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1 Introduction

In this paper we deal with a nonlinear ordinary differential system which describes
hysteresis input-output relations. Let us consider a system of the following form:

aw' + bu' + 8I,(w) 3 F(u,w) in (0,00), (1.1)

cw' + du' = h(u,w) in (0, 00), (1.2)
subject to the initial conditions:
©(0) = uo, w(0) = wo, (1.3)

where ¢ > 0,b < 0,c > 0,d > 0 are given constants, F,h : R X R — R are Lipschitz
continuous functions, f,, f* : R — R are non-decreasing Lipschitz continuous functions
with f, < f* I,(:) is the indicator function of the closed interval [f.(u), f*(u)], and
0I,(-) is its subdifferential defined by

3 for w > f*(u) or w < fi(u),
| [0, +00) for w = f*(u) > f.(u),
oL, (w) =< {0} for fi(u) <w < f*(u), (1.4)
(=00, 0] for w = f.(u) < f*(u),
(—00,+00) for w = fo(u) = f*(u).

Equation (1.1) describes a lot of input-output relations v — w which are physically
relevant. For example, when b = 0 (resp. —1), a = 1 and F = 0, the relation between
w(t) and u(t) is called a play (resp. stop) operator. These operators are typical examples
of hysteresis input-output relations, and are used to present various phase transition
effects. Moreover, in the case when a =1,b=0,c=1,d=1,F = 0,h = 0, the system
was studied by Visintin [5]. In the general case when a = a(u,w),b = b(u,w),c =
c(u,w),d = d(u,w) are functions of u, w with a(u,w) > 0, c(u,w) > 0,d(u,w) > 0 and
a(u, w)d(u, w) — b(u, w)c(u, w) > 0, the existence and uniqueness results of the system
were obtained in [2].
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Our main objective of this paper is to study the large time behaviour of solutions
of our system. The behaviour of solutions of (1.1),(1.2) depends on the coefficients
a,b,c,d and the functions F, h. Under some conditions on a,b,¢,d, F, h and f,, f*, we
investigate the precise behaviour of orbits of solutions of our system. At the same
time, we give some numerical experiments for the connection with the behaviour of the
orbits.

2 Preliminaries and main results

In this section, we mention the precise assumptions on the coefficients a, b, c,d and
the functions F, h, f,, f*, and a theoretical result on the behaviour of orbits of solutions
of our system. Now we make the following assumptions:

(Al) F:=oaou+pw, h:=yu+éw, o,B,7,0 €R
andca—ay=df—-bl =0, da—by>0, cB—-ad>0.

(A2) Functions f,, f* are non-decreasing Lipschitz continuous functions
of C?-class such that f,(u) < f*(u) for all u € R, and there are
constants f* > 0, foo < 0 and k* > 0, k. < 0 such that
fu(uw) = f*(u) = f* for all sufficiently large u > 0,
f(0) <0 < f*(0),
fe(u) = f*(u) = fo for all sufficiently small u < 0,
fe(u) = f*(u) for u € (—o0, k.| U [k, +00).

(A3) The number of connected components of the sets
{u € R|(ad — ¢fB) fu(u)fi(u) — (da — by)u = 0} and
{u € R|(ad — cB) f*(u)f*'(u) — (da — by)u = 0} is finite.

Assumption (Al) means that if there is no subdifferential 81, (w) in our system, then
the orbits of solutions are anticlockwise ellipse for all initial data (especially the orbits
of solutions are anticlockwise circles when da — by = ¢ — aéd > 0 hold). Assumptions
(A2), (A3) are concerned with the geometry of the two curves w = f* and w = f..
Especially, assumption (A3) implies that the curves w = f,(u) and w = f*(u) have a
finite number of circles with center (0,0) which are tangential to the curves w = f,(u)
or w= f*(u).

Under these assumptions, we give the definition of a solution of our system.

Definition 2.1 A pair of functions {w,u} is called a solution of the system (1.1),
(1.2), and (1.8) if the following (1)-(4) are satisfied:
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(1) w,u € WY2(0,T) for any finite T >0,
(2) aw' + bu' + 8L, (w) 3 au + Pw a.e. on (0, 00),
(8) cw' + du' = yu + dw on (0,00),

(4) u(0) = ug, w(0) = w.

The following theorem holds true.

Theorem 2.1 Under these assumptions, the system (1.1)-(1.8) possesses one and only
one solution.

This theorem guarantees the existence and uniqueness of solutions and it is a special
case of [2; Theorem 2.4].

The precise behaviour of solutions of our system is given in the following theorem.

Theorem 2.2 Suppose that assumptions (A1),(A2) and (A3) are satisfied. Let S =
{(u,w) € R?|fu(u) < w < f*(u)}, and denote by {u,w} the solution of our system
with initial values ug, wo. Then S is divided into the following three subsets S;,S; and
83, i.e. 8= 81 U 82 U 83, such that

(i) if (ug,wo) € S1, then (u(t), w(t)) reaches a periodic ellipse around the origin in a
finite time;

(4i) if (ug,wo) € Sa, then (u(t),w(t)) converges (ast — +o00) to a stationary point
(Uoo, Woo) Which satisfies

0l (Weo) D Qo + PWeo
Yoo + W = 0;

(iii) if (ug, wo) € S, then (u(t),w(t)) diverges to (+oo, f®) or to (=00, foo) as t —
+00.

