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Abstract
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1 Monsky-Washinitzer Cohomology

Let k = F, with ¢ = p™ and prime p odd, R = W(F,) the Witt ring of F,, and K = Q,
the quotient field of R. Let X be a smooth affine variety over £, A the coordinate ring
of X, A a smooth R-algebra with A®p k 2 A, and A® the p-adic completion of A. Let
vp denote the p-adic valuation on R. Fix z;,--+,%, € A>® whose reductions Z;,: -, %y,
generate A over k.

Definition 1 (Monsky-Washinitzer [4]) The week completion A! of A is the sub-
string of A* consisting of elements z = E @4y, T3 - - T such that
i1eein

i1+!"+in>d==> n'l 'ﬂvp(a‘l "ﬂ) >c

= i+ +in

for some d and ¢ > 0.

Let  be the At module of different forms over K generated by symbols dz, z € A'®@r K
and subject to the relations
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1. d(z +y) = dz +dy for z,y € A ®r K;
2. d(zy) = zdy + ydz for z,y € At @z K; and
3.dr=0forz € K.

We define the exterior derivative d : ATQ — ATHIQ) by,
W= Oy dTiy A Adzy, — dw) =Y d(aiy,.i,) AdTiy A+ Ada,

where ;,....;, € A!, the sum runs over 1 < §; < --- < i, < n, and A") denotes the r-th
exterior power of (2.

Definition 2 (Monsky-Washinitzer [4]) In the sequence of homomorphisms
0 — A0 -4 A0 -4 ... 4 Am—0
the cohomology groups of the de Rham complex over At ®p K

ker(d: ATQ — ATTIQ)
im(d: ATTIQ 5 ATQ)

H (A K) =

r = 0,---,n, are called the Monsky-Washnitzer cohomology groups, where A~!Q) =
AMHQ =0,

In general, it is known that
1. H(A; K) = 0 is a finite dimensional K-vector space; and
2. HY(A; K) = K, H'(A; K) = Q modulo dz, z € A' ® K.

Hereafter, we assume the variety is a curve, so that H"(A4; K) =0,7r=2,.--,n.

If we lift the p-power Frobenius of A to an endomorphism o of .At, then the g-power
Frobenius on A will be lifted to an endmorphism F := ¢™. In general, an endomorphism
¢ of A induces an endmorphism ¢, on the cohomology groups.

Theorem 1 (Leschetz fixed point formula [5]) Suppose A' admits an endmorphism
F lifting the g-power Frobenius on A. Then, the number of homomorphisms A — F,
equals :

3 (1) Tr(gF B (A K)) - 1)
r=0

If we assume curves, then (1) reduces to Tr(gF; '|K) — Tr(qF;!|Q modulo dz, = €
A ®p K).
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2 Kedlaya’s Method

Kedraya [2] proposed an order counting method for hyperelliptic curves C : y* = Q(z)
(Q(z): a polynomial of degree over F, without repeated roots) using the Lefschetz fixed
point formula. Kedlaya considered the curve C’ excluding the points on y = 0 from C.
Then, the coordinate ring A of C' is k[z,y,y7']/(y? — Q(z)). Let A= R[z,y,y']/(y* -
Q(z)), and At the weak completion of A. Then, the elements of A’ can be viewed as
series 3.0 3% a;;z'y’ with a;; € R such that
tim inf (%65} S 6 a0 1im g 2R R@)}
j—00 J J-+—o00

The essential point is that Kedlaya found for the curve C’ an admissible endomorphism
o over A that is obtained by lifting the p-power Frobenius of A, which is needed to apply
the Leschetz fixed point formula. We can lift the p-power Frobenius to an endomorphism
o by defining it as the cannonical Witt vector Frobenius on R, then extending to R[z] by
mapping z € At to 27 € At and y € At to

4 = (1 +Q(Z)5(‘:‘c)?($)7)1/2 — ; (1/2)(1/2 - 1);!- (1/2—-i+1) (Q(z)ay;n Q(z)p).- et

