§1)h§p) — Z'yj(Aah(l) + h(l))jhg-o) - Z’Yj(Aeh(o) + h(ﬂ))jhg}) = ngp)h;‘l)’ (2.4)
J J

J

J

we have

1 s 1
Af) =53 AR = (1 - 5)2A(Q0) + s2A(Qu) + 25(1 - 5% dORY.
J 3
The coefficient of 2s(1 — s) is called mized area of 0y and §2;, and denoted by

1
AQ, ) =53 dOnP.

j
Note that A(Qp, ) = A(Q4, Qp) holds by (2.4).
H. Briinn and H. Minkowski proved the following inequality:
VARL) 2 (1= )/ A() +sy/A(), 0<s< L (2.5)
Equality holds if and only if Qg = k€ (k¥ > 0). The Briinn and Minkowski’s inequality
(2.5) is equivalent to the following inequality:

A(Q, ) > 1/ A(Q0) A(S). (2.6)

From this inequality, we obtain the anisoperimetric inequality as follows. Let
be the enclosed region, say €, of a polygon P, and the enclosed area A(Q2) = A. For
the interfacial energy f; > 0 with (Asf + f); > 0, let Q; be the Wulff region Wj.
Then the area of Wy is A(Wy) = |Wy| = Tk (Do f + f)efr/2. Then the mixed area
is A(Q, Wy) = X; f3d;/2 = F/2, which is a half of the total interfacial energy on P.
Hence by (2.6), /2 > \/AIWfI, namely,

F? >
4Wy|A —
The equality J(t) = 1 holds if and only if Q@ = kWy for some constant k& > 0, i.e.,
(Aof + f)jrj = const. for all 0 < j < n.

In particular, if f; = 1, then F = £ and |Wy| = X;7,/2, so we have

2
= £ 2> 1:

J = 1. (2.7)

T (2.8)



which is the isoperimetric inequality of polygons. The equality Z(t) = 1 holds if and
only if £; = const. for all 0 < j < n. See, e.g., Yazaki (16] for another proof by using
the crystalline motion.

The isoperimetric inequality (2.8) represents the variational problem: what is the
shape which has the least total length of a polygon for the fixed enclosed area? The
answer (the case where 7 = 1) is the boundary of the Wulff shape 6W,,, which is
the circumscribed polygon of the circle with radius A, = \/ 2A/ Y7 (cf. Proposition
1.1). Similarly, the anisoperimetric inequality (2.7) represents the variational problem:
what is the shape which has the least total interfacial energy of a polygon for the fixed
enclosed area? The answer (the case where J = 1) is the boundary of the Wulff shape
OWy. (cf. Theorem A).

Part 11
On motion of nonadmissible polygons by crystalline

curvature

3 Introduction and a main result

We consider an evolution equation of a closed convex polygon P(%) in the plane R?:
v=g (9,- l"é—ei)) (3.)
' )

at time ¢ with the normal angle of the j-th side being 6;. Here v; denotes the normal

velocity of the j-th side of P(t) in the direction of the inward unit normal n; =

—*(cos8;,5in6;), and d; is the length of the j-th side. On the j-th side of P(t), the

interfacial energy (density) f; > 0 is defined, and [; is specified by the Wulff shape:

Wy = {(x,y) € R2| zcosf; +ysinf; < f; forall 6, € 8}
with ©, a normal angle’s set of oWy
9={90<01 < "'<0n_1<90+27!'}.

The boundary of the Wulff shape OW is n-sided polygon. In (3.1) I;(6;) is the (pos-
itive) length of the j-th side of Wy if 6; € © and I4(6;) = 0 if §; ¢ ©. The function
9(0;,)) is a given positive function for A > 0. We assume that g(6;, )) is monotone
nondecreasing in A, and limy_o g(6;, A) = oo and g(6;,0) = 0 hold for all 6;. Under
these assumptions, if the j-th normal angle 0; of P(t) belongs to ©, then v; > 0, and
if ; ¢ ©, then v; = 0.
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A polygon is called admissible polygon if its normal angle’s set equals ©. Note
that the original concept of the admissibility is defined for piecewise linear curves
(not necessarily convex), see, e.g., Gurtin [6]. In the physical context, enclosed region
of the polygon P is crystal, and the interfacial energy f; is called crystalline energy
and [;(6;)/d; is called crystalline curvature. Motion of admissible polygons by the
evolution equation (3.1) is called crystalline motion or motion by crystalline curvature.
See the pioneer works by Angenent and Gurtin [2], Taylor [12, 13] and Taylor, Cahn
and Handwerker [14] for the background story of this motion.