Moreover, the sets 81,8, and S3 are determined by the geometries of the curves w =
fe(u), w = f*(u) and the line yu + dw = 0 and their ezpressions are given in the next
section.

In order to prove Theorem 2.2, we prepare the following section.




3 Subsets S; (i =1,2,3)
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In this section, we consider how to describe the subsets S;(i = 1,2,3) of S on (u, w)

plane. Now we use the following notations:
= {(w,w)hw = W} Tv:={(v,w)w= fi(u)}
B(u,w) := {(da — by)u® + (cf — aé)wz}% , L= {(u,w) € R¥vyu+ dw = 0},
() :== {(v,w) e *NlJu > 0}, T\(l) := {(u,w) € T, Nlu < 0},

rg := min{B(u, w)|(u, w) € I}, u* := min{u|(y,w) € I'*, B(u, w) = 3},

Tos := min{B(u, w)|(u,w) € I}, u, := max{u|(u,w) € T, B(u,w) = ro.},
ri = min{B(u, w)|(u,w) € T*(1)}, R} := max{B(u,w)|(u,w) € T*(1)},
T1x = min{B(u, w)|(y, w) € F'.(1)}, R := max{B(u,w)|(u,w) € ['(})},

+ o W — fe(ua)u>0ifu >0
AT = {(u,w) ww— ffu)u<0ifu<0 [’

- uw ~ fo(u)u<0ifu>0
AT = {(u,w) ww— f*u)u>0ifu<0 }’

So := {(u, w) € §|B(u,w) < rp} with 7o := min{rg, ro«}.

By our assumptions, we have

rg <77 < R} and 79« < 714 < Ry

As to the relationships of rj, ], R}, ro., 71+ and Rj. there are the following 6 cases to

be considered:

(1) Tow < 7'6 <7 < R, (2) Tox < Tis < T'a < Ry,
(6) rg<ri<re. <R} (6) ry<r}<R}<ron

In the case of (1) we define

81 =S UStusT,

where
St = {(u,w) € SN At|ro. < B(u,w) < r}},
ST = {(u,w) € SN A”|rgs < B(u,w) < r1.};
52 = S; US{,
where

8§ ={(v,w) € SN AT|r{ < B(u,w) < Rj},

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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85 = {(u,w) € SN A”|r1. < Blu,w) < Ru};

83 = S;- US3_,
where

8§ := {(u,w) € SN A*|R} < B(u,w)},
S; = {(u,w) € SN A™|R1. < B(u,w)}.

In the case of (2) we define

S =8 Y 3?,
where

8} = {(v,w) € Slro. < B(u,w) <r1.};

Sy = S; US;,
where

S = {(u,w) € SN A*|r} < B(u,w) < R}},

Sy = {(u,w) € SNAT|r, < B(u,w) <r}}

&

U {(u»w) € SnA,_lrl* < B(uaw) < th};

Sz := Sg' usSs,
where

Sy = {(u,w) € SN AT|R} < B(u,w)},
85 = {(u,w) € SNAT|Ry. < B(u,w)}.

In the case of (3) we define

Sl = SO U S?,
where
S¥ = {(u,w) € S|ro. < Blu,w) < 7r1.};
Sy = S; us;,
where

= {(u,w) € SN At|r}{ < B(u,w) < R}},

(3.8)

(3.9

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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55 1= {(u,w) € Slre < Blu,w) < Ru); (3.22)
Sz :=SF USy, (3.23)
where
8§ = {(u,w) € SN AT|R} < B(u,w)}, (3.24)
S5 : = {(u,w) € SNAY|R1. < B(u,w) <r}
U {(u,w) € SN A™|R1. < B(u,w)}; (3.25)

In the case of (4) we define

St =8 USTUST,

where
ST = {(u,w) € SN A*|r§ < B(u,w) < r}},
ST = {(u,w) € SN A~ |ry < B(u,w) < r1.};
82 = S;- USZ-a
where
S = {(u,w) € SN At|r} < B(u,w) < R}},
S5 = {(u,w) € SN A~ |r1. < B(u,w) < Ri.};
Ss = S;_ usy,
where

ST = {(u,w) € SN AY|R} < B(u,w)},
S5 = {(u,w) € SN AT|Ry. < B(u,w)}.

In the case of (5) we define

Sy =S U S?,
where

SY = {(u,w) € Slry < Blu,w) <rt};

Sy =8 USy,
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where
Sf: = {(uw)eSNA*r} < Blu,w) < R}
U {('U;, W) E Sﬂ A_l'l‘f S B(u’w) < ,,.1*};
S5 = {(u,w) € SN A7|r1. < B(u,w) < Ru};
S3 1= 8§ USy,
where

Sy = {(u,w) € SN A*|R] < B(u,w)},
Sy = {(u,w) € SN A™|R1x < B(u,w)}.