Then, the de Rham cohomology of A splits H'(A; K) into eigenspaces under the
hyperelliptic involution: a positive eigenspace H'(A; K). generated by z'dz/y? for i =
0,---,2g—1, and a negative eigenspace H'(A; K)_ generated by r'dz/y fori = 0,---,29—
1. In fact, using the formula

dz=0,z€ A'@r K,
any form 3730 291 a; jz*dz [y can be reduced either to Y 292" b; jzidz/y orto 305" bizidzfy?,

with b;;, b € K, depending on whether j is odd or even. Since (dz)°* = pzP~'dz and

Lo p1. Q@) =Q@f 1 _ g~ (-1/2)(-1/2-1)---(=1/2 - i +1) (Q(z)° - Q=)
(5) =y P(1+ = z) i _; ) i+1) z)y(ml)p -

we have a matrix M = (m;;), m;; € K such that

‘dz T M
(L)" =) mi—.
y Z—E "y

Based on the Leschetz fixed point formula, Kedraya showed ¢* + 1 — #C(F ) equals
the trace of ¢*F, on the negative eigenspace H'(A; K)_ of H'(A; K) for all i > 0:
#C(Fy) —d = #C'(Fy),

Tr(¢'F, ', H'(A K)) - Tr(¢'F, ', H'(A; K))

Tr(¢'F', HYA; K)) — Tr(¢'F; 1 HY (A K) ) ~ Tr(¢'F HY(A K) )
Tr(¢'F; ' H (A, K)) - Tr(¢'F, H (A K)) — Tr(¢'F. ' H (A K).)
= ¢+1-d-Tr(¢F ', H (A K).)

il
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where d = #{(z,y) € E(Fy)lzc € Fy,y = 0}, and A’ = k[z,y7?]. (Note that the
Leschetz fixed point formula has been applied in the second and last equlities for A and
A', respectively.)

By the Weil conjectures, there exists a polynomial

2% + a1z 4+t ag 2

whose roots i, -+, ay, satisfy aja,y; =g for j =1,--+,9, loj| = /G for j =1,---,2g,
and

29
g¢+1 — #C(F,) = Za;
j=1
for all i > 0. Thus, the eigenvalues of ¢F;! on H'(A; K)_ are precisely the a;, as are

the eigenvalues of F, itself. Since a; = ag,-;, it suffices to determine a,,---,a,. Since
@1, +, Qg are the roots of (2), the coefficients ag, - - -, a, are bounded by

2 i
|as] S( ig)q/?sf’q”*-

Thus to determine the zeta function, it suffices to compute the action of F, on a suitable
basis of H'(A; K)_ modulo p for N > (g/2)m + (2g + 1) log, 2.

2g—1
If 2% = 2M for z = [%, z;lz, “ee, z ” d:r] and some M € K29%29 then

2P = MM M ... M°T

Hence, if we compute the product M = MM M°* ... M°" " and its characteristic poly-
nomial modulo p¥, we can recover the characteristic polynomial of Frobenious from the
first g coefﬁcientsf

3 Miura Theory

By < A >=< ay,--+,a, > we denote the monoid generated by n positive integers
in A = {ay,--+,a,} such that a; ¢< a;,---,ai_1,8i41,  ",8, > for 1 < i < n and
ged(ay,+++,an) = 1. We define U4 : N* = < A > by Uu(s1,--+,80) = Yo, GiSi.

Definition 3 (C4 order) a >4 8 fora= (a1, +,0,) and B = (6y,---,5,) € N* if
1 ¥u(ar, -, om) > Va(br,--+,0), or

2. Uulan, - -,an) = W4(By1,--+,Bs) and o4 = By, -+, 041 = fi-1,05 < P for some
1<i<n.
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For monomial zj! - - - zi» with sy,-- -, 8, € N, we define

Da(zi' o) :="Ta(s1,% ", n)
which is extended for polynomial Y, rezi® - - - 22 € k[z1,*+,Zn) With7, € Kand 841, +, 8 €
N, as

Tu(Y rett -+ -ai) = max Ba(aft - 2n)
t

Also, we define M4(l) € N* to be the minimal M € N* with respect to >, satisfying
\I’A(M) = ls '
B(A) := {M ()|l e< A >},

d | |
N V(A) := {L + L, € N\B(4) | L; € N'\B(4) => Ly = (0,--+,0)} .

