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Spiral Conditions for Splines and Their Applications

to Curve Design

BREBRFHEFZEH HEH E (Manabu Sakai), Zulfiqar Habib
Dept of Mathematics and Computer Science, Kagoshima Univ.

Abstract
Walton & Meek obtained a G? fair curve by adding a spiral segment to one
end of an existing curve ([1]). The added segments are commonly quadratic,
T-cubic, general cubic and PH quintic spirals. We derive the larger regions for
the end points of two-parameter general cubic and PH quintic spirals.

1 Introduction

Spirals have several advantages of containing neither inflection points, singularities
nor curvature extrema. Such curves are useful in the design of fair curves. Walton &
Meek ([1]) considered a G? curve design with spiral segments.

The object of this paper is to examine their methods and obtain, in some cases,
larger reachable regions for the end points of quadratic, T-cubic, general cubic and PH
quintic spiral segments starting from the origin. The added segment passes through the
origin and is constrained by its beginning unit tangent vector (1,0) and its beginning
curvature. Sections 2-3 treat the cases (i) starts a non-inflection point with a radius
of curvature, r, and continues with a curvature of increasing magnitude up to a given
non-inflection point, or (ii): a segment starts a non-inflection point with a radius of
curvature, r, and continues with a curvature of decreasing magnitude up to a given non-
inflection point. Figure 1 shows that T-cubic spirals are more flexible than quadratic
ones. Sections 4-5 treat the two cases: (iii) a segment starts an inflection point with
a curvature of increasing magnitude up to a given radius of curvature, r, with a given
ending unit tangent vector (cosf,sinf), or (iv) starts a non-inflection point with a
given radius of curvature, r, and continues with a curvature of decreasing magnitude
up to an inflection point with a given ending unit tangent vector (cos#, sin §). Sections
2-5 consider the spiral curve z(t)(= (z(¢),y(t)),0 < t < 1 and obtain the reachable
regions for (§,7n)(= 2z(1)/r). Its signed curvature x(t) is given by

K(8) = 2'(t) x 2" (t)/ll2 (I (1.1)
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where ” x” and ||e|| mean the cross product of two vectors and the Euclidean norm,
respectively.

2 Quadratic spirals

This section first treats the cases (i) and (ii) for quadratic spirals whose unit tangent
vector are not fixed. Require the following conditions for 0 < 8 < 7/2:

z(0) =‘(0, 0), 2'(0)l(1,0), =2'(1) [l (cosb,sinf), «(0)=1/r (2.1)
to obtain
r'(t) = uo(1 = t) + (ult/r)cotd, o' (t) =uit/r (ug>0) (2.2)
Then, with t =1/(1 + s)
r2(1 + 8)* {rs(r tan 6 — up) cot 6 + ug(r sin f cos  — ug) csc? 6}

3
K(t) = ' 572
(1252 + 2rsug cot 6 + ud csc? 6)

(2.3)

Hence, the curvature is monotone increasing if 0 < up < (r/2)sin26 and monotone
decreasing if ug > rtan 6. Note with 2z = tan 8,

X)) (= i(rll) = (g’i (1 + %—) % (%)2) (2.4)

Since up = /27 and z = +/2n/(v/2€ — \/7), we obtain the necessary and sufficient
condition for the existence of a unique quadratic segment for given (§,7):

Lemma 2.1 The system of equations (2.4) has a unique solution (uo,2) satisfying

up, z > 0 if V26 > /7.

Now we derive the condition for the curvature to be monotone increasing or decreasing.
Case(i) (increasing curvature): Note

rsin2g _ 2ryA{v2€? - 3¢\/A+V2n(l+n)}

Ug — = 2.5

"2 2(€2 — V260 +n?) (25)

Hence, the unique quadratic spiral with a curvature of increasing magnitude exists if
&1 >0,v26 - 36+ V2n(1+1) <0 (2.6)

Case (ii) (decreasing curvature): Note

ug — rtanf = (2ry/7(€ — /2n)/ (V2 — /) (2.7)
Since &(1) = r2sin? §/u3(> 0), the unique quadratic spiral with a curvature of decreas-
ing magnitude exists if :
£ /a1 (>0) | (28)

Thus we have
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Theorem 2.1 The reachable region of increasing one is given by (2.6) (where the
equality means k'(1) = 0) and the reachable region for a quadratic spiral of decreasing
curvature magnitude is given by (2.8) (where the equality means k'(0) = 0).