In the case of (6) we define

S =8 U S{’ ,
where

89 := {(u,w) € Slrg < B(u,w) <ri};

8y = S; us;y,
where

8§ = {(u,w) € Slr} < B(y,w) < Rj},
Sy = {(u,w) € SN A7 |r1. < B(u,w) < Ri.};

83 = S;_ U 83—,
where

SF: = {(v,w) € SNAY|R} < B(u,w)}
U {(u,w) € SNAT|R] < B(u,w) <714},

S5 = {(u,w) € SN A™|Ry, < B(u,w)}.

In any cases of (1)-(6), when the initial data belong to any subset of 81, S, and Ss,
the orbits of the solutions satisfy the statements (i)-(iii) of Theorem 2.2. In the next
section, we prepare some Lemmas in order to prove Theorem 2.2.




4 Local behaviour of orbits
In this section, we investigate the local behaviour of the orbit (u(t),w(t)), satisfying

aw'(t) + bu'(t) + Olyw (w(t)) 3 au(t) + Bw(t),
cw'(t) + du'(t) = yu(t) + dw(t)

for t > 0. We only give proof of Lemma 4.3. Other Lemmas are shown without proofs.
Lemma 4.1 Assume that (u(t,), w(t1)), t1 > 0, is in the interior of S. Then:

(a) if B(u(t,), w(t1)) < ro, then {u,w} satisfies

o CO—ad
u(t)‘_ad—bcw’
(4.1)
1oy da—by
Wit = T

for all t > t1, and hence the orbit (u(t),w(t)) draws the anticlockwise ellipse
C = {(u,w)|B(u, w) = B(u(t), w(t1))} and it is periodic in time on [t;, +00).
(b) if B(u(t1),w(t1)) > ro, then {u,w} satisfies system ({.1) on a compact inter-

val [t1,ty] with t3 > t;, where t; is the earliest time of all t (> t,) at which
(u(t), w(t)) € T UT*. Hence the orbit (u(t),w(t)) draws an anticlockwise arc on

the ellipse Cy for t; <t <t,.
We note that the stationary problem of (1.1)-(1.2) is of the form
0l (w) 3 ou + Pw, yu+ dw =0.

Lemma 4.2 (a) Let (i,0) be an interior point of S. Then {4, W} is a stationary
solution of (1.1)-(1.2) if and only if 4 = 0 and W = 0.

(b) Let (@, w) be a boundary point of S. Then {i, W} is a stationary solution of
(1.1)-(1.2) if and only if (4,w) € I',(1) U T*(1).

Lemma 4.3 Assume that (u(t1), w(t1)), t; > 0, is on Iy and w(t,) < 0. Then:
(a) if yu(ty) + dw(t1) > 0 and if there exists 4 > u(t;) such that
v+ 8f,(v) > 0 for u(ty) <v < 4,
and moreover if

(da — by)u
(a6 — B 1.0

< fi(u) for u(t;) <v < 4, (4.2)
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(b)

(c)

(d)

then {u,w} satisfies

L yu(t) + 8f(u(®)
YO = ) +d

on a compact interval [t1,ts], where ty is the earliest time at which u(ty) = @, and
the orbit (u(t), w(t)) moves along I« from (u(ty), w(t1)) to (@, fu(@)) fort, <t <
ta. Moreover

w'(t) = fa(u(t))u'(t) (4.3)

%B(u(t),w(t)) <0 onty, ). (4.4)
if yu(ty) + dw(ty) > 0 and if there exists a stationary point (@,®) € T'.(I) with
@ > u(ty) such that

yv + 6 fu(v) > 0 for u(t)) <v < G,

then {u,w} satisfies (4.8) on [t;,+00), and the orbit (u(t), w(t)) moves upward
along the curve T, and converges to (4, w) as t — +oo;

if yu(ty) + dw(ty) < 0 and if there exists a stationary point (u,w) € I'.(l) with
u < u(t;) such that

yv + 8 fe(v) <0 for u < v < u(ty),

then {u,w} satisfies (4.8) on [t1,+00), and the orbit (u(t), w(t)) moves downward
along the curve T, and converges to (u,w) as t — +oo.

if Yo+ 6 f.(v) <0 holds for all v < u(ty), then {u,w'} satisfies (4.8) on [t;, +00),
and the orbit (u(t), w(t)) diverges to (—oo, foo) as t = +00.

