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Relations between two operator inequalities
via operator means

HAEMR #E  F# A% (Masatoshi Ito)

(Department of Mathematical Information Science, Tokyo University of Science)

Abstract

Let A and B be (not necessarily invertible) positive operators. Recently, the
author and Yamazaki discussed relations between

(B5APB%)5% > B" and AP > (A5BrA%)#

for p > 0 and r > 0, and also Yamazaki and Yanagida discussed relations between

B pyr 42
smA2BTAz + BT

forp>0andr>0. S
In this report, as a generalization of their results via the representing functions
of operator means, we shall show relations between two operator inequalities

f(B2AB%)>B and A > g(A1BA?),

where f and g are non-negative continuous functions on [0, 0o) satisfying f(t)g(t) =
t.

1 Introduction

In what follows, a capital letter means a bounded linear operator on a complex Hilbert
space H. An operator T is said to be positive (in symbol: T' > 0) if (T'z,z) > 0 for all
z € H. We denote the set of positive operators by B(#), .

Kubo-Ando (8] investigated an axiomatic approach for operator means (see also [5]).
A binary operation o : B(H), x B(#), — B(H), is called an operator connection if it
satisfies the following conditions (i), (ii) and (iii) for A, B,C,D € B(H),:

(i) A< C and B < D imply AcB < CoD,
(ii) C(AoB)C < (CAC)a(CBCQC),

(iii) An,Bn € B(H),, An | A and B, | B imply A,0B, | AcB,
where A,, | A means that A; > A, > --. and A, converges strongly to A.
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An operator connection ¢ is called an operator mean if
(iv) IeI =1.

There exists a one-to-one correspondence between an operator connection o and an
operator monotone function f > 0 on [0, 00). The operator connection o can be defined
via the corresponding function f, which is called the representing function of o, by

AoB = A3 f(A% BA7 )A3

if A is invertible, and ¢ is an operator mean if and only if f(1) = 1.
The following are typical examples of operator means. For positive invertible opera-
tors A and B, and for « € [0, 1],

(1) Arithmetic mean: AV,B = (1 — a)A + aB,
(ii) Geometric mean (a-power mean): Af,B = A3 (AT BA7 A3,
(iii) Harmonic mean: A!,B = {(1 — a)A~!+aB~1}71.

The representing functions of V,, §, and !, are (1—a)+at, t* and {(1—a)+at™ '} =
(T—oﬁﬁ’ respectively. On these operator means, the following relations are known. We
remark that (1.1) was shown in [4], and (1.1) and (1.2) can be proved without using
properties of operator means. Let A and B be positive invertible operators. For each
p>0andr >0,

B_’ﬂ#A" > <= I> A_pﬂ;%Br ' (1.1)
and
, B_"V#A" > <« I> A"’!#_TB’. (1.2)

(1.1) is closely related to Furuta inequality [3], and a mean theoretic approach to Furuta
inequality was disscussed in [1][7] and others. We remark the following ralations on
inequalities in (1.1) and (1.2): Let A and B be positive invertible operators. For each
p>0andr >0,

BT AP > I, BV AP>1,
AZB == IOgAZIOgB - ptr — o
I> A—pﬁ;%Br I> A*P!;%Br_

The first relation holds since logt is operator monotone, the second was shown in [2][4],
and the third holds since (1 — a) + at > t* > (1_—;‘),;5 for t > 0 and o € [0,1]. We
remark that it was shown in [2][4] that

log A > log B < B”ﬁ#Ap >1 forallp>0andr >0

@IZA*pﬂ#;BT forallp>0andr > 0.



In this report, firstly we attempt a mean theoretic approach to (1.1) and (1.2). In
other words, we shall state a result corresponding to (1.1) and (1.2) on a general operator
mean for invertible operators. Secondly we shall show relations between

f(BiAB3)>B and A > g(A3BA?)

for (not necessarily invertible) positive operators A and B, where f and g are non-
negative continuous functions on [0, c0) satisfying f(¢)g(t) = ¢. This result is a further
generalization of the former argument via the representing functions of operator means.
Moreover this result includes the ones by the author and Yamazaki [6] and by Yamazaki
and Yanagida [11].

2 A result on a general operator mean

In this section, we shall state a result corresponding to (1.1) and (1.2) on a general
operator mean for invertible operators. At first we state definitions and propreties of
some operator means via a operator mean o.

Definition ([8]). Let o be the operator mean with a representing function f.

(i) o’ is said to be the transpose of o if o’ is the operator mean with a representing

function tf(t71).

(ii) o* is said to be the adjoint of o if 0* is the operator mean with a representing

function {f(t71)} 1.

(iii) ot is said to be the dual of o if o is the operator mean with a representing function
i

O

We remark that these representing functions can be defined on [0, 0o) by setting the
value on 0 by the limit to 40 since f is operator monotone.