Let k be a field. Suppose we are given a smooth curve C defined over x with a
k-rational point P such that

Mp = {~vp(f)|f € L(coP)} = 4.

Theorem 2 (Miura [3]) The curve C is an affine variety in n variables with I := {Fj, =
0|M € V(A)} such that

Fy=X"+ar X+ z anX?, (3)
NEB(A), WA (N)<¥a(L)

where we denote X¥ := ILXM for M = (M,---,M,) € N*, and X; € L(ooP) is a
function such that (X;)e = a;P. Moreover, L is the unique element in B(A) satisfying
W,4(M) = ¥4(L), and ay, # 0, ay € K, and that P is the only point at infinity (P = Py),
thus

L(coP) = K[z, -, Zq)

(the coordinate ring of C), where z; = X; mod Fy; = 0 for all M € V(A).
Example 1 A = {a,b} with gcd(a, ) = 1. Then,
B(A) = {(m,l)mS [<a—-1,m=0, 1,"'}
and
V(4) ={(0,0)} .
Hence, the curve C is defined by the equation:

Y=auX'+ ) omawX™Y, (4)
ma+lb<ab

where iy, Amatts € k. By transforming the variables X and Y to o2, X and of,Y with
s,t € Z, respectively, we can set ag, = 1. (Note ged(a, b) = 1).
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Example 2 A = {4,6,5}. Then,

B(A) = {(07 07 0)! (17 01 0)) (0! O’ 1)7 (0! 11 0)) (1’ 07 1)) (11 17 0), (07 17 1)’
(3,0,0),(2,0,1),(2,1,0),(1,1,1), (4,0,0),-- -}

and
V(4) = {(0,2,0),(0,0,2)} .

Hence, the curve C is defined by the equations:
Y? =X+ fuYZ + PyXY + B X Z + BsY + BZ + BuX + Bo
Z® = yioXY + % XZ+ %Y +BZ+1X +% ,
where £;,v; € k.

Hereafter, we fix an element in A, say a,, and denote by &,l = 0,1, - -, the minimal
be<ay, - ,a, > such that b =1 mod a,. Clearly, b = bjyma, for m=0,1,-:-.

Theorem 3 (Miura [3]) We define T'(A) := {(s1,82,**+,3a) € B(4)|s, =0}. Then,
T(A)={Ma(Br)l0<1<a -1}, (5)
#T(A) = ay, and {zM2®) | =0,1,..«,a, — 1} is a x[z,]-basis of k[z;,- -, zs].

Example 3 If A = {a,b}, then T(A4) = {(0,0),(0,1),---,(0,a — 1)}, so that the coordi-
nate ring is
clz,y] = £lz] + wfaly + - + wlzly* .

Example 4 If A = {4,6,5}, then T(A4) = {(0,0,0),(0,0,1),(0,1,0),(0,1,1)} and by =
0,b, = 5,by = 6,b3 = 9, so that the coordinate ring is

K[z, y, 2] = klz] + xlz]z + £lzly + lz]yz .
Proposition 1

a1—1

g=#MN\<A4>)=) |b/a], ()

1=0
where |z] is the largest integer no more than z.

We fix the order of a;,--+,a, € A as A = (ay,**,a,).
Definition 4 (Nijenhuis-Wilf [6]) A = (a;,- - -, ay) satisfying
ai/d; €< ay/di_1,- -+, aiy/di1 >, (7)

where d; = ged(ay,--+,q;), is said to be telescopic. Furthermore, any curve with a k-
rational point P such that
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1. Mp=A
2. an ordered A of A is telescopic

is said to be telescopic. In particular, if n = 2, the curve is telescopic.

Example 5 A = (4,6, 5) satisfies (7) although A = (4, 5, 6) does not. However, the curve
with Mp = A is telescopic for A.