Proof. We prove (a). We put (u1,w;) = (u(t1),w(t1)); note that wy; = fi(u1), since
(u1,w;) € I',. We can find a positive constant M such that

yv+d8fi(v) > M for u; <v<a. (4.5)

Now, consider the Cauchy problem

P CRRIACIL)
cfi(at)) +d
W) = w (4.7)

,h <t<t (4.6)

where 7 is the supremum of positive number ¢} (> ¢;) such that problem (4.6)-(4.7) has

a solution on [t;,t}]. In fact, since the function v —»

yv+dfe(v)

AT, is Lipschitz continuous

in a neighborhood of v = wu;, by the general theory of ODEs the problem (4.6)-(4.7)
has a (unique) local (in time) solution #(t). It is easy to see from (4.5) that a(-) is
monotonically increasing and reaches the value @ in a finite time ¢, € (¢1,¢}). Now,
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putting w(t) = f.(4(t)) on [t1,12], we have that {d,®} satisfies our system (1.1) and
(1.2) on [t1,ts]. In fact, it follows from (4.6) that

cfL(A())0' () + da' (t) = va(t) + & f.(a(t)),

which implies ci'(¢) +dd’'(t) = ya(t)+6w(t) on [t1,tz). Thus (1.2) is satisfied. Equation
(1.1) is checked as follows. By assumption (A1) and (4.2), calculating cii+ B —aw’—bil,
we obtain

Y + 6 f.(12)

- Cf,:(ﬂ)-f"d (afi(ﬁ)"*-b)

ol + B — a’ — bii' = i+ Bf.(4)

(ad + Bfu(@))(cfi(@) + d) = (v + 6 fu(@))(afi (@) + b)
cfi(a) +d

{(ca — ay)ii + (cB — ad) £ (@)} fi(11) — (by — da)d — (b6 — dB) fu(4)
cfi(a) +d

(cB — ad) fu (u) fi(u) = (by — da)u
cft(u) +d

< 0

on (t;,t;]. By the definition of subdifferentials (see (1.4)) we have 8I;(w%) = (—00,0]
for w = f.(%). Therefore

ol + i — a' — bl € (W) on [ty,ta].

Thus, by the uniqueness, {,} must be the solution {u,w} of (1.1)-(1.2) on [t1,12].
Next we show (4.4). Since (4.2) and (4.3) hold on [t,, t2], we obtain

d o ,
HBww) = W{(Cﬂ — ad) fu(u) fr(u) — (by — da)u}
< 0 on [tl,tg].

Next we prove (b). Let us recall that @ < 0, f.(@) < 0 by Lemma 4.2 (b). We obtain
automatically
(da — by)v
(ad — cfB)f«(v)

Therefore, in the same way as in (a), {u, w} satisfies (4.3) for a moment after the time ¢,
and the orbit (u(t), w(t)) moves along the curve I', starting from (u(t1), w(t1)). We now

< fi(v) for y; <v L @ (4.8)
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show that (u(t),w(t)) converges to (@, w) € I',(l) as t — +o00. Let T be the supremum
of all (> ¢1) such that

cfi(u(t)) +d

Then, just as in the case of (a), we see that T > ¢;. Since u is non-decreasing on [t,,T),
th/n% u(t) exists. We want to see that th/r% u(t) = 4. We show it by contradiction. Now,

, w(t) = f.(u(t)) for Vt € [tr, 5].

assume that tl% u(t) < @. Then we consider the following statements:

(i) T = 400, U = tliin u(t) and Weo = limy 40 w(t) give a pair of stationary
—>1+00
solutions

or
(i) T < oo and (7.%%% > fl(u(t)) for some t > T.

But these cases do not occur in our situations considered now. In fact, the case (i)

yields that u(t;) < ue < @ and Yue + 6 fi(us) = 0, which contradicts our assumption.

Also, the case (ii) yields a contradiction to (4.8).

Assertion (c) is similarly proved to (b).

Finaly we prove (d). By the same argument as above, we have '

(da — b’)’)v 1 .
(a6 — BV (0) < fi(v) for all v < uy,

and find a negative constant M such that
yu 4+ 8f,(v) < M for all v < u;.

Hence {u, w} satisfies (4.3) for all ¢ > ¢; and u(-) is monotonically decreasing on (¢, 00).
By assumption (A2), (u(t),w(t)) diverges to (—o0, foo) as t = +00. B

Lemma 4.4 Assume that (u(t1), w(t1)), t1 > 0, is on '™ and w(t;) > 0. Then:
(a) if yu(t)) + dw(t1) < 0 and if there exists G < u(ty) such that
yu+6f*(v) <0 for @ < u(ty) <w,
and moreover if the following condition hold that

(da = by)v
(ad — cB) f*(

5 < f*'(v) for @ < v < ult),




(b)

(c)

(d)

5)
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then {u,w} satisfies

_yu+df*(u)

() = T i) = ()

on a compact interval [t1, 2], where ty is the earliest time at which u(ty) = 4, and
the orbit (u(t), w(t)) moves along T, from (u(t;),w(t1)) to (@, f*(@)) fort; <t <
to. Moreover

4 «
EB(u, w) < 0 on [t),1).

if yu(t1) + dw(t1) < 0 and if there ezists a stationary point (@,w) € T*(l) with
@ < u(t1) such that

yv+48fi(v) <0 for @ < v < u(ty),

then {u,w} satisfies (4.4) on [t;, +00), and the orbit (u(t), w(t)) moves downward
along the curve I'* and converges to. (@i, W) as t — +00.

if yu(ty) + dw(ty) > 0 and if there erists a stationary point (u,w) € [*(1) with
u > u(t,) such that

yv + 8f.(v) >0 for u(t;) <v<uy,

then {u,w} satisfies (4.4) for [t;, +00). Hence the orbit (u(t), w(t)) moves upward
along the curve I'™* and converges to (u,w) ast — +oo.

