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Generalization Properties of Integral Means
by H.Silverman

Shigeyoshi Owa, Daisuke Yagi and Nicolae N. Pascu

Abstract

For analytic and univalent functions f(z) with negative coefficients in the open unit disk
U, H.Silverman (Houston J. math. 23(1997)) has given some interesting results for integral
means of f(z). In the present paper, we discuss generalization properties of integral means
of f(z) given by H.Silverman. We also show some examples of our theorems.

'1 Introduction

Let A denote the class of functions f(z) of the form

o0

(1.1) f(z) =z+§:anz"

that are analytic in the open unit disk U = {z € C: |z| < 1}. Let S be the subclass of A
consisting of all univalent functions f(2) in U. Also let §* and K denote the subclasses
of § consisting of functions f(z) which are starlike and convex in U, respectively.

The class 7T is defined as the subclass of § consisting of all functions f(z) which are
given by

(1.2) f(z)=2z— ianz,, (an > 0).

n=2

Further, we denote by 7* = S* N7 and C = KN T. It is well-known by Silverman [3]
that
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Remark 1.1. A function f(z) € 7* if and only if

(1.3) | inan <L

n=2

A function f(z) € C if and only if

[e o]
(1.4) | ) nfa, <L

n=2

For f(z) € A and g(z) € A, f(2) is said to be subordinate to g(z) in U if there exists
an analytic function w(z) in U such that w(0) =0, lw(z)| < 1 (2 € U), and f(2) = g(w(2)).
We denote this subordination by

(1.5) f(z) < g(2). (cf.Duren[l])
For subordinations, Littlewood [2] has give the following integral mean.

Theorem A. If f(z) and g(2) are analytic in U.with f (z) < g(2), then, for A >0 and
lzj=r 0<r<1l),

27 P27 .
(19) [ isetpas < [ lotrePde.
0 0
Furthermore, Silverman [3] has shown that

Remark 1.2. fi(z) = z and fu(2) = 2 - % (n > 2) are extreme points of the class

n

T*or T). fi(2) =z and fo(2) =2 — i—z (n > 2) are extreme points of the class C.
Applying Theorem A with extreme points of 7', Silverman [4] has proved the follwing

results.

2
Theorem B. Suppose that f(z) € T, A > 0 and foz) = 2 — % Then, for z = re®

(0<r<1),

) 2% 2 '
(17) [Tueras [T inerae

2
Theorem C. Iff(2)€T,A>0, and fa(z) =2 - %—, then, for z = re“’ 0<r<l),

2n 2r | v
(18) [ i < [ ssras.

In the present paper, we consider the generalization properties for Theorem B and
Theorem C with f(z) € 7* and f(2) € C.



2 Generalization properties

Our first result for the generalization properties is contained in

zk

Theorem 2.1. Let f(2) €T*, A> 0, and fr(2) =2— ~— (k2 2)

k

L

-3
j+ 1
(2.1) ! = (02kjo1 + Ghj1 = Gk—j1) 2 0
j

il
[~

for k>3, then, forz=r1€? (0 <r < 1),

27 27
(2.2) f F(2)Pd8 < / |fu(2)Mds.

Proof. For f(z) € T*, we have to show that

2 0 -~ 27 zk—l \
1-— a,2" " |"dé < / 1 - —|"d8.
[ > o mpaos [ - S

By TheoremA, it sufficies to prove that

o 9 |
1- ; an2 <1~ —k—'
Let us define the function w(z) by
> 1
n—1 __ = k—1
(2.3) 1- Zanz =1- kw(z) .

n=2

It follws from (2.3) that

o = kY a1 (Z ka») -

n=2

Thus, we only show that

or

. If f(2) satisfies

117
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Indeed, we see that

k-2 k-3
anan-—< T )az-{—(l-— 2 )a3+...

