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Blow-up for nonlinear wave equations
with multiple speeds

REREFE -8B AR KK (Hideo Kubo)
BERF -# KH F¥A (Masahito Ohta)

1. INTRODUCTION

In this note we consider the following nonlinear system of wave equations with mul-

tiple speeds of propagation in three space dimensions:

(8 — AA)uy = |Juy [P |uplP?, (t,z) € [0,00) x R?, (L.1)
(82 — B3A)up = |ua e,  (t,z) €[0,00) x R? '
with the initila data
u;(0,z) = p;j(z), Owu;(0,2) =v;(z), z€ R? (j=1,2). (1.2)

Here p1, p» > 1,9 > 1, ¢; > 0 and p; € C3}(R®), ¥; € C3(R®) (j=1,2).

The main question here is formulated as follows.

Problem: Find sharp condition about the small data global existence and blow-
up for (1.1). Here small data global existence means that the initial value problem
(1.1)—(1.2) admits a unique global (mild) solution for all “small” initial data. On the
contrary, we say blow-up occurs if small data global existence dose NOT hold.
In other words, it means that one can find a pair of intial data (¢;, ;) such that the

lifespan of the corresponding solution is finite.

We are going to answer the above problem based on the work [17]. Before going
further, we recall several related results to our problem. The following system was
studied by Del Santo, Georgiev and Mitidieri [5]:

{ (0 — AA)ur = |uwpl,  (t,2) € [0,00) x R?, (1.3)

(@ - 3D = [wft,  (t,z) € [0,00) x R”

where p, ¢ > 1 and n > 2. They found the critical curve I'(p,q) = 0 in p-q plane
when ¢; = ¢;. Here critical curve means that if I'(p, ¢) > 0, then small data global
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existence holds, and otherewise blow-up occurs. The function I'(p, q) is defined as

follows:

(1.4)

q+2+p! p+2+q*1}_n—1

I'(p, g) = max ,
®9) { pqg—1 pg—1 2

The blow-up part was also established by Deng [6] independently. The critical case
where I'(p, g¢) = 0 was treated independently by [2] for n = 3 and by [15] for n =2, 3.
In these works the blow-up result was obtained.

Next the authors studied the case of ¢; # ¢; in [16]. This work is motivated by the
results established by Kovalyov [14], Agemi and Yokoyama [3], Hoshiga and Kubo [11]
and Yokoyama [27]. In those papers, small data global existence for systems of
nonlinear wave equations with different propagation speeds has been well developed
when the nonlinear terms depend only on the derivatives of unknown functions but not
on unknown functions themselves (see also [24] and [1] for related results on nonlinear
elastic wave equations, and [21] on Klein-Gordon-Zakharov equations). It was shown
in [16] that even if ¢; # ¢y, the ctitical curve is the same as in the case of ¢; = c;
for n = 3. Recently the authors extend the result to the two dimensional case in [18].
Therefore we see that the unequal propagation speeds dose not have major effect on
the system (1.3).

On the cantrary, the following system has different structure according to the propag-

tion speeds:

{ (02 — A3A)ur = Mug P |ual??,  (t,2) € [0,00) x R?, (1.5)

(82 — 2 A)uy = Aglus||ug|®”,  (¢,z) € [0,00) x R®

where p1, Dg, q1, @2 > 1, A1, A2 € R and n > 2. Without losing such structure, we may

assume that there is a > 2 such that

n+DP=q+¢=c (1.6)

This condition means that the degree of the nonlinearlity of the first equation is the
same as that of the second one.

When ¢; = ¢y, it follows from the result about the Single wave equation

(82— A =uP, (t,32)€[0,00) xR, p>1, (17)



that small data global existence holds if a > po(n) and that blow-up occurs if

2 < a < po(n). Here py(n) is the positive root of the following quadratic equation:

n—1 n-+1
— =1 1.8

(For the detail about (1.7), see Section 2 below.)