Proposition 2.A ([8]). Let o be an operator mean and A, B € B(H),.
(i) Ad'B = BoA.
(ii) Aoc*B = (A"'0B™)"! if A and B are invertible.
(i) (&) = (o) = (0)* = o.
(iv) ot = (0')* = (¢*), o' = (6*)* = (61)* and 0* = (ot) = (o')*.

By using Prposition 2.A, we shall show a generalization of (1.1) and (1.2).
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Proposition 2.1. Let A and B be positive invertible operators. For every operator mean
07

Bl0A>1 < I > A"'¢"B. (2.1)
Proof. By (i) of Proposition 2.A,
BlsA=AdB !> 1 (2.2)
By (ii) and (iv) of Proposition 2.A, (2.2) is equivalent to
I>(Ad'B™) ' =AYo')*B=A"'¢"B.
Hence the proof is complete. a

Since (fa)t = f1—a and (Vo)' =!i_,, Proposition 2.1 leads (1.1) (resp. (1.2)) by
replacing A and B with A” and B™ and by putting o = §_-_ (resp. o = V#). We
remark that (2.1) can be rewritten by

A3 BA3

f(BIABH) 2B &= A2 1
f(A3BA3)

(2.3)

with the representing function f of o.

3 Main results

In this section, we shall show a further generalization of Proposition 2.1 via the
representing functions of operator means.
When we rewrite (1.1) and (1.2) for positive invertible operators A and B by

(BEAPB)7+ > BT <= AP > (ASB A% (3.1)
; ASBr A%
T T 2 4 2

P ]+ L_BiAPB3 > B" <= AP > 2

2.1+ I-BiABi > B AP > AT AT (3.2)

with the representing functions, we can consider non-invertible operators on this ar-
gument. On relations between two inequalities in (3.1) and (3.2) for (not necessarily
invertible) positive operators A and B, the following results were obtained in [6] and
[11].
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Theorem 3.A ([6]). Let A and B be positive operators. Then for eachp > 0 andr > 0,
the following assertions hold:

() If (BEAPBS)7 > B, then A > (AR B AR)#.
() If 47 > (AEBTAB)5 and N(A) C N(B), then (BFA”B%)3% > B".

Theorem 3.B ([11]). Let A and B be positive operators. Then for each p > 0 and
r > 0, the following assertions hold:

- ARprA%
i) If £2-1+ -~ B2A?Bz > B", then AP > .
@) f ol + e B? TeT e as ;T:-?AgBrAg + ﬁ?]

ASBr A%
#A% BrA% + 2T

E%I—{- #BiAPBE > B

(i) If AP > and N(A) C N(B), then

Here we shall obtain a generalization of Proposition 2.1 via the form of (2.3). This
result is also an extension of Theorems 3.A and 3.B.

Theorem 3.1. Let A and B be positive operators, and let f and g be non-negative
continuous functions on [0,00) satisfying

F(B)glt) =1t. (3.3)

(i) If g(0) = 0 or N(A2BAz) = {0}, then f(B2ABz) > B ensures
A > g(A1BA?).

(ii) If N(A) C N(B), then A > g(A3BA?) ensures f(B:AB?) > B.

In Theorem 3.1, f and g are not necessarily operator monotone functions. We also
remark that if £(0) > 0, then automatically ¢(0) = 0 by (3.3).

If A and B are positive invertible operators and ¢ is the operator mean with a
representing function f, Theorem 3.1 ensures Proposition 2.1 since (2.1) is equivalent to
(2.3). Theorem 3.1 also leads Theorem 3.A (resp. Theorem 3.B) by replacing A and B
with AP and B" and by putting f(t) = t7 and g(t) = t7 (resp. f(t) = =+ St and
gt) = ;ﬁTis?E) We remark that g(0) = 0 in these cases.

We need some lemmas in order to prove Theorem 3.1.

Lemma 3.C. Let T be a positive operator. Then

1 l _1 % — 1 —l =
el_lg_loTz (T +el)™'T 51_1}1_1‘_10(T +eI)7'T = Py(qys,

where Ppq is a projection onto a closed subspace M.
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Lemma 3.C is a well-known result. For example, it was shown in [9] and [6].

Lemma 3.2. Let f be a non-negative continuous function on [0, 00) such that f(0) =0
and f(t) > 0 fort > 0. Then N(f(T)) = N(T) for every positive operator T.

