Relations between two operator inequalities via operator means

東京理科大 理 伊藤 公智 (Masatoshi Ito)

(Department of Mathematical Information Science, Tokyo University of Science)

Abstract

Let A and B be (not necessarily invertible) positive operators. Recently, the author and Yamazaki discussed relations between

$$(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^{r}$$
 and $A^{p} \ge (A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{p}{p+r}}$

for $p \geq 0$ and $r \geq 0$, and also Yamazaki and Yanagida discussed relations between

$$\frac{p}{p+r}I + \frac{r}{p+r}B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}} \ge B^{r}$$
 and $A^{p} \ge \frac{A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}}}{\frac{r}{p+r}A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}} + \frac{p}{p+r}I}$

for $p \ge 0$ and $r \ge 0$.

In this report, as a generalization of their results via the representing functions of operator means, we shall show relations between two operator inequalities

$$f(B^{\frac{1}{2}}AB^{\frac{1}{2}}) \ge B$$
 and $A \ge g(A^{\frac{1}{2}}BA^{\frac{1}{2}}),$

where f and g are non-negative continuous functions on $[0, \infty)$ satisfying f(t)g(t) = t.

1 Introduction

In what follows, a capital letter means a bounded linear operator on a complex Hilbert space \mathcal{H} . An operator T is said to be positive (in symbol: $T \geq 0$) if $(Tx, x) \geq 0$ for all $x \in \mathcal{H}$. We denote the set of positive operators by $\mathcal{B}(\mathcal{H})_+$.

Kubo-Ando [8] investigated an axiomatic approach for operator means (see also [5]). A binary operation $\sigma: \mathcal{B}(\mathcal{H})_+ \times \mathcal{B}(\mathcal{H})_+ \to \mathcal{B}(\mathcal{H})_+$ is called an operator connection if it satisfies the following conditions (i), (ii) and (iii) for $A, B, C, D \in \mathcal{B}(\mathcal{H})_+$:

- (i) $A \leq C$ and $B \leq D$ imply $A \sigma B \leq C \sigma D$,
- (ii) $C(A\sigma B)C \leq (CAC)\sigma(CBC)$,
- (iii) $A_n, B_n \in \mathcal{B}(\mathcal{H})_+$, $A_n \downarrow A$ and $B_n \downarrow B$ imply $A_n \sigma B_n \downarrow A \sigma B$, where $A_n \downarrow A$ means that $A_1 \geq A_2 \geq \cdots$ and A_n converges strongly to A.

An operator connection σ is called an operator mean if

(iv)
$$I\sigma I = I$$
.

There exists a one-to-one correspondence between an operator connection σ and an operator monotone function $f \geq 0$ on $[0, \infty)$. The operator connection σ can be defined via the corresponding function f, which is called the *representing function* of σ , by

$$A\sigma B = A^{\frac{1}{2}} f(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}) A^{\frac{1}{2}}$$

if A is invertible, and σ is an operator mean if and only if f(1) = 1.

The following are typical examples of operator means. For positive invertible operators A and B, and for $\alpha \in [0, 1]$,

- (i) Arithmetic mean: $A\nabla_{\alpha}B = (1-\alpha)A + \alpha B$,
- (ii) Geometric mean (α -power mean): $A\sharp_{\alpha}B=A^{\frac{1}{2}}(A^{\frac{-1}{2}}BA^{\frac{-1}{2}})^{\alpha}A^{\frac{1}{2}},$
- (iii) Harmonic mean: $A!_{\alpha}B = \{(1-\alpha)A^{-1} + \alpha B^{-1}\}^{-1}$.

The representing functions of ∇_{α} , \sharp_{α} and $!_{\alpha}$ are $(1-\alpha)+\alpha t$, t^{α} and $\{(1-\alpha)+\alpha t^{-1}\}^{-1}=\frac{t}{(1-\alpha)t+\alpha}$, respectively. On these operator means, the following relations are known. We remark that (1.1) was shown in [4], and (1.1) and (1.2) can be proved without using properties of operator means. Let A and B be positive invertible operators. For each $p \geq 0$ and $r \geq 0$,

$$B^{-r} \sharp_{\frac{r}{p+r}} A^p \ge I \iff I \ge A^{-p} \sharp_{\frac{p}{p+r}} B^r \tag{1.1}$$

and

$$B^{-r} \nabla_{\frac{r}{p+r}} A^p \ge I \iff I \ge A^{-p}!_{\frac{p}{p+r}} B^r. \tag{1.2}$$