3 T-cubic spirals

The section first treats the cases (i) and (ii) for two-parameter T-cubic spirals of the
form: 2'(t) = (u(t)® — v(t)?, 2u(t)v(t)) with linear u(t),v(t) where the unit tangent
vectors are not fixed. Require (2.1) for 0 < § < 7 to obtain

Cul(t) = uo(l —t) + {tud/(2r)} cot (6/2), w(t) =tul/(2r) (uo>0) (3.1)
Then, with t = 1/(1 + s)

128r%(1 + 5)° {rs(2r tan § — uf) sin 6 + uj(rsin§ — u})}

K(t) = (3.2)

3
(1 — cosb) (41'232 + 4rsud cot £ + ud esc? g)

Hence, the curvature is monotone increasing if 0 < up < v/rsinf and monotone de-
creasing if ug > (/2r tan (6/2). Easily we obtain with 2z = tan6/2

ud 2u?  uf ( 1 ) ug u?
¢ 12r { + rz * T2 \ 22 Vg m 672 * T2 (3.3)

Here, we note the necessary and sufficient condition for the existence of a unique T-
cubic segment for given (£, 7):

Lemma 3.1 The system of equations (3.8) has a unique solution (uo,z) satisfying

ug, 2 > 0 if VBE > (2 — 3n)./7.

Proof of lemma. As in [1], a change of variables: u2/r = g reduces (3.3) to
66 =29 + g%/z + (1 — 2%)g3/(227), 6n = g* + ¢°/= (3.4)

Eliminate z to obtain

8(9) (= o° — 3g* +126¢° — 367%) =0, 0<g</6n (3.5)
Then, |

(1+m)%p (\/f%/(l + m)) = 12n\/ﬁ:20aimi, m>0 (3.6)
where

(0‘610'51 04) = "3\/-77(1,6) 15)’ (a37a27 a’laaﬂ)
= 6v/6 (£ — 10, 3(€ — 3X),3(£ — 2X),€ — 2A(1 — 9A%)), A= y/n/6
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Since 2A(1 — 9X?) < 2X < 3X < 10X, ap < 0 implies a; < 0,1 < ¢ < 6. Combine
Descartes’ rule of signs and intermediate value of theorem to give the desired result if
ao > 0, i.e., £ > 2(1 — 9H)A(= (2 — 3n)4/n/6).

For £ > (2 — 37))\/%, we obtain the condition for the curvature to be monotone
increasing or decreasing.
Case (i) (increasing curvature): Note

ul — rsind = rg(g® + 3¢ — 24ng + 367%)/(¢° + g* — 12ng + 367%) (< 0) (3.7)
which requires g8 + 3g* — 24ng + 3692 < 0. Since ¢(g) = 0, it is reduced to
¥(g)(= g* + 669 —121) <0 (3.8)

Since £ > (2 — 3n) \/17]6, the unique positive zero ¢ of ¥(g) is less than /67. The
condition for ¢(c) > 0 is equivalent to the one for the equations of ¥(g) and ¢(g) —
m,m > 0 to have the common zero. Mathematica helps us reduce their Sylvester’s
resultant to

m?* + 36 {3¢? + 4n(1 + n) } m® + 432 {9¢* + 3¢?n(8 + 9n) + 2n*(9 + 147 + 9n?)}
+3888 {12§G + 3¢64(3 4+ 16€ + 24€%) + 420*(9 + 32n + 279%) + 161°(3 + 57 + 5n°
+3n°) } m + 46656727 (€, 7) . | (3.9)

where
J(€,1) = 36€° + 364(9 + 16n + 36n2) — 1262n(6 + 191 — 892 — 99°) + 47%(3 + 21 + 3n%)?

Thus, Descartes’ rule of signs implies that the unique T-cubic spiral with a curvature
of increasing magnitude exists if

J(&mn) <0, &n>0 (3.10)
Case (ii) (decreasing curvature): Note
ud — 2r tan (8/2) = 3gr(2n — ¢%)/(6n — ¢°) (> 0) (3.11)
which requires 0 < g < 4/27. Since
#(0) <0, #(y/2m) = 4ny/7 {66 — (6 - m)y/2n}
Lemma 3.1 requires ¢(1/27) > 0, i.e.,

6¢ > (6 —7)y/2n,n > 0 (312)

Since (1) = (1673 /uf)sin* (6/2) (> 0), the reachable region for the unique T-cubic
spiral with a curvature of decreasing magnitude is given by (3.12). Hence we have
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Theorem 3.1 The reachable region for a T-cubic spiral of increasing curvature mag-
nitude is given by (3.10) (where the equality means k'(1) = 0) and the reachable region
of decreasing one is given by (3.12) (where the equality means x'(0) = 0).

