On spectra of q-deformed operators

九州大学 大学院芸術工学研究院 太田 昇一(Schôichi Ôta)
Faculty of Design, Department of Art and Information Design
Kyushu University

1.

The formal algebraic relation $xx^* = qx^*x$ $(q > 0, q \neq 1)$ appears in several different situations related to the theory of quantum groups. This leads us to the study of an operator obeying this relation in a Hilbert space. Let q be a positive real number with $q \neq 1$. Let T be a closed densely defined operator in \mathcal{H} . If T satisfies

$$TT^* = qT^*T,$$

then T is called a *deformed normal operator* with deformation parameter q. Let T be a closed densely defined operator in \mathcal{H} with polar decomposition T = U|T|. If T satisfies the relation

$$U|T| = \sqrt{q} |T|U,$$

then T is called a *deformed quasinormal operator* with deformation parameter q. For a deformed normal (resp. deformed quasinormal) operator T with deformation parameter q, we will simply say T is q-normal. (resp. q-quasinormal)

If T is q-normal then T is q-quasinormal. A closed densely defined operator T is q-normal if and only if

$$\mathcal{D}(T) = \mathcal{D}(T^*)$$
 and $||T^*\eta|| = \sqrt{q}||T\eta||$ $(\eta \in \mathcal{D}(T))$.

A densely defined operator T is called a q-hyponormal operator (or a deformed hyponormal operator with deformation parameter q) if it satisfies

$$\mathcal{D}(T) \subseteq \mathcal{D}(T^*)$$
 and $\|T^*\eta\| \le \sqrt{q} \|T\eta\|$

for all $\eta \in \mathcal{D}(T)$. If T is q-quasinormal, then T is q-deformed hyponormal.

Let T be a q-deformed hyponormal operator in \mathcal{H} . Then there exists uniquely a contraction K_T such that

$$T^* \supseteq \sqrt{q}K_T T$$
 and $\ker K_T \supseteq \ker T^*$.

 K_T is called the attached contraction to T. If, in addition, T is closed and T = U|T| is the polar decomposition, then T is q-quasinormal if and only if $K_T = (U^*)^2$.

2. Unbounded weighted shifts

Let S_b be a closed densely defined operator in a separable Hilbert space \mathcal{H} . If there are an orthonormal basis $\{e_n\}$ $(n \in \mathbb{Z})$ and a sequence $\{w_n\}(w_n \neq 0, n \in \mathbb{Z})$ of complex numbers such that

$$\mathcal{D}(S_b) = \left\{ \sum_{-\infty}^{\infty} \alpha_n e_n \in \mathcal{H} : \sum_{-\infty}^{\infty} |\alpha_n|^2 |w_n|^2 < \infty \right\}$$

and

$$S_b e_n = w_n e_{n+1}$$

for all $n \in \mathbb{Z}$, then S_b is called a bilateral (injective) weighted shift with weight sequence $\{w_n\}$ (with respect to $\{e_n\}$). A unilateral weighted shift S_u is defined analogously.

Proposition. The following statements hold:

1. A unilateral weighted shift S_u in \mathcal{H} with weights $\{w_n\}$ is q-quasinormal if and only if

$$|w_n| = \left(\frac{1}{\sqrt{q}}\right)^n |w_0|$$

for all $n \ge 0$. In particular, a unilateral weighted shift cannot be q-normal.

- 2. A bilateral weighted shift S_b in \mathcal{H} with weights $\{w_n\}$ is q-normal if and only if the above equation is valid for all $n \in \mathbb{Z}$
- 3. A weighted shift S_u (resp. S_b) is q-hyponormal if and only if

$$|w_{n+1}| \geqq \frac{1}{\sqrt{q}} |w_n|$$

for all $n \ge 0$ (resp. $n \in \mathbb{Z}$).

The spectrum of a q-normal weighted shift S_b :

ta v	σ_p	σ_c	σ_r	σ
$S_b (0 < q < 1)$	Ø	{0}	$\mathbb{C}\setminus\{0\}$	C
$S_b(q>1)$	$\mathbb{C}\setminus\{0\}$	{0}	Ø	C

The spectrum of a q-quasinormal weighted shift S_u :

	σ_p	σ_c	σ_r	σ
$S_u (0 < q < 1)$	Ø	Ø	C	C
$S_u\left(q>1\right)$	Ø	Ø	{0}	{0}

3. Spectra of a q-hyponormal operator

<u>Theorem</u>. Let T_1 and T_2 be q-hyponormal operators in a Hilbert space \mathcal{H} . Then $T_1 \oplus T_2$ is also q-hyponormal in $\mathcal{H} \oplus \mathcal{H}$ and

$$K_{T_1\oplus T_2}=K_{T_1}\oplus K_{T_2}.$$

Moreover, $T_1 \oplus T_2$ is q-normal (resp. q-quasinormal) if and only if both T_1 and T_2 are q-normal (resp. q-quasinormal).

In case that 0 < q < 1, a non-trivial q-hyponormal operator is always unbounded and the planar Lebesgue measure of its spectrum is positive.