Next we turn our attention to the case of ¢; # co. When n = 3, [19] firstly proved
small data global existence for all & > 2. Then [16] showed that the same is
true for « = 2. Let us compare these results with those for the case of ¢; = c,.
Since po(3) = 1 + v/2, we find that there is a significant differenece among them when
2 < a < 1+ v/2. Actually, for such a we have a global solution if ¢; # ¢y, while blow-
up occurs if ¢; = c;. This obserbation exploits the effect of the discrepancy between
the propagation speeds, which comes from the way of interaction in the nonlinearlties
(recall that we don’t have such effect for the system (1.3)). In fact, since the right
hand side of the equations in (1.5) are involved by a product of u; and u,, one can
compensate the deficiency of the pointwise decaying order for the powers of u; and Uy
each other, based on the the discrepancy between the propagation speeds. Recently the
following extention to the two spatial dimensional case was done by [18]: Let ¢; # c2
and n = 2. If @ > 3, then small data global existence holds. On the contrary, if
2 < a < 3, then blow-up occurs. Therefore, when 3 < a < po(2) = (3 + V17)/2, we
have the effect of the unequal propagtion speeds as in the three spatial dimensional
case.

Now the following question naturally arises: What will happen for the intermediate
case between (1.3) and (1.5), like (1.1)? The point is that the right hand side of the
first equation in (1.1) is involved by a product of u; and u,, while that of the second

one does not. For simplicity, we focus on the case where
pr=p2 =1 ' (1.9)

The exposition for the general case where p; > 1, p; > 2 is complicated, although the
real proof for large values of p; and p, is easier because of the “smallness” of solutions
under our consideration. For this reason, we prefer to take p; = p, = 1. Our main

result of this note is roughly stated as follows.
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Theorem 1. (Theorems 1.4 and 1.5 in [17]) Suppose that ¢, # ¢z and ¢; € C3(R3),
¥; € CY(R3) (j = 1,2). Then for the initial value problem (1.1)-(1.2) with (1.9) we
have:
(i) If 1 < g < 3, then blow-up occurs.
(ii) If ¢ > 3, then small data global existence holds.
(iii) Let ¢ = 3. If ¢; > ¢y, then blow-up occurs. While, when ¢; < cp, small data
global existence holds.

Remark 1. 1) The statements of the theorem remains true, even if we replace the
nonlinear terms |uy||ug|, [u1|? in (1.1) by wrue, |ua|? w1, respectively.

2) The case of common propdgatz’on speeds, i.e., c1 = ¢y can be treated analogously
to the system (1.3). Notice that (p,q) = (2,7/2) is on the critical curve I'(p,q) = 0
whenn = 3. Therefore small data global existence holds if ¢ > 7/2, while blow-up
occurs if 1 < ¢ < 7/2.

This note is organized as follows. In the next section we discuss the single wave
equations in order to present a general idea to show blow-up result. Section 3 is
devoted to a key lemma (Lemma 6) which provides a significant generalization of
earlier estimates by John [12], Zhou [28] and the authors [16]. In Section 4, we prove
the blow-up part of Theorem 1.

2. SINGLE WAVE EQUATION

This section is concerned with the initial value problem to (1.7) with
u(0,z) = p(z), Ou(0,z) =9¢(z), z€R", (2.1)

where ¢ € C(R™) and ¥ € C°(R™). For the problem Strauss [25] introduced the
number po(n) which is the positive root of (1.8). The importance of this number is the
fact that it plays the role as the critical exponet for the problem (1.7)—(2.1). Though
the number seems to be strange at fisrt glance, one can understand it based on the
scaling invariance of the semilinear equation. The scaling invariance means that
if u(t, z) is a solution of (1.7), then Dj yu(t,z) also satisfies the same equation for all
A > 0, where we denoted by D, ,u(t, z) the dilation of u(t, z) defined by

Dyu(t,z) = A& Tu(Mt, Az) (A > 0). (2.2)



Then the quadratic equation (1.8) follows from the self-similarity of the function

o )

() = (t+7)""T |et — r| 7T for 7t €0,00).

Namely, if p = pg(n), then we have the dilation invariance D pomyw(|z|,t) = w(|z|,t)
for all A > 0.

Now we briefly mention known results. It was shown that blowup occurs for either
1 < p < po(n) or p = py(n) and n = 2,3 (see Sideris [23], Schaeffer [22]). Notice that
due to the “bad” sign of the nonlinearlity, the solution likely blows up for small values
of p.