1-—-2— +{1- ! + ap + 1+-1-
% ak—-2 k Q-1 T Ok A ap+1

2 k+1 k42
+(1+":)ak+2+ +(1+ .]: )azk+1+<1+ -;C- )a2k+2
e
k-2 k—3

= (azk—z—az)+ (a2k—3"¢l3)+"‘
k k
2

1 ,
Z(aks2 — Gk—2) + E(ak+l — Gp-1)

k kE+1
)azk-1+(1+7c-) azk+(1+ -;: )a2k+1

2k-2
4ot Y an
n=2
Nothing that -
1+—;f-l_>_1+-2—ﬁ (G =—1,0,1,---),
we obtain
1 [« k—2 k-3
(2.4) z (Z:: nan) 2~ (agk—2 — az) + 7 (agk—3 — as)

2 1
+F E(“k+z — Gp-2) + 'k'(ak-+1 - Gg-1)

(143 (142 an+
P A2k—1 +k' A2k .
EL—3 k-2
+ (14 =) asems + (14 == | ompma b

2k—2

+ Y e

n=2

2
(agk—1 + k1 — Bp—1) + E(a% + Qptz — Gk-2)

k-2
k
k-3 . >

+1

= Z :7——];-—(0'212-%-7'-—1 + Qi1 — k1) + E oo

j=0 n=2

Zzan

n=2

>t
2%

4+ 4 (@3k—a + Q2k—2 — az) + Z Gy

n=2
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with the follwing condition

k-l

-3 .

j+1

+

7 (@2h4jo1 + Qhrjrr = Qkjmr) 2 0.

.
{i
o

Thus, we observe that the function w(z) defined by (2.3) satisfies w(z) is analytic in U
with w(0) = 0, Jw(2)|] < 1 (z € U). This completes the proof of the theorem. O

Remark 2.1. Taking k =2 in Theorem 2.1, we have Theorem B by Silverman [4].
Example 2.1.  Let us define

— 37 2 1 3 l,,‘i__l__ 5
(25) f&) =2~ 556% ~ 187 " 28" 100"

and
1 3
(26) fa(Z) =z~ §Z
with k = 3 in Theorem 2.1. Since f(2) satisfies
i na, = -Z—H <1
— " 600 ’

we have f(z) € T*. Furthermore, f(z) satisfies,

l( + oy — )_l 1, 13T g
g\isTa4—02) =3\ \700 " 48~ 1200/

Thus, f(z) satisfies the coditions in Thorem 2.1 with k = 3.
If we take A = 2, then we have

2 1 20
/ |f(2)|?d6 < 2mr? (1 + §7'4) <gT= 6.9813:-- .
0

k
Corollary 2.1. Let f(2) € T, 0 < XA £ 2, and fi(2z) = z — Ek— (k > 2). If f(2)
satisfies (2.1) for k > 3, then, for z =re” (0 <r < 1),
om 1 3 1 3
(2.6) / |f(2)|*d8 < 277t (1 + sz—n) < 2n (1 + ﬁ> :
0

Proof. It follows that

o 2 =
| in@pas= [ - S-pas
0 . 0 »
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" Applying Hélder inequality for 0 < A < 2, we obtain that

[Trep z'”',fvdes(/f(‘zt*)fﬁd(J)%a(f (1—~—1) )

2m 2 L;—A 2 r4
- (/ |z|z—:>rda) (/ - —-—|2do)
0 0
3=2 3
= (mf"‘:*r) ’ (21:' (1 + 7}5#(’“”))

1 2
A 2(k—1
_27['1‘ (1 + _z.lr ( ))
A

1 2
<2ﬂ(1+ﬁ) .

Further, it is clear for A = 2. -

(X1}

For the generalization of Theorem C by Silverman [4], we have

k
Theorem 2.2. Let f(2) € T*, A >0, and fi(z) = 2 - _z_k_ (k > 2). Then, for z =re¥
(0<r<l),

2n 21
(27 [T ir@pae < [T ispas
0 0
Proof. For f(z) € T*, it is sufficient to show that
(2.8) 1- Znanz"“1 <1 -2kt
n=2

Let us define the function w(2) by

(2.9) 1- Znanz 1=1-w(x)",

n=2
or, by
o0
w(z) ! = Znanz" !
n=2
Since f(z) satisfies

[o 0]
Y na, <1,

n=2

the function w(z) is analytic in U, w(0) =0, and |w(2)| < 1 (z € U). O
Remark 2.2. If we take k = 2 in Theorem 2.2, then we have Theorem C by Silverman

[4].
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Using Holder inequality for Theorem 2.2, we have

kol

Corollary 2.2. Let f(2) € T*, 0 < A < 2, and fi(z) = 2z — Ek— (k > 2). Then, for
z=re? (0<r<1),

2w
| 1#@Pds < 20 4200} <2
0

3 Integral means for functions in the class C

In this section, we discuss the integral means for functions in the class C.

k

Theorem 3.1.  Let f(z) €C, A >0, and fi(z) =2 — z

w2 (k2 2). If f(z) satisfies

-1

3"

