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COHOMOLOGY OF GROUPS HAVING 3-SYLOW SUBGROUPS
ISOMORPHIC TO THE EXTRASPECIAL 3-GROUP

HIE B (REKE. #F)
NOBUAKI YAGITA (IBARAKI UNIVERSITY,MITO,JAPAN)

1. INTRODUCTION

Let us write by E the extraspecial p-group p},_'*‘z of order p and exponent p for

an odd prime p. Let G be a finite group having E as a Sylow p-group, and let
BG (= BP}') the p-completed classifying space of G. In papers [ -Y],[Y1,2], the
cohomology and stable splitting for such groups are studied. Results show that
there are not so many homotopy types of BG. This fact was first suggested by
C.B.Thomas [Th] and D.Green [G].

Indeed, recently, Ruiz and Viruel [R-V] classified all p-local finite groups. Classi-
fying spaces induced from finite groups are homotopic to what are studied in [T-Y].
(While description of H*(?F4(2)’)(s) and H*(Fi},)(7) contained some errors.)

9. p-LOCAL FINITE GROUPS ASSOCIATED TO THE EXTRASPECIAL p GROUP P2

Recall that the extraspecial p-group pl+"'2 has a representation as

pit?=<a,b,cla® =¥ = =1,[a,b] = ¢, ¢ € Center >

and denote it simply by F in this paper. We consider p-local finite groups associated
to E, which are extensions of groups whose p-Sylow subgroups are isomorphic to
E. .

The concept of the p-local finite groups arose in the work of Broto-Levi-Oliver
[B-L-O 1,2] as a classical concept of finite groups. The p-local finite group is stated
as a triple < S, F, L > where S is a p-group, F is a saturated fusion system over a
centric linking system L over S ( for details see [R-V],[B-L-O 1]). Given a p-local
finite group, we can construct its classifying space B < S, F, L > by the realization
|IL|5. Of course if < S,F,L > is induced from a finite group G having S as a
p-Sylow subgroup, then B < S, F, L >= BG. However note that in general, there
exist p-local finite groups which are not induced from finite groups (exotic cases).

A.Ruiz and A.Viruel recently determined < p_1++2, F, L > for all odd primes by
using the classification of finite simple groups. Indeed, we check the possiblity of
existence of finite groups only for simple groups and their extensions. Moreover
they find new exotic 7-local finite groups.

The p-local finite groups < E, F, L > are classified by Outr(E), number of F¢°-
radical p-subgroup V (for details of definitions, see [R-V]) and Autr(V). When
a p-local finite group are induced from finite group G, then we see easily that
Outr(E) = Wg(E)(= Ng(E)/E.Cg(E)) and Autp(V) = Wg(V). Moreover V is
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Fec-radical if and only if Autr(V) C SLy(F,) by Lemma 4.1 in [R-V]. When G is
a sporadic simple group, V is F*¢-radical follows p-pure.

Theorem 2.1. (Ruiz and Viuel [R-V]) If p # 3,7,5,13, then p-local finite group
< E,F,L > is isomorphic to one of the following (1),(2)

(1) E:W for W C Out(E) and ((W],p)=1

(2) p*:SLy(Fp).r forrl(p—1), SL3(F,):H for H=7/2,Z/3,85s.
When p = 3,5,7 or 13 there are other types
(3) 2F4(2)',Js forp=3, Th forp=5 M forp=13

(4) He,He:2,Fi'y, Figs,O'N,O'N :2 for p=17
and there ezist three exotic T-local finite groups.

For cases (1), we know that H*(E : W) = H*(E)W. Except for these extensions
and exotic cases, all HV*"(G;Z)(,) are studied in [T-Y]. It is studied in [Y1] the way
to know H°%(G;Z),y and H*(G;Z/p) from H***(G;Z)(y). The stable splittings
for such BG are studied in [Y2]. However there were some error in cohomology of
2F4(2), Fi'94. in this paper, we study cohomology and stable splitting of BG for
p =3 and 7 mainly .