Theorem 4 (Nijenhuis-Wilf [6]) In general,

g<[1+2(""——1)at/ ) - (8)

i=1
where dy = 0. The equation follows if and only if A = (a1, -, ay) is telescopic.
Theorem 5 (Miura [3]) If a curve with A is telescopic, then

1. T(A) = {(0,t2,--+,ta)[0 < t; < di1/di — 1,i =2, -+ n}

2. v(4) ={(,---,0,di_,/d;,0,--+,0)[i=2,-.-,n} .
Example 6 If 4 = {4, 6,5}, then T'(4) = {(0,0,0), (0,1,0),(0,0,1),(0,1,1)} and V(4) =

{(0,2,0),(0,0,2)}. Furthermore, (b, b1,b2,bs) = (0,5,6,11) with a; = 4, so that g = 4
from Proposition 1, which is also obtained from Theorem 4.

If, in Theorem 2, the ideal a nonsingular curve is given by
I= {Xg“lldt — hi(Xl, ceey Xi—l) = Oli = 2, cae ,ﬂ}

for some h; € k[Xy,- -+, Xi—1, i = 2,- -+, n, then the curve is said to be strongly telescopic.

4 Cohomology of Smooth Curves

The notation follows Stichtenoth [9].
Let C be a smooth curve defined over k = F, expressed by some A = {a;,-*-,an} and
Fy =0,M € V(A). Then, the coordinate ring of C is

.Z=k[:il,---,:i,.],

where Z = X; mod Fy(Xh,---,X,) = 0 for all M € V(A). In this section, we assume
that each Z; has a pole only at P,,. Hereafter, we denote by I C k[Z,,-- -, %) the ideal
generated by Fyy =0, M € V(A). ‘

Let I = {Fy,---,F,} C Kl|z1,"-,Ts) be the ideal associated with A%, which defines
an affine variety over K in n variables. We consider the function field F/K, where
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F/K(z;) is an algebraic extension with degree [F' : K(z;)] = a;. From the equations

dF; =0, i=2,.--,n, we obtain the unique relation
Wy = o == ————— 9
fl(zly'“,xn) fn(xh”')xn) ’ ( )
where fi(z1,:++,2,) =0,i=1,---,n, have no common zero. This is possible because, if

fi=1tf at P € Pr with vp(f}) =0fori=1,---,n, where ¢ is a uniformaizer at P, then
we can replace f; by f;.
Since, if P # Py, vp(dz;) > 0 and vp(f;) > 0, and since deg(w,) = 29 — 2, we have

(we) = (29 — 2) P . " (10)

On the other hand, since P, lies over (Z;)eo = @iPoc and degPy = 1, 50 we have
€(Pwo|(Zi)oo) = ai. Since charK = 0, from Dedekind’s different theorem, d(PooI(Zi)w) =
e(Pwo|(Zi)oo) — 1 = @; — 1. Furthermore, in general,

(dz;) = —2(z;)e0 + Dif f(F/K(z:)) (11)

i=1,---,n, where Dif f(F/K(z:)) :== }_pep, X pr p d(P'|P) P is the different of F/K(z;).
Combmmg (10)(11) with (w,) = (dz;) — (fi), we obtain (f;)e = (@ + 29 — 1)Py. Since
(fs) is a principle divisor, ¥ 4(f;) = a; + 29 — 1. _ _

In this section, we obtain 2g independent elements in H'(A; K) over K for A =
k[Z1,: %] with (Z;)ec = @;Px, a; > 0, i = 1,+--,n. Hereafter, we denote w = 0
if differntial w € Q is exact, say H'(A; K) = Q. We can eliminate the highest degree
monomial in f;(z,,- - -, Tn)w,. with respect to > 4 by the relation dz; = fi(zy, -, Zs)w, =0
fori=1,..-,n.

