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Abstract

In this paper, solutions to a nearly simple harmonic vibration equation
are discussed by means of N- fractional calculus, and some investigation
of the solutions are reported.
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Introduction ( Definition of Fractional Calculus)
(1) Definition. ( by K. Nishimoto )([1]Vol. 1)
Let D={D ,D,}, C={C_,C.,},
C_ be a curve along the cut joining two points z and - o +iIm(z),
C, be a curve along the cut joining two points z and ® + iIm(z),
D_be a domain surrounded by C_, D, be a domain surrounded by C, .

(Here D contains the points over the curve C ).
Moreover, let f = f(z) be a regular function in D(z €ED),

—(f) = _Tv+) h(9)
fo=(Fh=c(f), Py fC(C-z)"" ac  (ve&Z), (1)
(f)m= lim (N, (mEZ), (2)
where -% <arg({ -z)sn for C., Osarg(¢-2z)s2a forC, ,

=z, zEC, vER, T ;Gamma function,
then (f), is the fractional differintegration of arbitrary order v ( derivatives of
order v for v >0, and integrals of order -v for v <0 ), with respect to z , of
the function f , if |(f),| <.

(II) On the fractional calculus operator N* [ 3]
Theorem A. Let fractional calculus operator ( Nishimoto's Operator) N* be

N (F(zv;l)fc@ f)m) W&Z) [Referto(l)], (3)
with N'"'-vl_i.rg N (mezZ"), (4)
and define the binary operation © asm
NP oN®f = N®N°f= N*(N°f) (a,BER), (5)
then the set
| {N"}={N'|vER] (6)

is an Abelian product group ( having continuous index v ) which has the inverse
transform operator (N*)™ = N™ to the fractional calculus operator N* , for the
function f such that

fEFa{f; Oalfv}< ®, v ER}, where f = f(2) and zEC . (Vis. —® <v <® ),
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( For our convenience, we call NP oN? as product of N# and N%.)
Theorem B. " F.0.G. {N"} " is an" Action product group which has continuous
index v " for the set of F .( F.O.G. ; Fractional calculus operator group Y[ 31

§ 1. General solution to nearly simple harmonic vibration equations

Theorem 1. Let p €Ep° ={p:0=|p|<o,vER} , then the homogeneous

fractional order differintegral equation ( nearly simple harmonic vibration equation
for lel<<l)

. w=0, @=@¢) 0
‘ :(p2+t+(pw —O ( Z,EER.S#-Z) ( )
has the following general solutions .
(i) @ = ane"‘"")“’mw'
x[cos Bn,e)w* ¢t + isin B(n,_e)w“(“"t] , (1)
where
A(n, g)=cos B(n,c) (2), B(n, €)= sin f(n,£) (3)
and _ .
B(n,e)=n(1+2n)/(2+¢) (4)
for e ER.
(ii) =3 g, 6009
>
x[cos H(n, €) 0™t + isin H(n,e)w@ 1], (5)

where
G(n,e)=cos:r(%+n)r(a) (6), 'H(n,s)=sinn'(-21+n)r(e) (7)

and
r(e)=2(=¢/2)" (8)
k=0
for lel <2.
iii - o Pin,e)a'" 9
(iii) @ ; ace
x[cos O(n, &)w' ™ ™t + isin Q(n, &)o' ? t], (9)
where
P(n, €)= cos a(k +n) (1-5), (10)
Q(n,e) =sina($+n)(1-%) (11)

’
for lel<<1.



Where a, is an arbitrary constant correspond to B(n,e) and

m is finite when ¢ is a rational number, and

m is infinite when & is an irrational number. ‘
Note 1. We must call ( 9 ) as approximate ( or almost ) general solution to
equation ( 0 ), because it is not general solution in the strict sense.
Proof of (i)

Set @ =e*, ' (12)
then operate N™* to the both sides of ( 12 ), we have then
N2+e(p=(P2+c=A2+:eM . [1] (13)
Therefore, we have
A rw?=0, (14)
from(13),(12)and(0).
Hence
)" - (_w2)1/(7,+:) - ei:r(1+ 2n)/(2+ z)w21(2+c) ( 15 )
=y(ne) (n=0,12,,m) . (16)
Then letting
Bn,e)=m(1+2n)/(2+¢) (4)
we have
’ y(n, &) =P oY 0 (17)
= {A(n, €) +iB(n, £ }o>™*? (18)

where A(n, ¢)and B(n,e) are the ones shownby (2)and (3 ), respectively.
We have then a particular solution

(p=e7("»t)l (19)

{A(n,e) + i B(n,e)w?’ 39
=e =¢|, (denote) (20)

to equation ( 0 ).
Inversely ( 20 ) satisfies equation ( 0 ) clearly. Therefore, we have (1) from

¢=>a,l, (21)
n=0
as the general solution to equation ( 0 ), where g, is an arbitrary constant

correspond to B(n,¢).