3. COHOMOLOGY

In this paper we mainly consider the cohomology H*(BG;Z)/(p,/0) where /0
is the ideal generated by nilpotent elemet. So we write it simply

H*(BG) = H*(BG,; Z)/(p,V0).
Hence it is written by
H*(BZ/[p) = Z/ply), H*(B(Z/p)*) = Z/plyr,y2] with |y|=|u|=2.

Let us write (Z/p)? by V simply, and a V-subgroup of G mean a subgroup isomor-
phic to (Z/p)?.

The cohomology of the extraspecial p group E = pi*? is wellknown. In particular
recall that

(1) H*(BE)=(Z/plyr, v2l/ (K y2 — n193) © Z/p[C]) @ Z/p[v]
where |y;| = 2,|v] = 2p,|C| = 2p ~ 2 and Cy; = yf"l, C? = yfp_z + y2r?
i _ly’z’“l. The E conjugacy classes of V-subgroups of E are written by

A;j=<ab,c> for0<i<p-—1, Ax=<bec>.

Letting H*(BA;) = Z/ply, u] and writing #% () = z|A; for the inclusion ig, : A; C
E, the restriction images are given by

(2) nldi=y fori€F,, y1|Aw =0, wyalAi=iy fori€Fp, yp2|lAn =1y,

ClAi =y, leizu”;yp“lu for all 1.
In particular, we can take a Z/p-base b; of H??~2(BE) such that
bilA; = i;P "t Jeg. bi=(h —iT ) -C.
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For an element g = ( z Z ) € GLy(F,) = Out(E), its actions are given

([Ly],[T-Y] p491)
(3) 9°C=C, g*yy = ay1 + bys, g"yo = cy1 + dya, g*v = (det(g))v,

Let us write as Y; = yf “!1and V = v?~. Then we get the following additive
expression of H*(BE), which is used in Section .

(4) H'(BE) = (&L,Z/p[Y:l{yi, .. v¥ 2, Yi}

OZ/plCHy vl < i,j < p -1} ® Z/p{1,C}) ® Z/p[V]{L,v,...,v*~2}.

Theorem 3.1. (Theorem 4.3 in [T-Y], [B-L-0]) Let G have the p-Sylow subgroup
E, Then we have the isomorphism

H*(BG) = H*(BE)%“ %) Ny pec_pagicar i\ H*(BA)Wo(4),

4. STABLE SPLITTING
Martino-Priddy prove the following theorem of complete stable splitting
Theorem 4.1. (Martino-Priddy [M-P]) Let G be a finite group with a p-Sylow
subgroup P. The complete splitting of BG is given by
BG ~ Vrank, A(Q, M) X m

where indecomposable summands X range over isomorphic classes of simple Fp[Out(Q]-
modules M and over isomorphism classes of subgroups Q C P.

For the definition of A(Q, M), see [M-P)]. In particular, when @Q is not subretract
(that is, not a proper retract of a subgroup) of P and when We(Q) C Out(Q) =
GLy(Fp), the rank of A(Q, M) is compute by

rank, A(Q, M) =) _ dim(Wg(Qi) M)

where Wg(Q) = Y ceWa(qQ) & 10 Fp[GLn(Fp)] and Q; ranges over representatives
of G-conjugacy classes of subgroups isomorphic to @ (see [M-P] Corollary 4.4).