(
if yv+0f.(v) > 0 holds for all v > u(t;), then {u,w} satisfies ({.4) for [t|, +00).
Hence the orbit (u(t),w(t)) diverges to (0o, f*°) ast — +o0.

Large time behaviour of orbits

In this section, we prove Theorem 2.2 in the case (1) in section 3. Any other cases
can be treated by a simple modification of them. We investigate the behaviour of the
solution {u,w} when the initial data (uo, wy) belong to each of Sy, S1,S2 and Ss.

In the case of (ug,wp) € Sp

When (ug, wo) € Sy, we obtain B(ug,wg) < rp. Therefore, by Lemma 4.1(a), we see
that the orbit (u(t), w(t)) draws anticlockwise ellipse B(u,w) = B(uo, wp) for all ¢ > 0,
and is periodic in time.

In the case of (ug, wp) € S;
First, we consider the case of (ug,wy) € S; and wy < 0. Clearly B(ug, wo) > 7o.
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By Lemma 4.1 (b), the orbit (u(t), w(t)) draws an anticlockwise ellipse on B(u,w) =
B(ug, wp), untill it reaches T, satisfying

v =-L 000, 05 i<t
da — by
1Y —
w()— ad_bcu(t)’ OStStla

u(O) = Up, 'LU(O) = Wy,

where t; is the earliest time such that (u(t1), w(¢1)) € T'x. We have w(t;) = fo(u(t1)),
B(u(tl),w(tl)) < r14 and

v + & fu(v) > 0 for u(t1) < v < u..

Next, take the number uy so that

(de = by)u , )
(ad — cB) f.(u) < fi(u) for Vu € [U(tl),u]} )

Then we have the following three possibilities: (i) u(t;) < ug < ., (i) ug = u(t;), (i)
U9 = Usx.

U(tl) S U S Uy,

Ug = SuUp {11

In the case of (i), by Lemma 4.3 (a)

o yult) + 8. (u(t)
YO = @) +d

where t, is the earliest time such that u(t;) = u,. We denote by C, the ellipse B(u,w) =
B(us, f.(uz)) =: r2. By assumption (A3) and the definition of u,, we see that an arc
{(v,w)|lugs < u < 43, B(u,w) = r2} on C, is contained in S. Now, denote by u3 the
largest one of such numbers i3, we have uz > u;. Moreover, by Lemma 4.1 (b), {u, w}
is given by

w(t) = fu(u(), t € [t1, 2]

cB — ad 1o do— by
ad—bcw(t)’ w'(t) = ad — bc

where t3 is the earliest time such that u(ts) = uz. Our assumption (A3) guarantees
that the orbit (u(t), w(t)) reaches (u., fi(u.)) at t = t,(< 00) by repeating finitely many
times such behaviours as above. Here, after the time t,, the orbit (u(t), w(t)) draws the
anticlockwise ellipse B(u,w) = ry periodically in time (see Lemma 4.1 (a)).

u'(t) = — u(t), t € [t2,ta],

In the case of (ii), it is the case that ¢; = ¢, with the same notation as above, and the
behaviour of (u(t),w(t)) is similar to the case of (i) after the time t,.

In the case of (iii), it is the case that ¢t = ¢,, and the behaviour of (u(t), w(t)) is the
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anticlockwise ellipse B(u, w) = rq after the time ¢,.

Next, consider the case of (ug, wo) € S; with wg > 0. In this case, the orbit (u(t), w(t))
draws an anticlockwise arc on the ellipse B(u,w) = B(up, wp) untill it reaches I', or I'™*
at time sy. If (u(s1),w(s1)) € [, then the behaviour of (u(t), w(t)) is exactly the same
as in the previous case after time s;. On the other hand, if (u(s1),w(s;)) € I'*, then
the orbit (u(t), w(t)) moves downward for a time interval [s;, s2] with s; < s2 along the
curve I'* by Lemma 4.4 (a) (in this step assumption (A3) regarding the function f*(-)
is used), where s, is the largest time of §, such that (u(¢),w(t)) € I'* for Vt € [s), 32]. It
is easy to see that w(sy) > 0 and s, < +o00. After time sy, the orbit (u(t), w(t)) draws
an anticlockwise arc on B(u,w) = B(u(s2), w(s2)) untill it reaches Iy or I'* at time s3.
Repeating such procedures finitely many times, the orbit (u(t),w(t)) arrives at 'y at
time ¢ = ¢; in the last step. After time ¢;, the behaviour of (u(t),w(t)) was already
seen in the case of (ug, wy) € ST with wy < 0.

Finaly, we consider the case of (ug,wg) € S;. We have the following three cases:
(i) (uo,wo) € 8§ with Blug, wg) > 73,

(ii) (uo,wo) € 8 with B(uo, wo) < r§ and wy > 0,

(iii) (ug,wo) € S with B(ug, wp) < r§ and wg < 0.