Let ©g be a normal angle’s set of initial polygon P(0) = Pp. Our aim in the present
paper is to show the behavior of a solution polygon in the case where 8y D ©, i.e., Py
is not admissible polygon. A main result is as follows.

Theorem B Let 6, be a normal angle’s set of a solution polygon P(t) of (3.1) with
initial polygon P(0) = Pp. Assume that A — g(8;, A) (6; € ©) is locally Lipschitz
continuous on R,. If © O 6, then there exists a finite time sequence 0 = ) < ; <
ty < -+ <ty such that

eoDetlDGt,D---Detm=6

holds. On each interval ¢ € [tx, tx+1), there exists a unique solution polygon P(t) with
initial polygon P(t;) for k =0,1,...,m — 1.

The result says that no edges of a solution polygon P(t) disappear for t € [tk, tr+1)
starting with nonadmissible polygon P(t;), some edge, say the j-th side, disappears
as t — ti41 if 6; € ©;,\O, and eventually a solution polygon becomes an admissible
polygon at finite time %,.

After the time t,,, a solution polygon P(t) with initial admissible polygon P(tm)
evolves, while its admissibility is preserved, and finally it shrinks to a single point
or collapses to a lines segment with positive length in a finite time, say T > i,
depending on the growth condition of g(f;,\) with respect to A. No edges of P(t)
disappear for ¢ € [tm, T). This result was proved by M.-H. Giga and Y. Giga [5]. The
case where a solution polygon collapses to a line segment is called degenerate pinching.
Andrews [1] showed a condition of initial polygon Py in degenerate pinching case.
Moreover, Ishiwata and Yazaki [8, 9] showed that, in the case where g{(6;, A) = a;A*
(a; > 0,0 < a < 1), the blow-up order of v is (T — t)~* in degenerate pinching
phenomenon under a monotonicity assumption.

In the next section 2, we will present two examples of this motion. The main
theorem will be proved in the last section 3.
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4 Examples

We present two examples. Throughout this paper we use the notation u(t) for du(t)/dt.

Example 4.1 Let us consider the case where g(f;, \) = \@ (o; > 0),
o= {9,— - gj‘j=0,1,2,3},

and f; = 1/2, ie., OWy is a square with the length of side being l;(6;) = 1. See Figure

1 (far left).
ds & s
/ Jdo ] A

an Po P(tl) ] % P(t2)

Figure 1: Isotropic motion of nonadmissible polygon by 9(8;,A) = 2* (& >0)

Initial data and stage 1. Let P, be symmetric octagon with
6o = {0,- = Z—jl j=0,1,...,7},

and do(0) = d;(0) (¢ = 2,4,6), d1(0) = d5(0) and d3(0) = d7(0). See Figure 1 (second
from left). Assume d3(0) > d;(0). Evolution equations are dy = g, di = d3 =
—2v/2v,, and vy = dg®,v; = v3 = 0. Then we have exact solutions

do(t) = (do(0)** + 2(a+1)2) "™ | di(t) = di(0) + V3(do(0) ~ d(t))
fori=1,3 and for 0 < ¢ < t;. Here

2(a+1)
Therefore it holds that ds(t) > di(t) for 0 < t < ¢y, limss, d1(t) = 0, infocscy, di(t) > 0
(¢=0,3)and ©; = Qg for 0 < t < ¢t;.
Stage 2. Initial polygon P(t;) is symmetric hexagon with

T 3r 3 Tm
th—-{ﬂo—0<§<z—<1r<—2—<-z},
and do(t1) = di(t1) (1 = 1,3,4), da(t1) = ds(t1). See Figure 1 (third from left).
Evolution equations are dy = 0, dy = —2v/2vg, and vy = dy%,v2 = 0. Then we have

exact solutions
2V/2
do(t) = do(t1), da(t) =

do(tl)“(t2 - t) (tl <t< tz).
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Here

_ do(t1)%dx(t1)
2v2

Hence it holds that limy_., do(t) = 0, infy, <t<s, do(t) > 0 and ©; = O, for t; <t <.