(1.1) is closely related to Furuta inequality [3], and a mean theoretic approach to Furuta inequality was disscussed in [1][7] and others. We remark the following ralations on inequalities in (1.1) and (1.2): Let A and B be positive invertible operators. For each $p \geq 0$ and $r \geq 0$,

$$A \geq B \implies \log A \geq \log B \implies \begin{cases} B^{-r} \sharp_{\frac{r}{p+r}} A^p \geq I, \\ I \geq A^{-p} \sharp_{\frac{p}{p+r}} B^r \end{cases} \implies \begin{cases} B^{-r} \nabla_{\frac{r}{p+r}} A^p \geq I, \\ I \geq A^{-p} !_{\frac{p}{p+r}} B^r. \end{cases}$$

The first relation holds since $\log t$ is operator monotone, the second was shown in [2][4], and the third holds since $(1-\alpha) + \alpha t \ge t^{\alpha} \ge \frac{t}{(1-\alpha)t+\alpha}$ for $t \ge 0$ and $\alpha \in [0,1]$. We remark that it was shown in [2][4] that

$$\log A \ge \log B \iff B^{-r} \sharp_{\frac{r}{p+r}} A^p \ge I \quad \text{for all } p \ge 0 \text{ and } r \ge 0$$
$$\iff I \ge A^{-p} \sharp_{\frac{p}{p+r}} B^r \quad \text{for all } p \ge 0 \text{ and } r \ge 0.$$

In this report, firstly we attempt a mean theoretic approach to (1.1) and (1.2). In other words, we shall state a result corresponding to (1.1) and (1.2) on a general operator mean for invertible operators. Secondly we shall show relations between

$$f(B^{\frac{1}{2}}AB^{\frac{1}{2}}) \ge B$$
 and $A \ge g(A^{\frac{1}{2}}BA^{\frac{1}{2}})$

for (not necessarily invertible) positive operators A and B, where f and g are non-negative continuous functions on $[0, \infty)$ satisfying f(t)g(t) = t. This result is a further generalization of the former argument via the representing functions of operator means. Moreover this result includes the ones by the author and Yamazaki [6] and by Yamazaki and Yanagida [11].

2 A result on a general operator mean

In this section, we shall state a result corresponding to (1.1) and (1.2) on a general operator mean for invertible operators. At first we state definitions and propreties of some operator means via a operator mean σ .

Definition ([8]). Let σ be the operator mean with a representing function f.

- (i) σ' is said to be the transpose of σ if σ' is the operator mean with a representing function $tf(t^{-1})$.
- (ii) σ^* is said to be the adjoint of σ if σ^* is the operator mean with a representing function $\{f(t^{-1})\}^{-1}$.
- (iii) σ^{\perp} is said to be the dual of σ if σ^{\perp} is the operator mean with a representing function $\frac{t}{f(t)}$.

We remark that these representing functions can be defined on $[0, \infty)$ by setting the value on 0 by the limit to +0 since f is operator monotone.

Proposition 2.A ([8]). Let σ be an operator mean and $A, B \in \mathcal{B}(\mathcal{H})_+$.

- (i) $A \sigma' B = B \sigma A$.
- (ii) $A \sigma^* B = (A^{-1} \sigma B^{-1})^{-1}$ if A and B are invertible.
- (iii) $(\sigma')' = (\sigma^*)^* = (\sigma^{\perp})^{\perp} = \sigma$.
- (iv) $\sigma^{\perp} = (\sigma')^* = (\sigma^*)', \ \sigma' = (\sigma^*)^{\perp} = (\sigma^{\perp})^* \ and \ \sigma^* = (\sigma^{\perp})' = (\sigma')^{\perp}.$

By using Proposition 2.A, we shall show a generalization of (1.1) and (1.2).

Proposition 2.1. Let A and B be positive invertible operators. For every operator mean σ ,

$$B^{-1}\sigma A \ge I \iff I \ge A^{-1}\sigma^{\perp}B. \tag{2.1}$$

Proof. By (i) of Proposition 2.A,

$$B^{-1}\sigma A = A\,\sigma' B^{-1} \ge I. \tag{2.2}$$

By (ii) and (iv) of Proposition 2.A, (2.2) is equivalent to

$$I \ge (A \sigma' B^{-1})^{-1} = A^{-1} (\sigma')^* B = A^{-1} \sigma^{\perp} B.$$

Hence the proof is complete.