Recall that Out(E) = Out(V = (Z/p)?) = GL,(F,). The simple modules
of G = GLy(F,) is wellknown. Let us think V be the natural two-dimensional
representation, and det the determinant representation of G. Then there are p(p—1)
simple Fp[G}-modules given by Myx = S(V)? ® (det)* for 0 < ¢ < p— 1,0 <
k < p — 2. Harris-Kuhn determined the stable splitting of abelian p-groups. In
particular, they showed

Theorem 4.2. (Harris-Kuhn) Let X, = Xm,, (resp. L(1,k)) identifying My €
Fp[V] (resp Mo € Fp[Z/p]). There is the complete stable splitting

BY ~ Vo(g + 1) Xqk Vazo (¢ + 1)L(1,q)
where 0< ¢<p-1,0<k<p-2

The summand L(1,p — 1) is usually written by L(1,0).
It is also known H*(L(1,k)) = Z/p[y*~']{y*}. Since we have the isomorphism

H?"(BV) = (Z/p)*** = H*((k + 1)L(1, k),
we also know if x < 2(p — 1), then H‘(f(q,k) 0.
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Lemma 4.3. Let H C GL(Fp) with (|H|,p) =1 andlet G=V : H. Let us write
by BG ~ Vg xn(H)qrXqr Vg Mm(H)gL(1,q'). Then
A(H)gx = rank, H'(H; M, ), (H)q = rank,H* (BG).
In particular i(H)q,0 = rank, H*(BG).
Proof. Since H*(X,1) = 0 for *+ < 2(p — 1), it is immediate that m(H)y =

rank,,H2q'(G). To prove the first equation, assume that H =< & >= Z/s. Then
for v € My,

WG(V)‘U =(1+ (det:c)k:c + ...+ (detz)“("l)xs—l)v_

Since (1— (det(z)*z)*) = 0, we get Ker(1—(detz)*z) C Image(Wg(V). Since My x
is a Z/p-module and (|H|,p) = 1, we know H*(H; Mgx) = 0 for x > 0. Hence we
get

Ker(l — (detz)*z)/Image(l + (detz)*z + ... + (detz)*C~Ya*=1y = HY(H, M) 2 0.
Thus we have
gk (H) = rank, M, = rank, H(H, My ).

Next let 1 = H' — H — Z/s — 0. By induction, we assume I'mage(H') =
HO(H'; My ). Then we can see

Image(H) = H(Z/s; H*(H'; Mg i) = MJ, = H(H; My ).

Next consider the stable splitting for the extraspecial p-group E.
Diez-Priddy prove the following theorem.

Theorem 4.4. (Diez-Priddy [D-P]) Let Xqr = Xum,, (resp. L(2,k), L(1,k))
identifying My i (resp. Mp_1k, € Fp[V], Fy[Z/p]). There is the complete stable
splitting

BE ~Vau(g+1)Xqx Vi (p+1)L(2,k) Vgzo (¢ +1)L(1,q9) V L(1,p — 1)
where 0 < ¢g<p—-1,0<k<p-2.
Remark. Of course X, ; is different from X, but X,_1x = L(2,k).

Recall that
HY(BE) & (Z/p)?** = H¥((¢+ 1)L(1,q9)) for0<k<p-1
(Z/p)7*+? = H*»=2((p+ 1)L(1,0)) forg=p-—1

This showes H*(X,x) = 0 for * < 2p — 2 since so is L(2, k). The number n(G)qx
is only depend on Out(G) = H. Hence we have the following corollary.

Corollary 4.5. Let G have the p-Sylow subgroup E and Out(G) = H. Let
BG ~ Vn(G)qxXqr Vm(G,2)kL(2,k) Vm(G,1)i L(1, k).
Then n(G)gx = #i(H)qx and m(G, 1), = rank, H*(G).
Hence next problem is to seek m(G,2). The number p + 1 for the summand
L(2,k) in BE is given as follows. Let u = L1 in GLy(Fp) and U =< u > :

0 1
the maximal unipotent subroup. Then for each E-conjugacy class of V-subgroup
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A; =< abi,c >,i € F, Uoo, we see Wg(4;) = U. For yiyh € My, (identifying
H*(BV) = S*(V) = Z/p[y1, y2]), we can compute