First, we consider the case (i). In this case, the orbit (u(t), w(t)) draws an anticlockwise
arc on the ellipse B(u,w) = r € [r§,r}) and a part of ['* alternately and reaches the
point (u*, f*(u*)) at a finite time ¢ = ¢*. Since (u*, f*(u*)) € 87, the behaviour of
(u(t),w(t)) after the time t* is the same as in the case (ug, wo) € S; with wy > 0.

In the second case (ii), the orbit (u(t), w(t)) draws an anticlockwise arc on the ellipse
B(u,w) = B(ug,wp) and reaches a point (ug,wp) € I, with u; < u, and w; < 0 at a
time ¢t = t;. After the time ¢;, the behaviour of (u(t),w(t)) is the same as in the case
('LLo,’wo) € 81_ with wy < 0.

In the third case (iii), the orbit (u(t),w(t)) possibly draws an anticlockwise arc on
the ellipse B(u,w) = r € (ro,7§) and a part of ', alternately and reaches a point
(uy,w;) € Ty with u; < u, and w;, < 0 at a finite time ¢ = ¢;. After the time ¢,, the
behaviour of (u(t),w(t)) is the same as the case (ug, wy) € S; with wy < 0.

In the case of (ug,wg) € Sy

We give a proof only in the case of (ug,wp) € S5, since the proof of the case of
(ug,wo) € S is quite similar. In a way similar to that in the case of (ug,wp) € S,
we see that the orbit (u(t), w(t)), drawing an anticlockwise arc on the ellipse B(u, w) =
T € [rie, Ri1.], arrives at a point (u;,w;) € [, at a certain finite time ¢t = #,. If
(u(ty),w(t1)) (= (u1,w1)) € Tu(l), then (u(t;),w(t:)) is a stationary solution of (1.1)-
(1.3) by Lemma 4.2 (b). If (u(t1), w(t1)) ¢ L«(l), then we have the following two cases:
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(i) yu(t:) + dw(ty) > 0,
(i) yu(t) + dw(t;) < 0.

Suppose now that (i) holds. Then there is a closed interval [u, %] C (—o00,0) on the
u-axis such that u < u(t;) < @, yv + 0f(v) > 0 for all v € (u, %) and yu + o fu(u) =
v@ + 6f.(@) = 0. Therefore, the orbit (u(t),w(t)) converges to (@, f.(%)) € [.(l) as
t — +o0o by Lemma 4.3 (b). On the other hand, when (ii) holds, the orbit (u(t),w(t))
converges to a stationary point as ¢ = 400, too.

In the case of (ug, wp) € S3

It is enough to consider only the case (ug,wp) € S;. In the same way as in the
case of (ug,wp) € Ss, the orbit (u(t), w(t)) reaches I', in a finite time ¢;. Also, we
obtain B(u(t;), w(t1)) < Ry, and yv + 6f.(v) < 0 for v < uy. Therefore, by Lemma 4.3
(d), we see that (u(t), w(z)) diverges to (=00, foo) 88 t = +o0. Similarly, in the case
(ug,wg) € Sy, we see that (u(t), w(t)) diverges to (oo, f®) as t — +o0.

Remark 5.1 We have many cases about the stability around stationary points in Ss.
If, for instance, we restrict our geometry of the curves I'y, T™* and [ to the one as
illustrated by the picture (Fig. 1), then stationary points are classified into the following
three categories: Let (U, Woo) be any stationary point in Sa. Then one of the following
cases happens.

bmstable Fig. 1

(1) (oo, Woo) 18 stable. Namely, there is a neighborhood Uy of (U, Weo) in R2 such
that the orbit (a(t), w(t)) stays in U1NS for allt > 0 and converges to (Ueo, Weo)
as t — +oo, whenever (g, Wo) (= (%(0),w(0))) e hNS.

(2) (Uoo, Weo) 18 semistable. Namely, there is a neighborhood Uy of (U, Weo) in R?
such that the following properties (i) and (ii) are satisfied:

(i) For any initial point (ig,wo) € Us NS N K, the orbit (4(t),w(t)) stays in
Us NS for allt > 0 and converges to (Ueo, Woo) GS t — 400,
whenever (g, Wo) (= (4(0),w(0))) e U2NS.

(11) For any initial point (Gg,Wo) € U NS NKE,, the orbit (a(t),@(t)) gets out
of Uy after a certain time t;.
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where Ko = {(u, w)|B(u, w) > B(Ue, Weo) }-

(3) (Yoo, Weo) i unstable. Namely, there is a neighborhood Us of (Ueo, Woo) in R? such
that the following properties (ii1) and (iv) are satisfies:

(i) For any initial point (dg,Wp) € Us NS NCox, the orbit (4, W) stays in UsNS
for allt > 0 and converges to (ue, Weo) in a finite time t;.