Theorem 6 () is generated by

E Al @wr,) Kz ‘(h’w (12)
heH(A)

modulo exact differentials, where
H(A):=[{hh+29—-1-au0<i<a - Lv=1,--}U{29-1}jn< A>

and A = k[z,,- - -, %) with (i) = 6P, 6; 2 0,4 = 1,---,n. In particular, #H(A) =
2g.
Proof. From Theorem 3, A can be expressed by

a1—1

A= Z R[zllyl )
=0
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where y; := zMa(®), Then, from (9), we find g;;(21,%1, "1 ¥a-1) € A such that

dx{yz
W, = 13
gia(ZL, 9 Yar-1) (13)
for (j,1) € G(a1) == {(4,)]5 = 0,1,---,0 £ I < a, — 1}\{(0,0)}, and obtain
Talgjp) =jar+b+29—1. (14)

From d@y = 0 with (5,1) € G(a1), cxMaUer+h+29-Ly,, with ¢ € K can be reduced to
lowere degree terms. However, for each I, terms cz™4(%-1)y, and cgMalb+28-1-01%),, with
c€ K and v = 1,2, cannot be reduced using those relations. Hence, Q modulo exact
differentials is spanned by {z41®w,|h € H(A)}.

Furthermore, since dz € Q only if z € A' ®g K, and that all the linear relation we
can use for reduction is of the form dziy = 0 with (j,1) € G(a1) up to K, {zM4®w,|h €
H(A)} is actually linearly independent.

If we define by ¢; the minimal ¢; (0 <1 < a, ~ 1) such that ¢; = b + 29 — 1 mod a;,
then e; ranges over 0 < I < a; — 1, which means ¥, (b +2g—1—¢) = >, (bi+29—1-1).
Hence,

bh+29-1 h+29-1-1 bi+29g—1-—¢ “—lbl—l

where Proposition 1 has been applied in the last equality. So, we have

a-1

bh+29-1
S g +1=2
=0 1 .
if29—1€< A>, and

Y - =2
=0

if 2 — 1 ¢< A >. In any case, #H(A) =2¢. O
Example 7 If A = {a,b}, from Proposition 1 g = (e — 1)(b — 1)/2, thus 29 -1 =
b(a — 1) — a. We know there exists an injective ¢ : {0,-+,a — 1} = {0,-+-,a — 1} such
that b = ¢(l)b and ¢(0) = 0. Since

bi+29—1—ja=bp(l) +ab—a—b—ja=>bh({l)—1)+a(d—-1-j) € H(A)

for1 <!<a—-landl < j < b-1. However, forl =0, bo+29—1—ja = ab—(j+1)a—b ¢<
a,b >. Thus, we have

H(A) = {ja+b0<j<b-2,0<I<a-2}.
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Hence, Q is generated by {z/y'w,]0 < j < b—2,0 <! < a — 2} over K modulo exact
differentials. If the curve is superelliptic, the equation (4) with ag;, = 1 reduces to

b-1
Yo=X4+) ajX? .
=0

Then, w.=;4£— ins'generatedby {zj%:,fIOSij—2,1 <l<a-1}over K

a—1’

modulo exact differentials.

Example 8 If A = {4,6,5}, then H(A) = {0,4,5,6,8,9,10,14}. Hence,  is generated
by .
{w., Tw,, 2w, 2w, T2W,, YW,, TYW,, T YW, }

over K modulo exact differentials. Furthermore, if the curve is defined by
V=ol+z+1 P2=zy+z+1,

then '

_ dy _ dz

yz  2(3z2+1)/2  z(32z2+1)/2+y(y+1)’

| &

Wy =
and () is generated by

yz7yz’yz7y’y7ziz’ z
over K modulo exact differentials.

5 Kedlaya’s Method for Strongly Telescopic Curves
We apply Kedlaya’s method to strongly telescopic curves in n variables Z,, Z3, - - - , I, With
f = {5'2”3 = 7"2(:51)15,3"e = F"S(ilr j2)1 e ,fnm" = ﬁn(ih tee ,En—l)} ) (15)

where h; € k(Zy, -+ %), i=2,--+,n.
Let C be such a curve, and C' the affine curve obtained from C by deleting the support

of the divisors of Zy, - - -, Z,,; then the coordinate ring A of C' is k[Z,,Zo, * * + , T, T3 1, * + +, 252}/ ().
We fix A = R[z,,29,,Zp, 23", - -+, z;%]/(I) such that A®pgk = A, where