On the other hand, the existence part was firstly solved by John [12] for n = 3. In
the sequel, there are so many contribution on this issue. (See e.g., [9, 10, 20, 28] and
the references cited therein). For general n > 2, Georgiev, Lindblad and Sogge [8]
showed that small data global existence holds by proving the weighted version of
Strichartz estimate, when po(n) < p < (n+3)/(n—1) and the initial data is compactly
supported. The proof of the weighted Strichartz estimate is simplified by Georgiev (7],
Tataru [26] independently by using the Fourier transform on the hyperbolid. Finally,
D’Ancona, Georgiev and Kubo [4] relaxed the assumption on the initial data.

In the rest of this section we sketch the proof of the blow-up result for the case of
n = 3. Suppose that u(t,z) is a classical solution of the problem (1.7)—(2.1). Then it
satisfies the following integral equation:

u = Ko, ] + L[lufP] in [0,00) x R?, (2.3)
where we put
Kclp, ¥](t, z) = J[](t, @) + 8 e[l (2, 2), (24)
LJF|(t,7) = /0 CLIF (s, (t — 5,2) ds. (2.5)
Here J,[](t, ) is defined by
Je[Y](t, z) = % " Y(z + ctw)dw, (t,z) € [0,00) x R, (2.6)

We take the initial data in such a way that

o(z) =0, () =-eg(z), (2.7)
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where € > 0 and g € C(R?) satisfies
g(z) >0 for allzeR3 g(0)>0. (2.8)

Then we have the following result.

Theorem 2. Let n = 3 and 1 < p < po(3). Suppose that € € (0,1] and g € C(R?)
satisfies (2.8). Then the solution of (2.3) with (2.7) blows up in a finite time T*(¢).
Moreover, there exists a positive constant C* independent of € such that
exp(C*e P®~D)  if p=py(3),

2.9
CrePE-D/0-m") if 1 < p < po(3). -

ro<]

In order to prove Theorem 2, we prepare a couple of estimates, and Lemma 2 and
Proposition 1 below. By (2.3), (2.7) and (2.8), we have

ult,z) > edgl(t,z),  (t,2) € [0,00) x R®, (2.10)
u(t, z) > L[|uP)(t,z), ()€ [0,00) x R®, (2.11)

Moreover, by (2.8), there exist 8 > 0 and ¢ € C([0, 0o)) such that
(@) > és(jz)) > 0 for z € R®, @5(p) > 0 for p€ [0,4]. (2.12)

Note that we may assume that ¢ is suﬂiciently small.

In the sequel we shall make use of the following identity.

Lemma 2. Let n > 2 and let g € C([0,00)). Then we have
23_-"‘*)1:.—1 pEr n-3
alla+pol)dS, = 22t [T a0 ar (219)
lw|=1 (T'p) |o—ri
for p >0 and z € R™ with r = |z| > 0, where w,_; = 272 /T'(n/2) is the area of the
unit sphere in R", and h(, p,r) is defined by

B p,7) = {32 = (0 = )2H(p + )2 = A2}, (2.14)

Proof. We put
A=|z+pw|, z-w=rcosf (0<0<).

Then we have
[R(A, p, 7)]1/2

N=r?42 0+p%, sinf=
r°+2rpcost + p°, s 2rp

’




and
/ g(z + pw|)dS, = / 9(\)wn_1[sin ]2 d
jw|=1 0
ptr ] s A p
— wy A oWl o g
Thus we obtain (2.13). O

Proposition 1. Let G € C(R?), g € C([0,00)). If G(z) > g(|z|) > 0 for all z € R3,

then we have
r<4-ct

1
Je[Gl(t, z) > py Ag(A) dA (2.15)

[r—et|
for all (t,z) € [0,00) x R3, where r = |z|.
Moreover, let F € C([0,T) x R®), f € C([0,00) x [0,T)) with T > 0 and suppose
that F(t,z) > f(|z|,t) > 0 for all (t,z) € [0,T) x R®. Then we have

LiFlt.z) > —— / / AfO\ 5) dds, (2.16)
2cr Dc(rt) .
for all (t,z) € [0,T) x R®, where we put
D (r,t) = {(A\,8) €[0,00)?: 0<s<t, (2.17)
Ir—c(t—3s)| < A<r+c(t—s)}.
Proof. First we prove (2.15). By G(z) > g(|z|) for z € R3, (2.6) implies J.[G](t,z) >
Jelg(|- D)2, z) for (¢, z) € [0,00) x R3. Therefore it is easy to see from (2.6) and Lemma