(iv) For any initial point (%, W) € Us NS NCS,, the orbit (i(t),w(t)) gets out of
Us after a certain time t,.

where Coo 1= {(u, w)|B(u, w) = B(Ug, Weo)}.

6 Some numerical simulations

In this section, we give some numerical experiments to verify Theorem 2.2. In order to
catch the behaviour of solutions, we simply take the coefficients a, b, ¢, d and functions
F, h satisfying (Al) with do — by = ¢8 — ad > 0 such that the orbits of solutions are
anticlockwise circles without subdifferential term 0I,(w). Now we fix the coefficients
a,b, c,d and functions F, h as follows:

a=1,b=-1,c¢c=1,d=1, Flu,w) =u+w, h(y,w) =u—-w.
In this case, our system is of the following form:

w—v +0L(w)du+w, 0<t<T,
w+v=u-w 0<t<T,
u(0) = ug, w(0) = wy.

Now let A and At be small positive numbers, and n be a large natural number. Then
the difference scheme for our numerical simulation is of the form

k+1 k k+1 k
Wkt —w uTt — g
_ OIM (wh+1) = ok w*,
A7 3 + 0L (W) +
k+1 k k+1 k
wst — el A P k=019
At + At u w ) ] b b b
u® = ug, w° = wy,
where N [wk+l _ f*(uk)]+ [f.(u") - wk+1]+
aIuk(w + ) = -_— .

A A
The graphs of I,i‘ and OI) are illustrated in Figures 2 and 3, respectively.
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In our actual computation

and we examine the following items:

e We define the subset S;(i = 0,1,2,3) by the geometries of the given functions
fo(u) and f*(u) and the line yu + dw = 0.

e By numerical simulations, we verify that the behaviour of solutions satisfies the
statements of Theorem 2.2 when the initial data belong to each subset S;(i =
0,1,2,3).

Experiment 1:
We take the functions f,(u), f*(u) as follows:

-1 : ifu<04, -1 ifu< -1.8,

Su? — 4u —~ 0.2 if0.4 <u<0.6, 5u? 4+ 16u+118 if ~1.6<u< ~14,
fo(u)=¢ 2u—-2 if06<u<1d, f(u)=( 2u+2 if —14<u<-08,

—5u? +16u~11.8 if1d<u<1.6, —5u? —4u+02 if —06<u<-04,

1 if 1.6 < u, 1 if ~04<u.

f.(u) and f*(u) are symmetric with respect to origin. In this case, by our choice of
fe(u), f*(u) and the line u + w = 0, we obtain that

2V
i, T]_*:r;:Rl*:RI:ﬁ

TOI=Tou =Ty = 3

and
stationary points are (1,1), (0,0) and (-1, —1).
Therefore, subsets S;(i = 0,1,2,3) are defined by (3.1)-(3.9) and are illustrated by

Figure. 4. Now we take the initial data which belong to each subset S; and numerical
experiments are shown as follows:

data || up | wp subset data g wo subset
Fig. 5 || =0.2 | —0.6 | (uo, wo) € So Fig. 7| -1.3 ] —0.8 | (up, wo) € S5
Fig. 6 [ -0.7 | —0.8 | (uo,wp) € S Fig. 7] 1.3 | 0.8 | (up, wp) € S5
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unstable

s

unstable

Fig. 6 (uo, wo) € Sy

unstable

Fig. 5 (ug,wo) € Sp
w
S;

unstable

SR

unstable

Fig. 7 (uo,wo) € S3

When the initial data belong to Sy, the orbit draws anticlockwise circle from the initial
point (ug, wo) (Fig. 5). In the case when (ug,ws) € S, the orbit draws an anticlockwise
arc and a part of I', alternately and reaches a periodic circle B(u,w) = 7o in a finite
time (Fig. 6). On the other hand, in the case when (up,wy) € S; or SF, the orbit
diverges to (—o00,—1) or (+00,1) as t = +oo (Fig. 7).

Experiment 2:

We take the functions f.(u), f*(u) as follows

-1 ifu<—1,

3u? +6u+2 if ~1<u<-0.75,

—u? - 0.25 if —0.75<u<0,
fo(w) = -0.25 if 0 < u < 0.75,
Y 4u? -6u+42 if0.75<u<l,

2u -2 ifl<u<l4,

"—5u?+16u-118 ifl4<u<ls6,

1 if16 <u.

=1 u< -2,
u?+4u+3 if ~2<u<~-15,
©+0.75 if —15<u<0,
-u?’+u+4+075 if0<u<05,

1 if 0.5 < u.