I= {z;u’ = hﬂ(xl)’ zg“ = h3(zla z?)? cte ’znm = hn(zl"' v :zn—l)} ’

and h; € R[z,,--+,%;,),i=2,--+,n, and let At be the weak completion of A.
Let v, denote the p-adic valuation on R. Then, Z Sty gy oo T € Al 8y s, €
£1 20,65 tn €Z

R, if and only if

lminf min  2(teae) oo (16)
r—00 {1 >0,r=|t;++tn] T



We can lift the p-power Frobenious to an endomorphism o of A! by defining it as
the canonical Witt vector Frobenius on R, then extending to R[z;] by mapping z; to zf.
Apparently, p divides z7 — z§ = 0. If p divides 2§ — 25, -+ ,z{_; — zf_,, then p divides

77 — 2f = hi(21, -+, %im1)” = hi(@1, 00, Ti)P
Thus, p divides h;(z1,:*,Zj—1)° — hj(Z1,+-+,Zj )P forall j = 1,---,n, and

hi($1, Tty -'L‘i—1)” - hi(ivh v :xi—l)p)_l/m
hi(xlv BRI zi-l)p
— z;"’ i( —l‘r[mi )(hi(zh .. ',-'Bi—l)cr - ('ti(xla v ',zi-l)p)" c At ®r K (17)

=0 i

(@) = =1+

Let F' = 0'%9; then F is a lift of the ¢-power Frobenius, so we may apply the Lefschetz
fixed point formula to it and use the result to compute the zeta function of C
Any form can be written as Z Z 8y, ga T - - Tdzy. Then, there are hf (2, -, %i—1) €
t120 ta, o tn
Klzy,-,%i-1), 1 =2,+-,n, such that

o dz, _ dzs == d2n (18)
TUogpthgmesl bzt gt ha(@1 s Tnui)

Notice that no common zero in the denominators: otherwise the curve is singular. Then,
the denominator 32~ - .-z ~! has degree Y. _, a;(m; — 1) equal to a; + 2g — 1, which
means the curve is telescopic (see Theorem 4). Thus, if t; > 0 for i = 2,-..,n, from the
theory in the previous section and (18), they are reduced to the case —m; +1 < <0
fori=2,-+,n.

From nonsmgula.nty of C, for any B € K|z,] and ¢;,1 = 2,---,n, there exist U,V €
K(z,,++,Zp-1] such that

~ B(z)
= U(z1, "+, Tn-1)h2(z1) * *  hn(z1, * *, Tn—1)
+V (21, * y Ta-1)[c2h3(z1) ha(Z1, Z2) * - An (1, -+, Tna)
+03$zh;($1, $2)h4($1, T, $3) e h(:cl, e, :Cn..1) + ‘
ot enZa Ta-rhy (21,00, Tnoi))] (19)

if ¢; # 0 for all i = 2,---,n. In fact, each pair of z; and hj(z,,-- S Tio1), 8= 2,000,
cannot be zero at the same time, so that we obtain U,V € K [1,++y Zn-1] Such that

1 = l_f(:m, te ,-'Bn—1)ha(1?1) tee hn(:ﬂz, Te ,-'b'r,s—l)
+V($1, Tty zn—l)[cah;(zl)hs(zb 322) s+ hn(z1,0 00 %—1)
+63$2h§($1, 32)’14(3'1, T, 23) + T 'En-lh;(iﬂl, . ';%-1)]
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and U =UB,V =VB € K[z, +*,Tn-1]. On the other hand,
S(xl’ . axn—l) ]
T2 ™. - ptn—mn
= dS($1, 7$n~1) ma—tz | 'xn Min —~tn
—(ta — M) S(21,- - -, Tpp1 )T~ LTI L . g tn g,
—_—ea — (tn —_ mﬂ)s(xl, ., z,,._l)z"""t’ xmul 1=tn- 1z -l—t,.dxn

= dS(zli.-.7zﬂ—1)h2(z1) hn(zls ,xn—l)/x : z';u
—S(zl,---,z.._l)[t’ 2 R (1) ha(@1,22) -+~ ha(21, )