2 that (2.15) holds for n = 3. Moreover, (2.16) follows from (2.5) and (2.15). This
completes the proof. O

Now we shall give the proof of Theorem 2. In what follows, we put

Step 1. We see from (2.12) and Proposition 1 that

r+ct

Tlglt2) > 5 / Ags(A) dA.

fr—ect|

Therefore, if |ct — r| < 4/2 and ct + r > §, then by (2.10) we have

u(t,z) > Coer™! (2.19)
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s
where we put Cp = (20)‘1/ Ags(A) dA(> 0).
8/2
Step 2. We shall show that there is a positive constant C; = Ci(g, d, ¢, p) such that

C1Ep

SE=T (2.20)

ult,z) 2 (ct +

holds for c¢(t — 8) > r = |z|. Note that if ¢(t — §) > r, then we have cs + A > ¢6 for
(), 8) € D,(r,t). By (2.11), (2.19) and Proposition 1, for ¢(t — §) > r we have

ta:)>—// )\l’pd)\ds>———// (cs +X)P"1d)ds,

where we put E = {(},s) € [0,00)% : |es—A| <6/2, ¢t —7r < es+ X< ct+7}
Changing the variables by

- A
£=cs+ A n:“c , (2.21)
we héve
6/(2(:) ct+r p pcttr
tm)>—-———/ *+1——CE/ ——d—f——l
6/(2c) ct—r £P ct—r {p +

By (2.18) we have p* + 1 > 0 for p > 1. Thus, using (2.22) below, we arrive at (2.20).

Lemma 3. Let p, a, b > 0. When a < b, there ezista a positive constant C = C(u)
such that

b+a dp Ca

b—a P* (b + a)( - a)#"l .
Proof. We distinguish two cases a < b < 3a and b > 3a. When b < 3a, we have
2(b — a) < b+ a. Therefore,

2(b—a)
I> / 9 > gon(o — a) 1.
b T

—Q

I :=

(2.22)

Since a + b > 2a, we get (2.22) for this case.
While, if b > 3a, we have 2(b — a) > b+ a. Therefore it is easy to see from

I>2a(b+a)™*

that (2.22) holds. This completes the proof. O
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Step 3. In view of (2.20), for ¢, ¥y > 0 and x € R, we introduce the following quantity:

(Wew(y) = inf{(ct + |2])(ct — |2])"lu(t, 2)] : (t,2) € Ble,y)},  (2:23)
S(e,y) = {(t,2) € [0,00) x R™ : (|z], ) € (e, )},
Y(e,y) = {(r,t) € [0,00)* : r < c(t — y)}. (2.24)

Since we may assume 0 < § < 1, (2.20) yields
(Wepe(y) > Cre? fory > 1. (2.25)
Next we shall show that there exists a constant Cs > 0 such that
Yepr(¥) > Co / ( ) [{w) D ept VI (17)] dn fory>1. (2.26)
Let y > 1. By (2.11) and (2.16), for (t,z) € E(C, y), we have
u(t,z) 2 Le[lul](t, z)

1 / /‘ A [ (cs _ )\)}P
Z - < u c,p* dA dS.
2cr D¢(rt)NS(c,1) (cs + )\)P(cs _ )‘)pp ( ) P -

Changing the variables by (2.21), we have

a(ts) > C /““"V“ ( /"‘*’ (€ = en)[(W)epr (M)I” dg) dn

s 3
5 /ct+'r d¢ {ct—r)/c (ct —_r — C:p)z,[“('llf)c,p* (ﬂ)]p d’?

By (2.22), we get

o @=n)e (et —r — cn)[(w)e,pe ()]
'u,(t, 21?) 2 (Ct + T‘)(Ct _ ,,.)p—-l [ npp‘ dT’

RCE r)(Cct — Ty /1 o (1 - ctcg 7") [<u>;§;fn)]p o

Since the function
v [ (1- 1) Wt
is non-decreasing, we have for all (t,z) € (c,y)

(ct +r){ct — r)”*uv(t,a:) >C /1 ’ (1 — -Z) [(u—>:7':’}¢(ﬂ dn,

which implies (2.26).
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Step 4. Now we are in a position to employ Lemma 4 below. Then we see that (u)cp+(y)
blows up in a finite time y = T, (¢), provided pp* < 1. The last condition is equivalent
to 1 < p < po(3) according to (1.8) with n = 3. Therefore the solution of (2.3) with
(2.7) blows up in a finite time T*(¢) < T, (g), if 1 < p < po(3) and (2.8) hold. Moreover
we have the upper bound (2.9) of the life span T*(¢).