We(A)yivs = (1+u+ ..+ ylvs =) (01 +ive) vh

=Y D (st)fu Ty =D (s) )iy st
i s s [
Here Zf;olit =0for1<t<p-2,and = —1fort=p— 1. Hence we know
dim,Wg(Ai)Myx =0 for 1< g<p-2, =1forq=p-1
Thus we know that BE has just one L(2, k) for each E-conjugacy V-subgroup A;.
Lemma 4.6. Let A be a F*°-radical subgroup, i.e., Wg(A) D SLa(Fp). Then
We(A)(Mgx)=0forallk and1<g¢<p-1.
. 11 , 1 0
Proof. The group SLy([F,) is generated by u = 01 and v = 11 )
We know
Ker(l1—u) = Z/ply? — 5 'y1,33] and Ker(l—u') = Z/plyh — ¥ y2,31]
identifying S(V)* = Z/p[y1, y2). Hence we get (Ker(l —u)NKer(l —u'))* = 0 for
0<x<p-1. o

Proposition 4.7. Let G has the p-Sylow subgroup E. The number of L(2,0) in
BG is given by

m(G,2)o = §a(V) — §a(F*V)
where § (V) (resp.ig(FV)) is the number of G-conjugacy class of V -subgroups
(resp. F®-radical subroups.)

Proof. We recall
H*(BG) = H*(BE)®© (\y.pec_rasica iy~ H* (BAWa(A)
Let us write K = E : Out(G) and H*(BE)9“*(®) = H*(BK). From the above

lemma, we only need to show
m(K,2)o = ik (V) = fa(V).

Let A be a V-subgroup of K and z € Wk (A). Recall 4 =< ab*,c > for some i.
Identifying = as an element in Aut(E), we see £ < ¢ >=< ¢ > since < ¢ > is the
center of £. Hence

Wk(A)CB=U": (Ifs‘,’{“,)2 ; the Borel subgroup.

So we easily see that Wi (¥ ™") = Ayh™! for some A # 0 because b*yh ™" = y5~*
for b = diagonal € (F,)*2. That means m(G, 2)o = §x (V) — fc(F=V).

On the otherhand m(G, 2)x < (V) — g (F°V) from the above lemma. Since
$x (V) > $a(V), we see that §x (V) = f¢(V) and the proposition. d

Lemma 4.8. Let £ € F; and (3k,p—1) # 1. If G D E :< diag(,£) >, then BG
does not contain the summand L(2,k), i.e., m(G,2), = 0.
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Proof. It is sufficient to prove the case G = E :< diag(€,€) >. Let G = E <
diag(€,€) >. Recal A; =< ab*,c > and

diad(€,€) : ab’ > (ab)E, ¢t .
So the Weyle group is Wg(4;) = U :< diag(€,£2) >. For v € My, we have

p—2
We(As)v =Y (%) diag(€’, €%)(1 + ... + v},
=0
Thus we get the lemma from $7-2¢3* = 0 for 3k # 0 mod(p — 1) and = ~1
otherwise. -

5. COHOMOLOGY AND SPLITTING OF B(Z/3)?)

In this section, we study the cohomology and stable splitting of BG for G having
a 3-Sylow subggroup (Z/3)? = V. In this and next sections, p always means 3.
Recall Out(V) = GL,(F3) and Owut(V)' consists the semidihedral group

SDig=<z,yle® =y =1l,yzy ' =2 >.

Each group G having 3-Sylow subgroup V is isomorphic to E : W, W C SDxs.
There is the SD;¢-conjugacy calsses of subgroups(here A «— B means A D B)

— Qs —Z/4 7
SDyg{ ¢— Z/8 +— Z[4 «— bZ/2 «— 0
— Dg — Z[2®Z[2 +— Z[2
We can take generators pf subgroups in GL = 2(F3) by the matrices
Z/8=<1> Qs=<w, k> Dg=<v' k> Z/4=<w>