Nl
Proof. Let T = / tdE; be the spectral decomposition of a positive operator T'. Then
. 0

Tl
(f(D)z,y) = f)d(Ez,y) forz,yeH. (3.4)

0
We remark that E_o = 0.
Assume that € N(T). Then Eyz = (Ey; — E_o)z = Pymz =z, and (f(T)z,y) =
f(0)(z,y) = 0 for any y € H by (3.4). Therefore f(T)z = 0, so that z € N(f(T)).
Conversely, assume that £ € N(f(T")). Then for € > 0,

17

0= (f(T)z,2) = / f0dEz )+ [ F0)dEe, )

by (3.4). Since f(t) > 0 for t > 0, E.x = z for ¢ > 0. By tending ¢ — 40, we have
Pyn(myx = Eoz = z, so that z € N(T). O

Lemma 3.3. Let T = U|T| be the polar decomposition of an operator T, and let f be a
continuous function on [0,00). Then

vf(Thu* = £(IT°) — f(0)I = UT™).

Proof. First we shall show the case f(0) = 0 by the same way to [10, Lemma]. Since
U|T|"U* = |{T*|" for each positive integer n, Up(|T|)U* = p(|T*|) holds for any polyno-
mials p such that p(0) = 0. By taking a sequence {p,} of polynomials with p,(0) = 0
which convarges uniformly to f on [0, |T||], we obtain U f({T|)U* = f(|T*|) for general
f with f(0) =0.

Next, let g(t) = f(¢t) — £(0). Then g(0) = 0, so that

UF(ITHU* = U{g(IT]) + f(O)I}U" = Ug(ITU* + F(OUU”
= g(IT") + £(O)I - FO)(I —UU™) = £(IT"]) - FO)I - UT?).

Hence the proof is complete. O

Proof of Theorem 3.1. Let € > 0.
Proof of (i). Since f(B3AB?) > B, we obtain

(B+el)™ > {f(|ATBi®) +eI} .
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Let A2 B? = U|Az B3| be the polar decomposition of Az B 2. Then we have
AiB3(B +el) ' Bi A
> A1B3{f(|A7B3|*) + eI} 'BiA3
— U|A3B3|{f(|AZB3|?) + eI} ' |A3B3|U* (3.5)
— U{f(|AZB??) + eI} |A3 B 20
= U{f(|A3B3]") + eI} f(|A*B2")g(|43BZ")U" by (3.3).
In (3.5), by tending £ — 40 and Lemma 3.C, we obtain

A% Py(p) A7 > UP 1g(|A2 B3 2)U* = Ug(|A% B3 |2)U* (3.6)

N(£(1a2B3P)

by the following: If £(0) > 0, then f(|A3B?|?) is invertible and P =1 1If

N(r1atBt2)”

FO) =0, then UF, (ruatBi)” N(labB2p2)L watghys = U by Lemma 3.2
Therefore, noting that UU* = Py ;4 4, = Py i pasy. = 1 if N(A3BAZ) = {0},
we have
A> A3Py g A%
> Ug(|A7 B3|*)U” by (3.6)
= g(|B2A2|?) — g(0)(I — UU*) by Lemma 3.3
= g(|B2 Az %) since g(0) = 0 or N(A3BA?) = {0}

1

= g(A2BA?).
Proof of (ii). Since A > g(Az BA?), we obtain
(A+el)™* < {g(|BTAI|?) +el} .

Let B3 A3 = V|B3A#| be the polar decomposition of B2 Az. Then we have

N

BiAi(A+el)"'A3B3

< B1A3{g(|B3 A%?) + eI} 'A3B3
= V|B3A3|{g(|B3 A3[?) + eI} '|B1 A3|V* (3.7)
= V{g(|B3A%|?) + eI} | B3 A PV
= V{g(IB2A3?) + eI} 'g(|B2 431" f(|BIAI )V by (3.3).

In (3.7), by tending ¢ — +0 and Lemma 3.C, we obtain

B3Py(4.B? <VP F(IB3AI)V* = VF(|BiAIP)V*  (3.8)

N(s0BEalm)”
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ing: 3A5?) is i i =
by the following: If g(0) > 0, then g(|B2 A2|?) is invertible and PN(g(|B'AI’A’1’|2))L I.1If
g(O) = 0, then VPN(g(|B%A%[2))_L = VPN(IB%A%’P)-L = VPN(B%A%)-L =V by Lemma, 3.2.
Therefore, noting that N(A) C N(B) is equivalent to Py(4)+ > Py(g)+, we have
B = B3 Py ). B?

< B3 P4 B3 since N(A) C N(B)

< Vi(IB2AS)V by (3.8)

= f(|A?B??) — f(0)(I — VV*) by Lemma 3.3

< f(142 B3P)

= f(B2AB?).
Hence the proof is complete. O

Corollary 3.4. Let A and B be positive operators, and let f and g be positive continuous
functions on [0,00) satisfying f(t)g(t) =t. If N(A2 BAz) = {0}, then f(BiAB3) > B
is equivalent to A > g(A7BAz),

Proof. Since N(A2BAz) = {0} ensures {0} = N(A) C N(B), f(BzAB3) > B is
equivalent to 4 > g(A% BA%) by Theorem 3.1. O

Of course N(A3BAz) = {0} if A and B are invertible.
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