Since $(\sharp_{\alpha})^{\perp} = \sharp_{1-\alpha}$ and $(\nabla_{\alpha})^{\perp} = !_{1-\alpha}$, Proposition 2.1 leads (1.1) (resp. (1.2)) by replacing A and B with A^p and B^r and by putting $\sigma = \sharp_{\frac{r}{p+r}}$ (resp. $\sigma = \nabla_{\frac{r}{p+r}}$). We remark that (2.1) can be rewritten by

$$f(B^{\frac{1}{2}}AB^{\frac{1}{2}}) \ge B \iff A \ge \frac{A^{\frac{1}{2}}BA^{\frac{1}{2}}}{f(A^{\frac{1}{2}}BA^{\frac{1}{2}})}$$
 (2.3)

with the representing function f of σ .

3 Main results

In this section, we shall show a further generalization of Proposition 2.1 via the representing functions of operator means.

When we rewrite (1.1) and (1.2) for positive invertible operators A and B by

$$(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^{r} \iff A^{p} \ge (A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{p}{p+r}}$$
(3.1)

and

$$\frac{p}{p+r}I + \frac{r}{p+r}B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}} \ge B^{r} \iff A^{p} \ge \frac{A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}}}{\frac{r}{p+r}A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}} + \frac{p}{p+r}I}$$
(3.2)

with the representing functions, we can consider non-invertible operators on this argument. On relations between two inequalities in (3.1) and (3.2) for (not necessarily invertible) positive operators A and B, the following results were obtained in [6] and [11].

Theorem 3.A ([6]). Let A and B be positive operators. Then for each $p \ge 0$ and $r \ge 0$, the following assertions hold:

- (i) If $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^{r}$, then $A^{p} \ge (A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{p}{p+r}}$.
- (ii) If $A^p \ge (A^{\frac{p}{2}}B^rA^{\frac{p}{2}})^{\frac{p}{p+r}}$ and $N(A) \subseteq N(B)$, then $(B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^r$.

Theorem 3.B ([11]). Let A and B be positive operators. Then for each p > 0 and $r \ge 0$, the following assertions hold:

(i) If
$$\frac{p}{p+r}I + \frac{r}{p+r}B^{\frac{r}{2}}A^pB^{\frac{r}{2}} \ge B^r$$
, then $A^p \ge \frac{A^{\frac{p}{2}}B^rA^{\frac{p}{2}}}{\frac{r}{p+r}A^{\frac{p}{2}}B^rA^{\frac{p}{2}} + \frac{p}{p+r}I}$.

(ii) If
$$A^{p} \geq \frac{A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}}}{\frac{r}{p+r}A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}} + \frac{p}{p+r}I}$$
 and $N(A) \subseteq N(B)$, then
$$\frac{p}{p+r}I + \frac{r}{p+r}B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}} \geq B^{r}.$$

Here we shall obtain a generalization of Proposition 2.1 via the form of (2.3). This result is also an extension of Theorems 3.A and 3.B.

Theorem 3.1. Let A and B be positive operators, and let f and g be non-negative continuous functions on $[0, \infty)$ satisfying

$$f(t)g(t) = t. (3.3)$$

- (i) If g(0) = 0 or $N(A^{\frac{1}{2}}BA^{\frac{1}{2}}) = \{0\}$, then $f(B^{\frac{1}{2}}AB^{\frac{1}{2}}) \ge B$ ensures $A > g(A^{\frac{1}{2}}BA^{\frac{1}{2}})$.
- (ii) If $N(A) \subseteq N(B)$, then $A \ge g(A^{\frac{1}{2}}BA^{\frac{1}{2}})$ ensures $f(B^{\frac{1}{2}}AB^{\frac{1}{2}}) \ge B$.

In Theorem 3.1, f and g are not necessarily operator monotone functions. We also remark that if f(0) > 0, then automatically g(0) = 0 by (3.3).