(k+5)(k — j)(

(3.1) 5

agk—j — aj) 2 0

I
N

j

for k > 3, then, forz=re® (0 <r <1),

27 27
(3.2) [ ir@pas < [T incras.
0 0
Proof.  For the proof, we need to show that
00 Lk-1
(33) 1-—- Za,,z <1- _]—‘.T
n=2

by Theorem A. Define the function w(z) by

(3.4) 7 1- Zanz =1- ~1—(.u(z)lc !

n=2

or by

(3.5) W)= (Za,, )

n=2

Therefore, we have to show that

S (z)

n=2 n=2
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Using the same technique as in the proof of Theorem 2.1, we see that

oo k—1 . . =)
1 2 (k + 5)(k - J)
2 (Z" a") 2 Z _T_(GZk—j ~a;) + Zan
n=2 j=2 n=2
> Z Q.
n=2

Example 3.1.  Consider the functions

R S TR S T
(3.6) f(z)==z 07 18z 10"
and
13
(3.7) fs(z) =2 - 5
with k = 3 in Theorem 3.1. Then we have that
-t 4 9 16
2 = — —_— —_—
;” =gt ta ="
which implies f(z) € C, and that
5
5(&4 - az) = {).

Thus f(z) satisfies the conditions of Theorem 3.1. If we make A =2, then we see that

27
/ If (2)[2d6 < 22 (1 + %M) < 1?61%" = 6.3607- - .
0

k
Corollary 3.1. Let f(z) €C, 0 <A< 2, and fi(2) = 2~ %5- (k > 2). If f(z) satisfies
the condition (8.1) for k > 3, then, for z = re (0<r<1),

2m 2
(3.8) f If (z)*df < 2mr* (1 + Elzrz(k-”)’
0
A
]_ 2
< 2w (1 + ;C-Z) .
zk

Theorem 3.2.  Let f(2) €C, A>0, and fi(2) =2 — = (k > 2). If f(z) satisfies

Further, we may have
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2k—2
(3.9) > ik - 5)a; <0,
=2
then, for z =re? (0<r<1),
2 27
(3.10) [Tirerss [ iaers
0 0
Example 3.2,  Take the functions
F) g L2 L Lo
(3.11) f(z) =2 51° ~18° 3%
and
1 3
(3.12) faz) =z -5
with k = 3 in Theorem 3.2. Since
f:nza —i+3—+-1§—§<1
&7 " T 24 718 T 48 6
and i !
2(3 - 2)(12 +3(3 - 3)&3 +- 4(3 - 4)(14 = 1—2- - ﬁ =0,

f(2) satisfies the conditions in Theorem 3.2. If we take A = 2, then we have

2r
[ i <o (1 4 %4) <2

0

2k

Corollary 3.2. Let f(2) € C, 0 < A £ 2, and fi(z) = 7z — 7 (k > 2). If f(z) satisfies

the condition (8.9) for k > 2, then, for z =re?® (0 <r <1),

2 3 3
f |F'(2)|*d6 < 27 (1 + 716-7"2(""1)) <2m (1 + %) :
0

4 Appendix
For analytic functions h(z) and g(z), Holder inequality gives that, for z = re
0<r<1l), '

W) [ werwwiae< ([ |h(z>|ﬂd9)% ([ Ig<Z>l"d0)%

1
with p > 1 and p + -(11- = 1. It follows from (4.1) that
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([ nerstanan)
([ |g<z>|qd6)%
A

Lettingp = —;—, 4=75 A > 2, we observe that the function f(z) in the class 7 satisfies

(4.2) /0 " h(2)|Pd8 >

(43) [Tiserae= [ (P e

0

, ([ If(2)|2«f_>%
o

o0 2
=(27r)25_'\ {217 (r2 + Z a,.zr"’”) }
n=2
. 3
=97 (1 + 5: a,,2r2("'1)) .

n=2

Further, when A = 2, we see that, for 2 =re¥ (0 <r <1),

2 oo
/ lf(z)lzde =27r? (1 + Z an2r2(""1))
0

n=2
<L2m (l + Z an2> .
n=2
Therefore, we conclude that |

Theorem 4.1. Let f(2) € T and A > 2. Then, for z =re” (0 <r <1),

n=2

A
. 2n oo 2
(4.4) f |f(2)]*d8 > 2mr? (1 +) :an"r"("‘”) .
0
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