Final stage. Initial polygon P(t;) is admissible square with ©;, = © and do(t2) = ds (t2)

(i = 1,2,3). See Figure 1 (far right). Evolution equation is do = —2vp, and vy = dg*.

tg + t1.

Then we have an exact solution
dot) = (2(a + 1(T — )Y (8, <t < T).

Here

_ do(tz)““
2(a+1)

A solution polygon shrinks to a single point as¢ — T and 6, = © holds fort; <t < T.

+ ta.

Example 4.2 Let us consider the case where g(6;, \) = a;) (a; > 0),

9={9j=z2r—jlj=0,l,2,3},

and f; = 1/2, i.e., Wy is a square with the length of side being l7(6;) = 1. See Figure
2 (left).

di

M % Po P(t1) || do

P

Figure 2: Anisotropic motion of nonadmissible polygon by g(6;,A) = ajA (a; > 0)

Initial data and stage 1. Let P, be symmetric pentagon with

T T 3n
90—{00-—-0<Z<-2'<1T<—2-},
and do(0) = d3(0), d3(0) = du(0). See Figure 2 (middle). Assume ao = a6 and
a3 = a4. Evolution equations are do = vy — U3, di = —2v/2y, and ds = —vp — v3,

and vp = ag/do, vy = 0,us = ag/ds. Put C(t) = d(t)* + 2do(t)’da(t)* — do(t)? and

.Cy = 4(ag + a3) > 0. Then C(t) = —C, holds and we have exact solutions

di(t) = V2(ds(t) — do(t),  ds(t) = —do(t) + y/2do(t)? + C(0).



Here C(t) = C(0) — Cit and C(0) > 2dy(0)? > 0. Hence there exists ¢; > 0 satisfying
C(0) - C(t1)

Ch » ©
and it holds that lim; s, dy(¢) = 0, lim;_,;, do(2) = lim;_, d3(t) > 0 and ©; = 6 for
0<t<t,.

Final stage is the same situation as in Example 4.1: initial polygon P(t;) is admissible
square with ©;, = © and dy(t;) = di(t1) (¢ = 1,2, 3). See Figure 2 (right).

t = (t1) = 2do(t1)?,

5 Proof of Theorem B

A simple calculation shows that d;(t)’s satisfy a system of ordinary differential equa-
tions: -
dj(t) = (COt 19_7'+1 + cot ’191) v; — _vj+1 - '2'2'1 (51)
sind;1; sind;
Here ¥; = 0; — 6, and 6; € ©,.
Combining (3.1) and (5.1), we obtain the local existence theorem from a general
theory.

Lemma 5.1 Assume that A — g(6;,)) (8; € ©y) is locally Lipschitz continuous on
R,. Then there is a constant ¢, > 0 and unique solution polygon P(t) of (3.1) with
initial polygon Py and a normal angle’s set ©; = 6 for ¢t € [0,1.).

We will see that some sides disappear in a finite time. Let £(¢) be a total length of
P(t):
L(t)y= 3 d;(t) (te[0,t.).
9,'660
From (5.1), we have
ﬁ(t) == 2 ViV = Z v (t € [0,4)),
6;€60 6;€0
since v; = 0 for 6; € ©\O. Here
_ tap Jit1 Y5
7; = tan 9 + tan 5"
Then L(t) < £(0) holds. By geometry, d;(t) < L£(t) holds for all j. Since g(6;, \) is
monotone nondecreasing in A, if §; € 6, then g is bounded from blow by a positive
constant, say Cp:

15(6;) . L¢(6k) . Ir(6)\ _ _
9(91 dj Zokmégg 9k,d—k zgfégg ok,—E@T =Cy>0 (9169).
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Therefore we have a positive constant C; satisfying
L(t) < —nCpminy; =-C1 <0 (t€ [0,1.)),
6;€0
and then it holds that
fuin di(t) < L) S £(0) ~Cit (€ ,8.),
Hence we have the following lemma.