If A and B are positive invertible operators and σ is the operator mean with a representing function f, Theorem 3.1 ensures Proposition 2.1 since (2.1) is equivalent to (2.3). Theorem 3.1 also leads Theorem 3.A (resp. Theorem 3.B) by replacing A and B with A^p and B^r and by putting $f(t) = t^{\frac{p}{p+r}}$ and $g(t) = t^{\frac{p}{p+r}}$ (resp. $f(t) = \frac{p}{p+r} + \frac{r}{p+r}t$ and $g(t) = \frac{t}{\frac{r}{p+r}t + \frac{p}{p+r}}$). We remark that g(0) = 0 in these cases.

We need some lemmas in order to prove Theorem 3.1.

Lemma 3.C. Let T be a positive operator. Then

$$\lim_{\varepsilon \to +0} T^{\frac{1}{2}} (T + \varepsilon I)^{-1} T^{\frac{1}{2}} = \lim_{\varepsilon \to +0} (T + \varepsilon I)^{-1} T = P_{N(T)^{\perp}},$$

where $P_{\mathcal{M}}$ is a projection onto a closed subspace \mathcal{M} .

Lemma 3.C is a well-known result. For example, it was shown in [9] and [6].

Lemma 3.2. Let f be a non-negative continuous function on $[0, \infty)$ such that f(0) = 0 and f(t) > 0 for t > 0. Then N(f(T)) = N(T) for every positive operator T.

Proof. Let $T = \int_0^{\|T\|} t dE_t$ be the spectral decomposition of a positive operator T. Then

$$(f(T)x,y)=\int_0^{\|T\|}f(t)d(E_tx,y)\quad ext{for } x,y\in\mathcal{H}.$$

We remark that $E_{-0} = 0$.

Assume that $x \in N(T)$. Then $E_0x = (E_0 - E_{-0})x = P_{N(T)}x = x$, and (f(T)x, y) = f(0)(x, y) = 0 for any $y \in \mathcal{H}$ by (3.4). Therefore f(T)x = 0, so that $x \in N(f(T))$. Conversely, assume that $x \in N(f(T))$. Then for $\varepsilon > 0$,

$$0 = (f(T)x,x) = \int_0^arepsilon f(t)d(E_tx,x) + \int_arepsilon^{\parallel T \parallel} f(t)d(E_tx,x)$$

by (3.4). Since f(t) > 0 for t > 0, $E_{\varepsilon}x = x$ for $\varepsilon > 0$. By tending $\varepsilon \to +0$, we have $P_{N(T)}x = E_0x = x$, so that $x \in N(T)$.

Lemma 3.3. Let T = U|T| be the polar decomposition of an operator T, and let f be a continuous function on $[0, \infty)$. Then

$$Uf(|T|)U^* = f(|T^*|) - f(0)(I - UU^*).$$

Proof. First we shall show the case f(0) = 0 by the same way to [10, Lemma]. Since $U|T|^nU^* = |T^*|^n$ for each positive integer n, $Up(|T|)U^* = p(|T^*|)$ holds for any polynomials p such that p(0) = 0. By taking a sequence $\{p_n\}$ of polynomials with $p_n(0) = 0$ which convarges uniformly to f on [0, ||T||], we obtain $Uf(|T|)U^* = f(|T^*|)$ for general f with f(0) = 0.

Next, let g(t) = f(t) - f(0). Then g(0) = 0, so that

$$Uf(|T|)U^* = U\{g(|T|) + f(0)I\}U^* = Ug(|T|)U^* + f(0)UU^*$$

= $g(|T^*|) + f(0)I - f(0)(I - UU^*) = f(|T^*|) - f(0)(I - UU^*).$

Hence the proof is complete.

Proof of Theorem 3.1. Let $\varepsilon > 0$.

Proof of (i). Since $f(B^{\frac{1}{2}}AB^{\frac{1}{2}}) \geq B$, we obtain

$$(B + \varepsilon I)^{-1} \ge \left\{ f(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^2) + \varepsilon I \right\}^{-1}.$$