Let q > 1. Then, there are various kinds of q-deformed operators, bounded or unbounded:

- A q-quasinormal unilateral weighted shift is always bounded.
- There exist q-quasinormal operators which are unbounded; they are q-normal ones.
- Using Theorem, one can construct an unbounded q-quasinormal operator which is not q-normal. (For this take T_1 to be any q-normal operator (which must be unbounded) and T_2 to be a bounded q-quasinormal unilateral weighted shift.)
- There exists a q-hyponormal operator which has empty spectrum, which is given in the following section; this is in contrast to the fact that every closed densely defined hyponormal operator (q = 1) has to have non-empty spectrum.

4. A q-deformed operator with empty spectrum

Let T be a closed densely defined operator in a Hilbert space \mathcal{H} . Recall that the resolvent set $\rho(T)$ of T is defined as the set of all $\lambda \in \mathbb{C}$ for which $\ker(\lambda - T) = \{0\}$, $\mathcal{R}(\lambda - T) = \mathcal{H}$ and the inverse $(\lambda - T)^{-1}$ is bounded on \mathcal{H} . Especially,

$$0 \in \rho(T)$$

if and only if there is a bounded operator S on $\mathcal H$ such that

$$ST \subseteq 1$$
 and $TS = 1$.

Lemma. Let T be a closed densely defined operator in \mathcal{H} . Suppose that

$$\rho(T) \ni 0$$
.

If $\sigma(T^{-1}) = \{0\}$, then

$$\sigma(T) = \phi$$
.

Let q > 1. Let \mathcal{H} be a separable Hilbert space with orthonormal basis $\{e_n\}_{n \in \mathbb{Z}}$. Take numbers r and ℓ such that

$$\ell > 1 > r \ge \frac{1}{\sqrt{q}}$$

Put

$$w_n = \left\{ \begin{array}{ccc} r^n & & \text{if} & n \ge 0 \ \ell^n & & \text{if} & n \le -1 \end{array} \right.$$

Let us consider the weighted shift S_0 with the weight sequence $\{w_n\}$. Then, clearly S_0 is bounded with $\mathcal{D}(S_0) = \mathcal{H}$. Since the sequence $\{w_n\}$ tends to zero as $|n| \to \infty$, S_0 is compact and so $\sigma(S_0)$ is countable. On the other hand,

$$\sigma(S_0) = c\,\sigma(S_0)$$

for all $c \in \mathbb{C}$ with |c| = 1. It follows that $\sigma(S_0) = \{0\}$.

Since $\ker(S_0) = \ker(S_0^*) = \{0\}$, S_0 is injective and has dense range. This means that the inverse S_0^{-1} is closed and densely defined. Hence, it follows from Lemma that S_0^{-1} has empty spectrum. On the other hand, we have

$$\frac{w_{n+1}}{w_n} = r \ge \frac{1}{\sqrt{q}} \quad \text{for} \quad n \ge 0 ,$$

and

$$\frac{w_{n+1}}{w_n} = \ell > 1 > \frac{1}{\sqrt{q}} \quad \text{for} \quad n \le -1.$$

These inequalities imply that S_0 is q-hyponormal. Therefore, S_0^{-1} is also q-hyponormal. Thus we have:

<u>Theorem.</u> Let q > 1. Then, there exists a q-hyponormal operator with empty spectrum.

5. Order relations for q-deformed operators

Let us recall some inequalities by Kato and Rellich ([1] and [5]):

$$S \ll T$$
 means $\mathcal{D}(T) \subseteq \mathcal{D}(S)$, and $||S\eta|| \leq ||T\eta||$ for $\eta \in \mathcal{D}(T)$

and

$$S \preceq T$$
 means $\mathcal{D}(T^{\frac{1}{2}}) \subseteq \mathcal{D}(S^{\frac{1}{2}})$ and $||S^{\frac{1}{2}}\eta|| \leq ||T^{\frac{1}{2}}\eta||$ for $\eta \in \mathcal{D}(T^{\frac{1}{2}})$ provided S and T are selfadjoint and nonegative.

<u>Definition.</u> Let S and T be symmetric (densely defined) operators in \mathcal{H} . If

$$\mathcal{D}(T) \subseteq \mathcal{D}(S)$$
 and $\langle S\eta, \eta \rangle \subseteq \langle T\eta, \eta \rangle$

for all $\eta \in \mathcal{D}(T)$, then we write

$$S \leq T$$
.

<u>Theorem</u>. Let T be a closed densely defined operator in \mathcal{H} . We consider the following statements:

- (1) T is q-hyponormal.
- (2) T satisfies the condition $|T^*| \ll \sqrt{q} |T|$.
- (3) T satisfies the condition $|T^*| \leq \sqrt{q} |T|$.
- (4) T satisfies the condition $|T^*| \leq \sqrt{q} |T|$.

Then, $(1) \iff (2) \implies (3) \implies (4)$.

Especially, if T is a weighted shift, unilateral or bilateral, then all these statements are equivalent.

Theorem. If a closed densely defined operator T in \mathcal{H} satisfies condition

$$TT^* \leq q T^*T$$
,

then T is q-hyponormal.

参考文献

- [1] T. Kato, Notes on some inequalities for linear operators, *Math. Ann.*, **125** (1952), 208–212.
- [2] S. Ôta, Some classes of q-deformed operators, J. Operator Theory, 48(2002), 151-186.
- [3] S. Ôta, On q-deformed hyponormal operators, Math. Nachr., **248-249** (2003), 144-150.
- [4] J. Stochel and F. H. Szafraniec, *Unbounded operators and subnormality*, work in progress.
- [5] J. Weidmann, Linear operators in Hilbert spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1980.