Lemma 4. Let C1, C2 >0, a, 20,0>0, k<1, €(0,1], and p > 1. Suppose
that f(y) satisfies

Y b D
fwzoe, fwzoe [ (1-1) 1w 421

Then, f(y) blows up in a finite time T.(¢). Moreover, there ezists a constant C* =
C*(C4, Ca,b,p, k) > 0 such that

exp(C*e~{P—La+Bh) i o =1,
Cre-{G-1a48/0-8) if o < 1.

T.(e) < {

Proof. First, we consider the case k = 1. We put
F(2) = (Cie®) 7 f(exp(e™2)), p=(p—Da+p.
Since the function z — (1 — e~*)? is increasing on [0, 00) and 0 < € < 1, we have
F(2)>1, F(2)>Cr'C, /0 ’ (1-e9) FePde, z>0. (2.27)

Since it is easy to show that F'(z) blows up in a finite time, we obtain the desired
estimate for the case K = 1.
Next, we consider the case k < 1. We put
Gl = (Y (e er), v= L1t
Then we see that G(z) satisfies (2.27). Thus we obtain the desired estimate for the
case k < 1. This completes the proof. O

3. KEy LEMMA

Fisrt we prepare the following lemma. We remark that the constant depends only

on k* not on each k.
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Lemma 5. Let k* > 0 and k € (—oo, k*]. Then there exists a constant C = C(k*) > 0

such that
t+r
1 / dp > ¢ , t>r>0.
T Jier P T (4 T)(E—T)

Proof. For k € (—o0, k*], we put

Lirt = &F ")q(f =) / T dp

.
— P

t

Then by (2.22), there exists C(x*) > 0 such that I.(r,t) > C(x*) for any t > r > 0.

On one hand, for ¢ > r > 0, we have

t+r E+r)/(t—r) d\ t+7r (t+r)/(t—r) d\
Lint) == /1 e 2 7‘/1 oo = D (o).
This completes the proof. O

The following lemma contains an essence to handle the problem for the unequal

propagation speeds.

Lemma 6. Let o, ag, a;, a3, * >0, u € R, kK € [—&*,&*] and a; < ay. Then, there
7

exists a positive constant C = C(ay, ay, az, 1, k*) such that

(Leal B rn-s(6) 2 C [ (1 _ Z)Zf(n) i y>a

holds for any non-negative function f, where we put

. 1 at — |z]
R = ! (M) et

Here we denoted the characteristic function of a set A by xa.

Proof. Let y > a. By (2.16), for any (¢,z) € ¥(ap,y) with r = |z| we have
Lao[R(N))(E, 2) 2 I(r, 1)
~ 20}07‘ f -/ Dag(rt) (8+ A)“(Zzs - )\)"f (alsal— /\) Xiewoe) (alsal_ /\) drds.

We distinguish two cases, ap < a; and ag > a;, to show

C (agt—r)/ao0 aon 2
I8 2 G = /a (1— aot__r) flmydn. (3.1




First, we consider the case ap < a;. Changing the variables by & = aps + A, n =

(a18 — A)/a1, by Lemma 5 we have

C [leot=nao paottT (£ _ qom) f(n)
Itrt)2 ?./«; /aot—.r E#(a2€/ao)" dat dn
Z —

(agt—r)/a0
apt — T —a d
T e [ ot == aomityan

C (aot—7)/ap a
[ (- 2wy an

>
= (t +r)(agt — r)ptr—2 agt — T

C agt+r d{

which implies (3.1). Next, we consider the case ag > a;. We divide further into two
cases, (t,z) € X(a;,a) and (¢,z) € X(ag, @)\ X(a1, @). In the case (t,z) € X(ay, a), we
have I(r,t) > C(I1(r,t) + I;(r,t)), where

(ait—7r)/a1  paot+r _
ney=1 [ [ €= amf) e gy,

r ot—r €p+n‘.
1 [laot=r)/ao  pE*(n) (f — agn) f(ﬂ)
I2 (T, t) B ; -/(alt—-r)/al /:.ot—r ————éﬂ-—n_ d£ dn