Let $A^{\frac{1}{2}}B^{\frac{1}{2}}=U|A^{\frac{1}{2}}B^{\frac{1}{2}}|$ be the polar decomposition of $A^{\frac{1}{2}}B^{\frac{1}{2}}$. Then we have

$$\begin{split} &A^{\frac{1}{2}}B^{\frac{1}{2}}(B+\varepsilon I)^{-1}B^{\frac{1}{2}}A^{\frac{1}{2}}\\ &\geq A^{\frac{1}{2}}B^{\frac{1}{2}}\left\{f(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^{2})+\varepsilon I\right\}^{-1}B^{\frac{1}{2}}A^{\frac{1}{2}}\\ &=U|A^{\frac{1}{2}}B^{\frac{1}{2}}|\left\{f(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^{2})+\varepsilon I\right\}^{-1}|A^{\frac{1}{2}}B^{\frac{1}{2}}|U^{*}\\ &=U\left\{f(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^{2})+\varepsilon I\right\}^{-1}|A^{\frac{1}{2}}B^{\frac{1}{2}}|^{2}U^{*}\\ &=U\left\{f(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^{2})+\varepsilon I\right\}^{-1}f(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^{2})g(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^{2})U^{*} \quad \text{by (3.3)}. \end{split}$$

In (3.5), by tending $\varepsilon \to +0$ and Lemma 3.C, we obtain

$$A^{\frac{1}{2}}P_{N(B)^{\perp}}A^{\frac{1}{2}} \geq UP_{N\left(f(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^2)\right)^{\perp}}g(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^2)U^* = Ug(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^2)U^* \tag{3.6}$$

by the following: If f(0) > 0, then $f(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^2)$ is invertible and $P_{N\left(f(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^2)\right)^{\perp}} = I$. If f(0) = 0, then $UP_{N\left(f(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^2)\right)^{\perp}} = UP_{N(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^2)^{\perp}} = UP_{N(|A^{\frac{1}{2}}B^{\frac{1}{2}}|^2)^{\perp}} = U$ by Lemma 3.2.

Therefore, noting that $UU^*=P_{N(B^{\frac{1}{2}}A^{\frac{1}{2}})^{\perp}}=P_{N(A^{\frac{1}{2}}BA^{\frac{1}{2}})^{\perp}}=I$ if $N(A^{\frac{1}{2}}BA^{\frac{1}{2}})=\{0\}$, we have

$$\begin{split} A &\geq A^{\frac{1}{2}} P_{N(B)^{\perp}} A^{\frac{1}{2}} \\ &\geq U g(|A^{\frac{1}{2}} B^{\frac{1}{2}}|^2) U^* \qquad \text{by (3.6)} \\ &= g(|B^{\frac{1}{2}} A^{\frac{1}{2}}|^2) - g(0) (I - U U^*) \quad \text{by Lemma 3.3} \\ &= g(|B^{\frac{1}{2}} A^{\frac{1}{2}}|^2) \qquad \qquad \text{since } g(0) = 0 \text{ or } N(A^{\frac{1}{2}} B A^{\frac{1}{2}}) = \{0\} \\ &= g(A^{\frac{1}{2}} B A^{\frac{1}{2}}). \end{split}$$

Proof of (ii). Since $A \geq g(A^{\frac{1}{2}}BA^{\frac{1}{2}})$, we obtain

$$(A + \varepsilon I)^{-1} \le \left\{ g(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^2) + \varepsilon I \right\}^{-1}.$$

Let $B^{\frac{1}{2}}A^{\frac{1}{2}}=V|B^{\frac{1}{2}}A^{\frac{1}{2}}|$ be the polar decomposition of $B^{\frac{1}{2}}A^{\frac{1}{2}}$. Then we have

$$\begin{split} &B^{\frac{1}{2}}A^{\frac{1}{2}}(A+\varepsilon I)^{-1}A^{\frac{1}{2}}B^{\frac{1}{2}}\\ &\leq B^{\frac{1}{2}}A^{\frac{1}{2}}\left\{g(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2})+\varepsilon I\right\}^{-1}A^{\frac{1}{2}}B^{\frac{1}{2}}\\ &=V|B^{\frac{1}{2}}A^{\frac{1}{2}}|\left\{g(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2})+\varepsilon I\right\}^{-1}|B^{\frac{1}{2}}A^{\frac{1}{2}}|V^{*}\\ &=V\left\{g(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2})+\varepsilon I\right\}^{-1}|B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2}V^{*}\\ &=V\left\{g(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2})+\varepsilon I\right\}^{-1}g(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2})f(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2})V^{*} \quad \text{by (3.3)}. \end{split}$$