Z/d=<k> Z2OZ2=<w',c> Z/2=<c>, Z[2=<uw >

where l=<(1) _11>,w:(_?1 (1)),
2 1 -1 o, (1 -1 _a_f( -1 0
k-—l—.(_l _1),w_wl.~(0 _1),c—l_. 0 -1 /-

Here we note that k and w is GLy(F3)-conjugate, infact uku™! = w.
The cohomology of V is given H*(BV) = Z/3[y;,y], and the following are
immediately

H*(BV)<> = Z/3[y2, y3}{1,y1y2} H*(BV)Y'> 2 Z/3[y1 +ys,93)-
Let us write Y; = y2 and ¢ = y1y2. The k-action is given
E:Yi=Y1+Yo+t, Yo Y1+ Y-t t— =Y + Yo
So the following are invariant
a=-Yi+Yy+t, a; =Yi(Yi + Yo +1), as = Yo (Y1 + Yo — 1), b=1(Y; = Ya).
here we note that a2 = a; + a2, b%> = a;a3.. We can prove the invariant ring is

H*(BV)<k> = 7/3[a;,a2){1,a,b,ab}.
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Next consider the invariant under Qs =< w,k >. The action for w is ¢ —
—a, a; ¢ a3, b~ b. Hence we get

H* (BV)Qa E 2/3[01 + aa, 010.2]{1, b}{l, (al - az)a}.

Let us write S = Z/3[a; + a2, a1a;) and o’ = (a1 — az)a. The action for [ is given
1:Y1~Y, l—)Y1+Y2+t'—)Y1+Y2—t t—-)Yl. Hencel :a —a, a1 & az, b— —b.
Thefore we get

H*(BV)<?> = §{1,d’,ab, (a1 — a3)b}.

The action for w’ : Yy — Y1 + Ys + ¢, Yy — Yo, implies that v’ : a — a, a; —
a;, b —b. then we can see

H*(BV)P®s = H*(BV)<k*'> = 72/3[a1,a5]{1,a} = S{1,0,a1,d}
Hence we also have
H*(BV)SPie =~ 5{1,4'}.
Recall the Dickson algebra DA = Z/3[D;, Dy] = H*(BV)SL2(Fs) where
D= Y2+ Y2, + YiYE + Y2 = (az —a1)a=d, Dy = (yf‘yz —1n93)? = aja;.
Using a? = (a; + a3) and D? = a% — a;a3a?, we can write
H*(BV)SPe > 7/3[a*, D,]{1, D1} = DA{1,4%,a*}.

Theorem 5.1. Let G = (Z/3)% : H for H C SD1s. Then BG has the following
stable splitting

. =
Xo,1
o \
X. ) - - - -~ ~ ~ -
(3_0 SDIG < XS.I Z/S XQ,()VXQ']_VL(l,O Z/4 2X2,QV2XQ,1V2L(1,0) Z/2 2X1.0V2X1,1V2L(1,1) 0

/

Z/2

X2,0vL(1,0) Xa.0vXa1VL(1,0) X1,0vX1,1vL(1.1)
| s - —

D Z/2 6 Z[2

where & ... & H means B((Z/3)*: H) ~ X1V ..V X,.

Main parts of the above splittings are given in (6) in [Y2] by direct computations
of Wg(V) (see pl49 in [Y2]). However we get the theorem more easily by using
cohomology here. For example, let us consider the case G = V :< k >. The
cohomology

H%(BG) = 7/3, H*(BG) = 0,H*(BG) = Z/3
implies that BG contains just one ):(o,o,)gz,o,L(l,O) but does not )E'LO,L(l, 1).
Since det(k) = 1, we also know that X3, X21 are contained. So we can see
B(V . Z/4) ~ XQ,() \% X'O,l \Y )?2’0 A% Xz,l v L(l,O)