In this case, we obtain that

2
ara': 3\/_ Tix = \/iaRl*':\/é:RI:\/ﬁ

To '=Tox = —-—2

and

stationary solutions are (1,1), (0,0), (—0.5,—0.5) and (-1, —1).
Since ro. < 1§ < 714 < Rie, Si(2 = 0,1, 2, 3) are defined by (3.1)-(3.9) and are illustrated
by Figure. 8. The initial data and the subsets S; in which the initial data are given in
this experiments are as follows

data | uo | wo subset data || up | wo subset
Fig. 9 || ~1.1| 04 | (uo,w0) €81 | |Fig 11| —1.4| —0.8 | (w0, wo) € S5
Fig. 10 || 1.4 | —0.4 | (uo,wo) €S, | |Fig. 11[| 1.4 | 0.8 | (ug,wo) € S5

S, S,

unstable unstable
=

semistable
unsteble unstable
l l
Fig. 8 (S, 1= 0,1,2,3) Fig. 9 (uo,wo) € 31 :
 J R w
+ . S;
mstl\lﬂl\\

semistiable

able

" unstable unstable

Fig. 10 (uo,wo) € S5 Fig. 11 (up,wp) € S3

We also see that the behaviour of orbits of solutions for each initial data (ug, wo) €
Si(i = 0,1, 2,3) guarantee Theorem 2.2 (Fig. 9-11). Especially by Fig. 10 and 11, we
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can recognize that the point (—0.5, —0.5) is a semi stable stationary solution.

Experiment 3:
We take the functions f.(u), f*(u) as follows

-1 ifu<g-1,

u? + 6u + 2 if —l<u<-0.75 .

2 o et ’ -1 ifu<-1.8,

__g 25 0.28 ;go <°‘:5<<01;55 o, 5u® +16u +11.8 if ~ 1.6 <u< ~1.4,
fl) =3 a0 —gu+2 ifors<ucy, W=y k2 if —14<u<-06

%u — 2 fleu<id ~5u? —4u+02 if —0.6 <u<-04,

—5u?+16u—118 ifl4<u< 16, 1 if —04<u.

1 if 1.6 < u.

In this case, we obtain that

1, 2V5 V2
To i = Toe = 2’ Ty = _75'\/:", Tixs = T’ Ry, = \/i,
and
stationary solutions are (1,1), (0,0), (-0.5,-0.5) and (-1, -1).

This implies that o, < r. < 7§ < R;.. Therefore, S;(i = 0,1,2,3) are defined by
(3.10)-(3.17) (Fig. 12). Given initial data, our experiments are the following (Fig.
13-15):

data ug | wp subset data U wo subset
Fig. 131 0.25 | 0.25 | (up,wo) € Sy Fig. 15 || ~1.3 | —0.8 | (uo,wp) € S5
Fig. 14 || 0.8 | 0.8 | (uo,wo) € S; Fig. 15| 1.3 | 0.8 | (uo,wp) € S5

S; : S;

unstable

unstable

semistable

SN
- unstable u;;}uble

Fig. 12 (S5;i=10,1,2,3) Fig. 13 (ug,wp) € &



unstable

S S;
§ somist %;&0 semistable
- unstasble “ff"u4;1able
' Fig. 14 (uo,wo) € S; Fig. 15 (uo, wo) € Ss

Note that the function f,(u) is the same as in experiment 2 but f*(u) is not. We
see that the orbit starting from (0.8,0.8) draws an anticlockwise arc and a part of I'*
alternately and reaches I, in a finite time, and then it goes to the semi stable stationary
point (—0.5,—0.5) as t — +o0.

Experiment 4:
We take the functions f,(u), f*(u) as follows

-1 ' if u < —1.25,
3u? 4+ Tu +3.6875 if —1.25<u< ~1,

: -1 ifu<-16

—u? - - z < -16,

Zo2s . :: Zo ;5u<su <062'5r’5 ul +16u+118 if ~1.6<u< —14,
Fo) =1 442 _gu+2 05 <ugi, S (w=q ut2 if -14<usg-06,

24— 2 fleu<id ~5u? —4u+02 if ~06<u<—04,

> 1% if -
—5u? +16u—11.8 ifl4<u< L8, ! if ~04<u.
1 ifl6 <u.

[*(u) is the same function as in experiment 3 and f,(u) slightly changes from the one
in experiment 3. In this case, we obtain that

1.
16’

To ‘= Tos« =

and

~ stationary solutions are (1,1), (0,0) and (0.5, —0.5).
Since ro. < 71, = Ry. < 1§, subset S;(i = 0,1,2,3) are defined by (3.18)-(3.24) (see Fig.
16). We take the initial data as follows:

data uy | wo subset
Fig. 17 /1 0.22 | 0.22 | (up,wp) € &1
Fig. 18 || 0.8 [ 0.8 | (uo,wp) € Sg

data uo | wo subset
Fig. 19 1.310.8 (’U.o,'ll)o)ES;'

.Then our experiments results are shown by Fig. 17-19.
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unst{\ -

Fig. 16 (ug,wp) € S5
v

unstable

Fig. 18 (ug,wo) € S5
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unstable \

unstable

Fig. 17 (uo, wo) € ST

$:

unstable

unstabie

Fig. 19 (up,wp) € S§

These numerical experiments show that the subsets S;(i = 0,1,2,3) are completely
different from those in experiment 3. When the initial datum is (0.8,0.8), the orbit
draws an anticlockwise arc and a part of I'* alternately and reaches I, in a finite time,
and moving along the curve w = f,(u) downward and diverges to (—oo, —1) as t — +oc.
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