While, in the case (t,z) € X(ag,a) \ £(a;, @), we have I(r,t) > CI3(r,t), where
1 [laot—r)/ao pE*(n) (€ — aon)F(n)
I = s ~ Gom)J\ _

In the definitions of I;(r,t) and I3(r,t), we put

. ag + a 2a¢a,
= t—71) —
€)= 22 oot — 1) - 22
As in the case a9 < a;, we have
C (a1t—r)/ay ao”
> - . .
W2 e | (- L) fodn. (32
On the other hand, we have
C [(eot—")/a0 £ (1) )
K022 [T ot —r—amf) [ edn, i=2.3
&Y agl—r
where we put 73 = (a;t — r)/a; and 75 = a. Since
* ag + oy " 2apa;
t—r< < t—r), ~ (agt — 1) = t—r—mn),
agt —1 < € (n) < pr— (at — 1), £(n) — (aot —7) pr—— (a0t — 7 — 1)

we have .
/£ ) gg Caot«r—aon
[

ot—r §"+~ - (aot - T)’H—N '



Thus, for j = 2, 3, we obtain

C (apt—r)/ao aon 2
i > - . .
IJ (7'; t) = (t + r)(aot —_ 7.);1,+n—2 ~/'7; (1 aot — T) f(ﬂ) d"] (3 3)

J

From (3.2) and (3.3), we see that (3.1) is also valid for the case ap > a;. Since the

function
Y n 2
y'—>/ (1—5) f(n)dn

is non-decreasing on [a, 00), it follows from (3.1) that for any (¢,z) € £(ao,y)

(t + |z[)(aot — |2])#+*~2 Loo [R(S)] (2, z)
(aot—|z|)/a0 2 y 2
>C / (1 - aot“"_"lxl) fmydn>C /a (1 - -Z) f(m) dn.

From the definition of (-)4,,,+x—2(¥), we obtain the desired estimate. a

4. MAIN RESULT

First of all, we precisely state the blow-up part of Theorem 1. Let us consider the

system
{ (@2 — Ay = |wiflug],  (t,z) €[0,00) x RS, (1)
(02 — AA)uy = |uy |9, (t,z) € [0,00) x R3
with the initila data
4;(0,z) =0, Ou;(0,z) =eg;(z), zeR? (j=1,2). (4.2)
Here ¢ > 1,¢; > 0,e > 0, and g; € C(R®) (j = 1,2) satisfies
gi(z) > 0 for all z € R®, ¢;(0) > 0. (4.3)

Then we have the following.

Theorem 3. Let c; # c; and 1 < ¢ < 3. Suppose g; € C(R®) (j = 1,2) satisfies
(4.3). Then for sufficiently small € the solution (u;,us) of (1.3)—(4.2) blows up in a
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finite time T'(g), if either g = 3 and ¢; > ¢3 or 1 < q¢ < 3. Moreover, there is a constant

A > 0, independent of €, such that
exp(Ae~3) if =3 andc; > c,
T(e) < { Ae~1@+9/B-9* f 1<q<3andec;>cp - (4.4)
Ae2/3~9)? if 1<g<3andc<cy

Remark 7. As for the case where ¢ = 3 and ¢; > ¢y, Katayama and Matsumura [13]

recently proved that there is a constant B > 0, z'ndeperident of €, such that
T(e) > exp(Be™3). (4.5)
Proof. We treat the problem (4.1)—(4.2) in the integral form:

U = EKCL[Oagl] + Lcl [|U1HU2H in [07 OO) X R31 (46)
Ug = EKC2[O,-g2] + ch[lullq] in [0, 00) X Ra. (47)

Basically we follow the argument in the previous section. In particular, the proof for
the case where 1 < ¢ < 3 can be done analogously and less hard. For this reason, we
concentrate on the case where ¢ = 3 and ¢; > c;. It is the most delicate one in the
sense that the result depends not only on the exponent ¢ but also on the propagation
speeds ¢; and c,.