Lemma 5.2 Let ¢, be the same as in Lemma 5.1. There exist x € ©g and ¢; 2 t
such that

tl_lgll de(t)=0 and dj(t) >0 (9_1' € Oy,t € [0,11)).

Note that the limit lim,_;, di(t) = 0 follows from a weaker condition lim inf;_;, di(t) =
0, see, e.g., Ishii and Soner (7] and Yazaki [16].
Theorem B follows from the following lemma.

Lemma 5.3 Let ¢, be the same as in Lemma 5.2. Put
J= {ej € O | lim ds(t) = 0}.

Then J C 60\O holds.

Proof. If J € ©y\6 does not hold, then J N © # ¢ holds. One can divide into
J = @, Jx, where Ji's are maximal subsets having m elements of the form

T =1{8; € T|§ = ks ks Jk + e — 1},
with the boundary of Ji:
0T = {0513 = gk — 1,3k + mu} .

Note that my > 1 and 87k C 80\J, i.e., infocs<s, d;(¢) > 0 holds for §; € 87 and for
all k. ,
Let p = jx — 1 and g = ji + my for simplicity. By geometry, we have

A — 0| < 7.

The following argument closely follows Taylor [13, PROPOSITION 3.1}, Ishii and
Soner [7, LEMMA 3.4] and Yazaki {16, Lemma 3.1].
Let L;(t) be the line extending the j-th side of P(t) for all 6; € ©o and let B;(t)
be the intersection point of L;(t) and L;_(t), that is B;(t) the j-th vertex of P(t).
By the definition of Jk, vertices By, - - ., By converge to the same point B,:
B.c N (N {=eR|(z-Bs(t)n;)20}.

0<t<ty p<i<q




Here (-,-) is the usual Euclidean inner product. Note that intersection takes over
p < j < g since the sign of v; is nonnegative for all p < j < q.

We assume J, N © # ¢, without loss of generality, since 7 N © # ¢. Then there
exists 0, € JxNO. Note that p < r < ¢ holds, and infocics, vr(t) > 0 and lim;_y, v.(t) =
lim;¢, 9(6r,1¢(6-)/d-(t)) = co hold.

Let y(t) be the intersection point of L,(t) and Ly(¢). We define

a(t) = (B, — y(t),n.r), b(t) = (B. — B,(t), nr).

Then a(t) > b(t) holds for ¢ € [0,¢) and lim;_, a(t) = lim;;, b(t) = 0 holds.

If 65,0, € ©9\O, then y = 0, which contradicts to convergence of B;’s to B, for
p < j < gq. If either §, € © or §, € © hold, then there exists a positive constant, say
Ck, such that supg,.;, |#(t)] < C. holds, since 6,0, & J.

Therefore by & = ~(¥,n,) and b = —v;, there exists 77 € (t,t1) such that

/t * on(r) dr = — /t b(r) dr = b(t) < a(t) = —a(n)(t — £) < Cu(ty — £).

This contradicts the fact v, — oo ast — t;. Hence JNO = ¢ for all k, i.e., J C 6\O
holds. ]
Proof of Theorem B. If ©\© # ¢, then by Lemma 5.1, 5.2 and 5.3, there exist ¢; > 0
and 6, € ©p\O such that

lim dk(t) =0, 0<i§1<ft dj(t) >0 (9.7 € 9) and dj(t) >0 (9_7 € eo,t € {O,tl))

t—ty

hold. Therefore @y D ©; D © holds. If ©,\0 # ¢, then we can repeat the same
argument as above and obtain ¢; > ¢; (if not, 8 D ©,, = © holds). Since the number
of edges is finite, edge disappearing occurs at most finitely many epochs 0 < ¢; < t; <
.-+ < tm and eventually ©; = © holds. 1
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