Next consider the case G' =V :< 1 >. The fact H*(G) = 0 implies that BG' does
not contain Xs0,L(1,0). The determinant det(l) = —1, and I : @ — —a shows
that BG' contains X5, but does not X0,1- Hence we know BG' ~ .’20,0 \Y Xg‘l.
Moreover we know BV : SDig ~ f(o,o since w : a — —a but det(w) = 1. Thus we
have the graph

£ 5Dy 222 78 XV R0 74
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Similarly we get the other parts of the above graph.
Corollary 5.2. Let S = Z/3[a1 + a3, a1a3], We have the isomorphisms
H*(Xoo) = S{1,D1}, H*(Xo.)=S{b,D1b},

H*()Z'z,l) = S{ab, (a; — ay)b}, H*(Xg,o V L(1,0)) = S{a,a; —az} = DA{a, a?,a®}.

Here we write down the decomposition of cohomology for most typical case

H*(BV)<k> = §{1,a; — a}{1,a}{1,b}
= S{l,a(a1 - ag), b,b(a1 - ag), ab, (a1 - ag)b, a, (01 el ag)}
= H*(XO,()) & H*(Xo,l)-@ H*(Xz,l) (43 H*(Xz,o A% L(l, O))

6. COHOMOLOGY AND SPLITTING OF B3}F*.

In this section we study the cohomology and stable splitting of BG for G having
a 3-Sylow subgroup E = 3}*%. In the splitting for BE, the summands X, are
called dominant summands. Moreover the summands L(2,0) vV L(1,0) is usually
written by M (2). The following lemma is almost immediately from Proposition 4.7

and Lemma 4.8.

Lemma 6.1. If G D E :< diag(—1,—-1) > idefining Out(E) = GLy(F3) and G
has E as a 3-Sylow subgroup, then

BG ~ (dominant summand) V ({c(V) — $c(F*V)(L(2,0) v L(1,0)).
Theorem 6.2. If G has a 3-Sylow subgroup E, then BG is homotopic to the clas-

sifying space of one of the following groups. Moreover the stable splitting is given

by the graph so that % % G means BG ~ X1V..VX; and EH = E : H for
HC SDls

4 VX
= EQs

20 Ja !
4
/X1,0VX1,1

\

M(2) XQ,QVXg‘l

L)(f—’-’—o 2F4(2) = My, M, Wy, GLy(Fs)

Proof. All groups except for E and E :< w' > contain E :< diag(—1,—1) >. Hence
we get the theorem from Corollary 4.5, Theorem 5.1 and Lemma 6.1, except for
the place for H*(BE :< w' >). Let G = E :< w' >. Note v’ : y1 — y1 — y2,y2 —
—y2,v — —v. Hence H%(G) = Z/3[y, + y2}- So BG contains one L(1,1). Next
consider the number of L(2,0),L(2,1). The G-conjugacy classes of V-subgroups
are Ag ~ A, A1, As. The weyle groups are

We(Ao) = U, Wg(A1) = U <diag(l,-1) >, Wg(Ax)=U < diag(-1,-1)>.

X;,Ml(z) EDs X;,,,v)((_,,lvM(z) E'(Z/2)2 v2L(2,(_1_)_y_L(1,1) EZ/2

83

M(2 2X3,0V2X21 2Xy,0V2X1,,
(L) ESDls < )(&3'_1 E’Z/S XQ.OV)((Q_,1_VM(.Z EZ/4 VMZ) EZ/Q V4L(2,(1__)X.2L(1,1J E
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By the arguments similar to the proof of Lemma 4.8, we have that
dim(Wg(Ai)Mao) =1 for alli
dim(Wg(Ai)Mag) =1,0,1 fori=0,1,00.