Fig. 1 (Cases (i)(heavy dots)-(ii)(light dots)). Regions for quadratic (left) and
T-cubic (right) spirals. :

4 General cubic spirals

This section treats cases (iii) - (iv) for general cubic two-parameter spirals where the
ending tangent vector is fixed.
Case (iii) (increasing curvature): Require for fixed 0 < § < 7w/2:

z(0) = (0,0), =2'(0)| (1,0), x(0)=0, 2'(1)|| (cosh,sinh), x(1)=1/r (4.1)
to obtain |
z(t) = {qrt/(6sin§)} [q {(3 -2t +m(3 -3t + t2)} + t*sin 29] ,y(t) = grt*sinf/3

| (4.2)
A symbolic manipulator helps us obtain

{z'(t)2 + y'(t)2}5/2 K'(t) = [qs'r“/ {4(1 + 5)° sin® 9}] i bis', t=1/(1+s) (4.3)

i=0
where
bo = 4{3gcosf — (4 +m)sinf}sinf, by =2 {6q2 — q(5 — 4m)sin 20 — 10m sin® 9}
by = 2¢{(—2+ 13m)q — 2m(4 — m) sin 26} , bz = 2mgq {(—3 + 10m)g — 2m sin 26}
by = 5m’q?, bs = m®¢?

Hence, we obtain a sufficient spiral condition, i.e., b; > 0,0 <7< 5:

Lemma 4.1 The general cubic segment 2(t),0 < t < 1 of the form (4.2) is a spiral
satisfying (4.1) if m > 3/10 and ,
0> a(m,6) (= Maz [(4 +m)tanf 2m(4—m)sin20 2msin26

3 ’ 13m — 2 " 10m -3’

-é {(5 — 4m) cosf + \/60m + (5 — 4m)?2 cos? 9} sin 0]) (4.4)
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where q(m, 0) = {(4 +m)/3}tand for m > 2(v/6 — 1)/5(~ 0.5797).
From (4.2), we have
(€,m) = (¢{(1 +m)q + sin 26} /(6 sin 6), g sin 6/3) (4.5)
Solve (4.5) for m, ¢ to obtain )
(m,q) = ((~3n + 2¢ sin® 6 — nsin 0sin 26)/(37°), 37/ (sin 0)) (4.6)

Note ¢ > {(4+m)/3}tanf and m > 2(v/6 — 1)/5 to obtain the reachable region
(indicated by heavy dots in Fig. 2 (left)) for the end points of the general cubic spiral

where
3(3 + 2v/6)n? + 5nsin  sin 26 27n% — 9n?sinftan f + 2nsin? 9
10sin° 6 2sin” tan 6
In addition,
n 3 sin 26
T < :
£~ (1+m)(4+m)+6cos?f (48)

Note that m = 1 and «'(1) = 0 (i.e., ¢ = (4 + m)/3tan@) are fixed in Walton &
Meek([1]) where the reachable region reduces to a single point:

£ =5(3sinf + 5secftanh) /27, 71 =5sinftan/9 (4.9)
Case (iv) (decreasing curvature): Require for fixed 0 < 6 < 7/2:
z(0) = (0,0), 2'(0)] (1,0), k(0)=1/r, 2'(1)| (cosf,sinf), x(1)=0 (4.10)

Then, transformation, i.e., rotation, shift, reflection with respect to y-axis and change
of variable ¢t with 1 — t to (4.2) gives

2(8) = {grt/(6sin6)} [gt {3 — (2 — m)t} cos +2(3 — 3t +t?) sin6)
(4.11)
y(t) = (¢*rt*/6) {3 — (2 — m)t}

Note that Lemma 4.1 is valid under the above transformation, or directly
; v
[0 + 07} K@) = - [0/ {40 +5)°sin?0}] S bis®, t=1/(1+5) (4.12)
i=0 )

Note o
&n) = (q {(1 + m)gcosf + 2sin6} /(6sinf), (1 + m)q2/6) (4.13)

Solve (4.13) for m, g to obtain

2n — 362 4+ 6€ncot§ — 3n?cot?
(m,q) = ( 1 0 j;zowy i ,3(£—ncot9)) (4.14)
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As in the above Case (iii), we obtain the reachable region (indicated by light dots in
Fig. 2 (left)) for the end points of the general cubic spiral

27(€ —ncot§)® > 9tan (€ — neot H)? + 2ntand
(4.15)
109 — 3(3 +2v6) (€ — ncot )2 > 0

Note that m = 1 and &'(0) = 0 (i.e, ¢ = (4 4+ m)/3tan6) are fixed in Walton &
Meek([1]) where the reachable region reduces to a single point:

§ =40tan6/27, n=25tan?6/27 (4.16)

5 PH quintic spirals |
This section treats cases (iii) and (iv) for two-parameter PH-quintic spiral segment of
the form: 2'(t) = (u(t)? — v(t)? 2u(t)v(t)). For later use, we note
{w2() + 2O} #(1) = 2 [{ulep" () — w"(B)o(t)} {u2(t) + 2@} (5.1)
=4 {u(t)v'(t) — v (Ov(®)} {ut)' (t) + v(t)o' (O)}] (= w(t))