By (4.6), (4.7) and (4.3), we have

u (t,z) 2 €Ky [0, 3], z), (t,z) € [0,00) x R?, (4.8)
u1(t,2) > Lo, [lua||ual)(t,2), (¢,7) € [0,00) x R?, (4.9)
ug(t, ) > L, [|ui|9(t, ), (t,z) € [0,00) x R3. (4.10)

We see from (4.3) that there is a constant C > 0 such that
uy(t,z) > Cer™! for (t,z) € E, (4.11)
as in the proof of (2.19). Here we put
E:={(t,z) € [0,00) x R?: |c1t — |z|| < §/2, ert + |z| > 6}.
Based on this estimate, we shall show

(U1)er2(y) = Cie?,  (Un)ep1(y) = Coe® for y>1. (4.12)
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provided 0 < 6 < min{ey, 2¢1(c1 — ¢2)/(5¢1 + ¢2)}.
Since 6 < ¢, by (4.10), (2. 16) and (4.11), we have

uy(t,z) > / 6/2 /c T de (4.13)

5/2 t—r £2
(t,z) € X(cy, 1).

2 (t+ r)(czt —7r)’

Thus the second inequality in (4.12) holds true.
To prove the first one, we prepare the following estimate.
Ced(eit —r)

Geny e BDEN (4.14)

u2(t1$) >
where we set

Q={(t,z) € [0,00) xR®: ¢;t —|z| >0, |z| — st > 6}.

- By (4.10), (2.16) and (4.11), we have

6‘11 Az(nt) d
ug(t, z) > - (tz)€EQ,
5/2 Art) A

where we put

C
A (r,t) = (r — cyt), &mﬂ=qiqv+@a

Since Ay(r,t) — A1 (7, t) = 2cica(ert — 1)/ (c? — c2), we get (4.14).
By (4.11) and (4.14), we have

€ —C2

C84(C]t - 7')
rleat+r)®’
Since § < 2¢;(c; — ¢2)/(5¢1 + ¢2), by (4.9) and (2.16), we have

6/2 c1t+r
w@@zzcgf / %

|ua(t, z)||ua(t, )| > (t,z) e ENK.

1t—r £3

(t,z) € (e, 1),

(t+ r)(clt —7)?’
which implies the first inequality in (4.12).
Unfortunately, the first estimate in (4.12) is not enough to show the blow-up result
because of the fast decay with respect to (¢;t — 7). Thus our next step is to improve
it. To this end, for 0 < kK < 2 we set

Ul,ﬂ(y) = <u1>c1,n(y)’ UZ(y) = (u2>62,l(y)'



Then (4.12) implies
Ui2(y) 2 Cie*, U(y) > Coe?, y2>1. (4.15)

To proceed further, we shall prove that for all k € [0, 2] there exist positive constants
= C3(cy,¢2) and Cy = Cy(cy, c2) such that

Urx(y) 2 C3 /ly (1 - g>2 gﬂ‘—(%—:gz—(n—) dn, y>1, (4.16)
Y 2
Us(y) 2 Ci /1 (1 - g) U‘;:S(Z’)?' dn,  y>1 (4.17)

This can be done by the applications of propositions below.

Proposition 2. Let a, ag, k* > 0, u1, us € R, k1, k2 € [-k*,k*] and 0 < a; < as.
Then, there ezists a constant C = C(ay, a1, s, 1 + o, K*) > 0 such that

|fg”>ao M1tpat+rz—2 (y)

> Cf (1 - —) (mG(n) % Y € [a,00),
where forn > o we put
F(n) = inf{(t + |z)** (a1t — |z} | (t,z)| : (t,7) € T(ar,m)}
G(n) = inf{(t + |z)**(azt — |2)|g(t, 2)| : (¢, 2) € T(az,m)}
Proof. From the definition of F(n), we have

F((a1t — |z])/a1)
(t+ |z)# (art — [a])=”

|f(t,z)| = (t,z) € (a1, ). (4.18)

Since a; < ay, if (¢,z) € X(a, ), then we have (t,z) € X(as, (a1t — |z|)/a1). Thus,
from the definition of G(7), we have

G((a1t — |z])/a1)
(t + |z|)*2(agt — |z|)"=’

l9(t, )| 2 (t,z) € (a1, ). (4.19)
y (4.18), (4.19) and Lemma 6, we obtain the desired inequality. O

As a corollay of Proposition 2, we have the following proposition.
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Proposition 3. Let o, a, b, k* > 0, u € R and k € [—k*,k*]. Then, there ezists a
constant C = C(a,b, p, k*) > 0 such that

(Lall D) > C /( ) PO 4y € [, 00),

where for n > a we put

F(n) = nf{(t + |z[)*(ast — [z])*|f (&, 2)| : (t,2) € Z(a1, M)}

We come back to the proof of (4.16) and (4.17). By (4.9) and Proposition 2, we have
fory>1

ul c1, N( ) Z <Lc1[|u1”u2”>c1 n(y)

> C / ( _) “l)cl,m(zgf?)czl(n) .

which shows (4.16).
Moreover, by (4.10) and Proposition 3, we have for y > 1

(u2)er1(y) = (L cz“ull ]>c2 1(y)

o[- e
which shows (4.17).