Thus we know BG D 3L(2,0) V 2L(2,1).
O

We write down the cohomologies explicitely (see also [T-Y],[Y2]). First we com-
pute H*(B(E : H)). The following cohomologies are easily computed

H*(BE)<*> = Z/3[Y1] & Z/3[Ya]* ® Z/3[C{1, y1y2}) ® Z/3[]
H*(BE)<Y> = (Z/3[Y1 + Ya]* © Z/3[C]) @ Z/3[v]
H*(BE)<¥> = (Z/3[C]{1,a}) ® Z/3[v] where a= Y1 +Y2+y1y2, C* =d®

H*(BE)<¥'*> = (Z/3[Y,]* ® Z/3[C]{1,a,a'}) ®Z/3[D;] where a’ = (t + Ys)v
Let D; = C®+V, Dy = CV. Then it is known that
Dy|4; = D1, Dy|A; = Dy forall i € F3U oo.
So we also write DA =2 Z/3[D,, Dy]. We have
H*(BE)% = H*(BE)<*> n H*(BE)<%> = (Z/3[C]) ® Z/3[v]

H*(BE)P® = H*(BE)* n H*(BE)<*"> = 7/3[C){1,a} ® Z/3[D\]
H*(BE)<'> = (H*(BE)<F>)<> = 7/3[C){1,av} ® Z/3[Dy]

Hence wé have
H*(BE)SP = 7,/3[C, D;]
Proposition 6.3. There is isomorphisms for |a"| = 4,
H*(*F4(2)') = DA{1,(D, - C*)a"}

H*(Mas) = (Z/3[Ds] ® Z/3[C1{a"}) ® Z/3[D]
Proof. Let G = Ma4. Then G has just two G-conjugacy classes of V-subgroups

It is known that one is F*°-radical on the other is not. Suppose that Ag is F®°-
radical. Then Wg(Ag) = GLy(F3). Let @’ = a+ C. Then

a"|Ag = (-Y1+Ya+1ny2+ C)lAo =0, a"lAe =-Y.

By the Theorem 3.1
H*(BMys) = H*(BE)P* N  H* (B A) "o,
we get the isomorphism for Ma4. For G =2? F4()’, the both conjugacy classes are
Fe-subgroups and Wg(Az) = GLy(F3). Hence '
H*(B%F4(2)") & H*(BMys) N % H* (BAy)h2Fs),

We know

(Dy — C*a"|Ag =0 (D) —C3d"|Ae = —VY = Ds.
Thus we get the cohomology of 2 Fy(2)'. O
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Remark. In [T-Y],[Y2], we take

For this case, the Mss-conjugacy classes of V-subgroups are Ag ~ Ao, A1 ~
A, , and we can take o’ = B = C —Y; —Y,. This case the expressions of
H*(My3),H*(V : GL2(F3)) are more simple ( see [T-Y],[Y2]).

Remark. Corollary 6.3 in [T-Y] and Corollary 3.7 in [Y2] are not correct. This
came from Theorem 6.1. This theorem is only correct with adding the assumption
that there are exactly two G c.c. of IFg subgroups such that one is p-pure and the
other in not, which is always satified for sporadic simple groups but not for 2F,4(2)’.

Corollary 6.4. We also have the isomorphisms.
H*(X30) & DA{D2}, H"(Xa:) =Z/3[C,D1]{c'} where (c')? = CD,, ¢’ = (av)

H*(Xo.1) = Z/3[C, D1]{v}, H*(M(2))= DA{C,C? C®} where C*=CD; - D,.
Here we write the typical examples. First note that C* = CD; — D, implies
2/3(C, D] = DA{1,C,C?,C?} & H*(Xo0) ® H*(M(2)),

Z/3[C, D1}{C} = (DA{C,C?,C3, D,} = H*(M(2)) ® H*(Xa,0)-
The decomposition for H*(BE)P® is isomorphic to

2/3(C, D:]{1,a"} = DA{1, C,C?,C3, (D1 — C%d", a",d"*,a"%}

= H*(Xo,0) ® H*(M(2)) & H*(X2,0) © H™ (M(2)).
The decomposition for H*(BE)<*> is
(Z/3[C, D1){1,a, v, av} = H*(BE)P* @ H*(Xo,1) ® H*(X3,1).
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