0 = d

t.
+ :‘3 $2h3($1, z2)h4(z17 Z2, 373) h"(SDl, ) zﬂ—l)
) tn mn . dz,
Fot % Ik (a nh-l)]m (20)
for any S € K[zl,u-,:v,._l] ift;#m;foralli=2,.--,n.
Combining (19) and (20), there exist U,V € K|[zy," -+, Zp_1] such that
dz;  _ U(z1,-- -, Zp-1)dzy +dV (31,0 -+, Tn1)
B(zl)z? cegte Z8 ™ L gt —ma . (21)
Furthermore, from (18) and (21),
dV = a—Vd:m + -+ g-::idz
_ 6V oV dz, oV dz,
- [6z1 +3:v2dz +6 dz 1]dz1
_ [BV oV hy(z;) + 6V hy(zy,-- -,z,,_l)]dz
0z, 8:02 m’_l o0z, :5;"3"1 .. .z#n—l
Hence, there exist B,, ...,. € K[z,] such that
dzy  _ dz,
B(%)w = Z Bss,a (El)m (22)

B sty y8n-1<tn-1
with s, = t, — m,.

Therefore, if £; > m; for alli = 2, .., n, (22) can be applied to reduce the degrees of the
denominator. Hawever, even if 0 < ¢; < m; — 1 for some i, by multiplying denominator
and numerator by z;* and h;(z,), respectively, we can keep the degree of z; between
—m; + 1 and 0. In any case, the differential forms are generated by the basis, which
consists of 2g elements given by Theorem 1 with w, = zJ»~!...z™-1 Also, we notice
that for each k = 2,-.-,n, if my ft, then (sq,--+, k) # (0,---,0) during the reduction
process. Hence, there exist B,, ...,, € K(z,] such that

dr;y  _ dz;
B(xl)mz Z B’”,...’u(ﬁl)m | (23)

k 0<s2<mg—1,-,0<8,_1 <My 1 -1



for each 1 < s; < my with s; = £, mod my;. Therefore, All the forms with m; At; are
reduced to zMa)y, for some h € H(A). So, we obtain the following theorem from (17):

Theorem 7 If p fmy,: - -, my, then
{ Z KzMa®)y, ) = z KzMaB)y,, (24)

heH(A) heH(A)

Let M be the matrix of the action ¢, and denote the product by M = MM°M LIS ¥ L
Finally, we derive that the number of F,-rational points in the curve is ¢+1—Tr(M).
In fact, if we define

Ci = {(517"'155) EE‘;I};(EI)"Wfi) = 07j=2""1i}U{Poo}
C? = {(:'51, . --,f.') € Cg‘ig.l = 0}, and C,-l = C; — CP , we have

#Cl' - #O?—l = TT(qF:llK) - TT(QF:1|H1(’C[:B1,$2,- tt :zhz;l" “azi-llv K))

K|z)dz
= Tr(gF,'|K) - Tr(gF,"| )
OS‘zfmi‘l,'"s;Sli—lSW—l—l z;’ o $n_i$nm‘
- K|z|dz
—Tr(qu 1' z 82 [. _]_ zfi)
0<82<ma—1,,0<8—1 <Mi_1—1,1<8,<m;—1 ~ 2 i
= #C., - Tr®
foralli=2,...,n, and #C, = g + 1 where
. K
Tr) = Tr(gF.!| E —72[—3:]4—1:-,}- :
xz ) zi
0<83<ma~1,-+,0<8;<m;~1
Hence,
n
#Cn = q+1-) Tr®
=2
Klzldz
= q+1-Tr(gF!| . _.,____.,,U )

2o TEn
0<sa<ma—1,~0<sn<mn—1 £2 "~ 7 IW

= qg+1-Tr(gF | E KzMat®hy,,)
heH(A)

From a similar discussion in Section 2, we obtain #C,, = ¢+ 1 — Tr(M).

Example 9 For Example 7, the same basis, shown in Example 5, is obtained as the one
Gaudry and Giirel [1] showed for superelliptic curves with two variables.
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