Now (4.15) and (4.16) yield

Y 2
Uy x(y) > 16b / (1 _ g) —Ui’—;—(n—)dn, y>1, (4.20)

1
where b = C,C3¢%/16. Especially (4.15) and (4.20) with £ = 2 give

U2(y) > a, Upaly) > 16b/ ( ) Ul:’(n) mn, y=>1 (4.21)

with a = Cie*. One can show that Uy (y) grows in y, by using the following lemma.

Lemma 8. Leta>0,0<b<1 and p > 1. Assume that f(y) satisfies

fy)>a, fly)=> 16b/ ( ) ( Z))p y>1

If p> 1, then f(y) blows up in a finite time. While, if p =1, then we have

a




94

Proof. When p > 1, the conclusion follows from Lemma 4 with a =3 =0, b = 2 and
x = 1. Therefore it suffices to consider the case of p = 1.

Put g(y) = (a/4)y®. Then we have g(y) < f(y) for any y € [1,4'/®). Moreover, since
0<b<1land

v n 2 b—1 1 /y/2 b—1 1 AN
-tz > - —_ ) —
[ (=0 =g [T = {(3) -1},

y 2
g(y) < 16b / (1*3) g(:—)dn, y > 4",
1

By the comparison argument, we see that f(y) > g(y) holds for any y > 1. This

we have

completes the proof. a
Applying the lemma with p = 1 to (4.21), we get
a
Ura(y) 2 7', 9> 1. (4.22)

For fixed y > 1, let (¢,z) € X(c1,y), so that (cit — |z|)/c1 > 1. Then (4.22) yields

2o fat—lz\" a
e 2l +laDlent — 1> 3 (LB e v 2

for y > 1. Repeating this procedure n times, we obtain

a
Ur2-ms(y) 2 o Y > 1. (4-23)

Moreover, we have

@ b
Ur,2-m(y) = gy Y 2L (4.24)
In fact, for (¢,z) € X(c1,y), (4.23) with n replaced by 2n implies

|us (¢, 2)|(t + |z]) (ert — |a])>~ 2" >

— 4271612‘"17’ y 2 1'

Combining this with ¢t — |z| > ¢y, we get (4.24).
Let k be the smallest natural number satisfying 3(2— kb) < 1. Being b = C,C3¢3/16,

we see that Cse™3 < k < Cse2 with a positive constant Cs, independent of €. Recalling

a = Cie*, we get

a —
_—42kclkbykb > Cy“ exp(4loge — 2Cse > log 4) (4.25)



with C, = CyC3Cs/16. Since €®loge has a minimum for € > 0, we can take a positive
constant Cg, so that for 0 < e <1

Cexp(4loge — 2C5e 3 log4) > exp(—Cse™2).

Now taking y > a* := exp(Cee~3/C,), we see from (4.24) and (4.25) that U; 5_w(y) >
1. Therefore (4.17) with k = 2 — kb yileds

y n 2 9
Ua(y) 2 04/ (1—5) mdn,

y/2 21
> o (1-1) Jan

> —log

Thus Uy(y) > 1 for y > a := 2a* exp(4/Cy).
Finally, rescaling as U(z) = min{U; s_w(az), Uz2(az)} and using 3(2 — kb) < 1, we
find from (4.16) and (4.17) that

U(z)>1, U(x)> 07/: (1— 5)29%03«14

for z > 1, where C; = min{Cs,C,;}. Emplying Lemma 8 with p = 2, we see that
U(z) blows up in a finite time. Hence the classical solution of (4.1)—(4.2) blows up
in a finite time T'(¢). Moreover, T'(¢) is estimated from above by exp(C*c~3) with a
suitable poistive constant C*. This completes the proof. a
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