Case (iii) (increasing curvature): Require (4.1) for fixed 0 < 6 < 7 to obtain

ut) _ _va [g{m(1 =) +2t} (1 - ) + 262 sinf], %_? — /ittsind  (5.2)

N 4sin § | 2
A symbolic manipulator helps us obtain
5
w(t) = [q"r“’/ {16(1 + 5)° sin? —g}] S cst, t=1/(1+3s) (5.3)
i=0 ’
where

co=16 {qsinﬁ — (6 + m) sin? g} ¢ =8 {Zq2 — q(4 — 3m)sin @ — 14m sin? g}
c2 = 4q{(-2+9m)q — 3(4 — m)sin 6}, c3 = 4mg {(—3 + 7m)q — 3msin 6}
cs = m?g* (=2 + Tm), cs = m3¢?

Hence, we obtain a sufficient spiral condition ¢;, 0 < i < 5 for z(t):

Lemma 5.1 The PH-quintic segment 2(t),0 < t < 1 of the form (5.3) is a spiral
satisfying (4.1) if m > 3/7 and

6+m_ 6 3m(4—m)sind 3msin @
> = —_— -
q—Q(m’e)( M“‘”[ 2 "2 T m—2 ' Tm=3
i { (4 —3m)sinf + \/56m(1 — cos ) + (4 — 3m)? sin? B}D (5.4)

where g(m, 8) = {(6 +m)/2} tan (6/2) for m > 2(—3 + v/30)/7(~ 0.707).
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With help of Mathematica (if necessary),

(i) €= q{(2+3m + 3m?)q®> + 2¢(3 + m) sinf + 24 cosH(1 — cos )}
£= 120(1 — cos8)

(5.5)
q{(3+m)g+ 12sin8}
60
Unlike in general cubic spirals, it is not easy to solve for m, ¢ and so the reachable region

() n=

(indicated by heavy dots in Fig. 2 (right)) is numerically determined. In addition,

N < 4(42 + 9m + m? + 24 cos ) sin 6 (5.6)
€ ~ 4(42 + 9m + m?) cos 0 + 3(48 + 56m + 50m? + 13m3 + m* + 32cos?9) '

Note that m = 1 and «'(1) = 0 (i.e., ¢ = {(6 +m)/2} tan (6/2)) are fixed in [1] where

the reachable region reduces to a single point:

£ = 7(69 + 26 cos 6 + 6 cos 28) sec? (6/2) tan (6/2)/240

(5.7)
n = 7(13 + 6 cos §) tan® (/2)/60

Case (iv) (decreasing curvature): Require (4.8) for fixed 0 < 8 < =m. Then,
transformation, i.e., rotation, shift, reflection with respect to y-axis and change of
variable ¢ with 1 — ¢t to (5.2) gives

9% = ﬁg‘é [qt{?—— (2—-m)t}cos—g +4(1 —~t)2sing} ,%t_;) = _q_t%ﬁ{z_ (2 — m)t}
(5.8)

Then, note that Lemma 5.1 remains valid under the transformation, i.e., rotation, shift,
reflection and change of variable, or directly

w(t) = — [¢*r?/ {16(1 + s)° sin’ 9/2)}] Zsjc,-ss-f, t=1/(1+s) (5.9)

1=0

With help of Mathematica (if necessary),

_q[244+ {24+ (24 3m 4 3m?)¢?} cos 6 + 2¢(3 + m) sin §]

@ ¢ 120(1 — cos @)

(5.10)
_ {23+ m)sinb + q(2 + 3m + 3m?)(1 + cos§)}
B 120sin6
The heavy and light dotted regions correspond to the cases (iii) and (iv), respectively.

Note that m = 1 and «'(0) = 0 (i.e., ¢ = {(6 +m)/2} tan (6/2)) are fixed in Walton &
Meek ([1]) where the region reduces to a single point:

€ = 7(26 + 75cos 8) sec? (0/2) tan (§/2)/240, n = 14}7‘tam2 (8/2)/40 (5.11)

Walton & Meek’s points by (4.9), (4.16) for general cubics and (5.7), (5.11) for PH-
quintic are denoted in black discs. B

(%) n
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Fig. 2 (Cases (iii)(light dotted region)-(iv)(heavy dotted region)). Regions for general
cubic (left) and PH-quintic (right) spirals for 8 = 7 /4(lower), 7 /3(upper).

6 Numerical Examples

Fig. 3. Vase profiles with G? cubic Bézier spiral segments and their shaded renditions.
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