In (3.7), by tending $\varepsilon \to +0$ and Lemma 3.C, we obtain

$$B^{\frac{1}{2}}P_{N(A)^{\perp}}B^{\frac{1}{2}} \leq VP_{N\left(g(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2})\right)^{\perp}}f(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2})V^{*} = Vf(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^{2})V^{*}$$
(3.8)

by the following: If g(0) > 0, then $g(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^2)$ is invertible and $P_{N\left(g(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^2)\right)^{\perp}} = I$. If g(0) = 0, then $VP_{N\left(g(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^2)\right)^{\perp}} = VP_{N(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^2)^{\perp}} = VP_{N(|B^{\frac{1}{2}}A^{\frac{1}{2}}|^2)^{\perp}} = V$ by Lemma 3.2. Therefore, noting that $N(A) \subseteq N(B)$ is equivalent to $P_{N(A)^{\perp}} \ge P_{N(B)^{\perp}}$, we have

$$\begin{split} B &= B^{\frac{1}{2}} P_{N(B)^{\perp}} B^{\frac{1}{2}} \\ &\leq B^{\frac{1}{2}} P_{N(A)^{\perp}} B^{\frac{1}{2}} \qquad \text{since } N(A) \subseteq N(B) \\ &\leq V f(|B^{\frac{1}{2}} A^{\frac{1}{2}}|^2) V^* \qquad \text{by (3.8)} \\ &= f(|A^{\frac{1}{2}} B^{\frac{1}{2}}|^2) - f(0) (I - VV^*) \quad \text{by Lemma 3.3} \\ &\leq f(|A^{\frac{1}{2}} B^{\frac{1}{2}}|^2) \\ &= f(B^{\frac{1}{2}} A B^{\frac{1}{2}}). \end{split}$$

Hence the proof is complete.

Corollary 3.4. Let A and B be positive operators, and let f and g be positive continuous functions on $[0, \infty)$ satisfying f(t)g(t) = t. If $N(A^{\frac{1}{2}}BA^{\frac{1}{2}}) = \{0\}$, then $f(B^{\frac{1}{2}}AB^{\frac{1}{2}}) \geq B$ is equivalent to $A \geq g(A^{\frac{1}{2}}BA^{\frac{1}{2}})$.

Proof. Since $N(A^{\frac{1}{2}}BA^{\frac{1}{2}}) = \{0\}$ ensures $\{0\} = N(A) \subseteq N(B)$, $f(B^{\frac{1}{2}}AB^{\frac{1}{2}}) \ge B$ is equivalent to $A \ge g(A^{\frac{1}{2}}BA^{\frac{1}{2}})$ by Theorem 3.1.

Of course $N(A^{\frac{1}{2}}BA^{\frac{1}{2}}) = \{0\}$ if A and B are invertible.

References

- [1] M.Fujii, Furuta's inequality and its mean theoretic approach, J. Operator Theory, 23 (1990), 67-72.
- [2] M.Fujii, T.Furuta and E.Kamei, Furuta's inequality and its application to Ando's theorem, Linear Algebra Appl., 179 (1993), 161–169.
- [3] T.Furuta, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0$, $p \ge 0$, $q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc., **101** (1987), 85–88.
- [4] T.Furuta, Applications of order preserving operator inequalities, Oper. Theory Adv. Appl., **59** (1992), 180–190.
- [5] F.Hiai and K.Yanagi, *Hilbert Spaces and Linear Operators*, Makinoshoten, 1995 (in Japanese).
- [6] M.Ito and T.Yamazaki, Relations between two inequalities $(B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{r}{p+r}} \geq B^r$ and $A^p \geq (A^{\frac{p}{2}}B^rA^{\frac{p}{2}})^{\frac{p}{p+r}}$ and their applications, Integral Equations Operator Theory, **44** (2002), 442–450.

- [7] E.Kamei, A satellite to Furuta's inequality, Math. Japon., 33 (1988), 883–886.
- [8] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205–224.
- [9] M.Uchiyama, Further extension of the Heinz-Kato-Furuta inequality, Proc. Amer. Math. Soc., 127 (1999), 2899–2904.
- [10] M.Uchiyama, Inequalities for semi bounded operators and their applications to log-hyponormal operators, Oper. Theory Adv. Appl., 127 (2001), 599-611.
- [11] T.Yamazaki and M.Yanagida, Relations between two operator inequalities and their applications to paranormal operators, Acta Sci. Math. (Szeged), 69 (2003), 377–389.