Proof of (ii)
For el <2 , we have

=i, (22)
where r(e)=S(-e/2)". (8)
- 2
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We have then
B(n,e)=a(4+n)r(e) (23)
from(22)and(4).
Therefore, we have (5 ) from(23)and (1 ).
Proof of (iii)
For lel<<l, we have

r(e)-z(-alz)‘ ~1-%, (24)

then
B(n,e)=n(F+n)(1-%) . (25)
Therefore, we have (9 ) from (25 )and (5).
§ 2. Investigation for ¢| .

Here we investigate the solutions ‘Pl(,,) of the case (iii)in § 1.

Theorem 2. When w >0,

T ..
(PI(,) - e( NT¥{2r +)ex! dYw ¢ [COS Ql +(__ 1)r‘ sin Q { ]’ (26)
is convergent for

O<-eg<<l for r=2k (27
( O<e<<l for r-2k+1) ' )
where
Q=w(-%logw), (28)
‘Pl(,.) - P00 0 [cos O(n, &)o' “'®¢ +isin Q(n,e)w"“mt] v (29)
and k =0,1,2,-+ .

Proof. (1) Investigation for q)l(o)

When lel<<1, we have (29)from § 1.(20)having § 1. (10) and (11 ), since

q’l w~ e(P("'e)*i Q(n, £)}w!-(¢/D;
(n) .

In the case of n =0, we have
P0,8)w'""'? =(en/ Hw (30)
and ’
0(0,8)0" " Pmw(l-%logw)=Q (31)
H

from(10)and ( 11 ) respectively, because we have



E f_ ‘ 8_.7‘ ] k(sn_/4)2k+l
cosz(l 2) sin= _;(—1) ————(2k+1>! (lemw /4] <o), (32)
sin = (1- )- (-1 *M (lem/4l <o) (33)
2 ;0 (2k)! '
and
. o -U2\k
wl-(:/2)=w.es103w' =w;.(_§.£).g_::__..2_ (lGlng‘1/2'<w). (34)
.0 .

Therefore, we have
@l =

The solution ( 35 ) is divergent for £ >0 and is convergent (damping form) for

e(”M)M[OOSQt+l-Sith]r (lel<<1). (35)

€ <0Owhen w >0. And we have

OQ=w(l-£logw)>w (£<0,w>1). (36)
Then, letting
T, =2n/Q ; period of the function cos Q¢ ,
and
T, =2x/ w ; period of the function cos wt ,
we have

I,<T, (Q>w) when £<0.
That is, we have that " the period TQ of cos Ot =cos w(1- 7 log w)t is smaller
than the oneZ, of cos w?" when £<0, w>1.

(IT) Investigation for (p[m

Inthe case of n=1, we have

P(l,e)s=s - (en/ DHw (37)
and ’
QlLe=-w(l-flogw)=-0 (38)
from (10 ) and ( 11 ) respectively, because we have ’
3::( £ . €3m (3w /4)HH
cos —{l-—) = -sin— = - ——— (| e3m/4l<®), (39
> 2) sin 2 20( 1) kD! (le3x /4l <o) )
3::( £ e3m « (e3m14)™
sin—|1l-=) = - -—-—-- (1e3x/4]l <o), (40)
w5 2) cos 2( TR )
and ( 34).
Therefore, we have
@l =e” " [cos Qr - isinQ1], (lel<<l). (41)

The solution ( 41 ) is convergent ( damping form ) for € >0 and is divergent for
£ <Owhen w >0. And we have
Q=w(-4logw)<w (£>0,0>1) (42)
Then, in this case we have : v
I,>T, (Q<w) when >0, w>1.
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That is, we have that " the period T, of cos Qf =cos w(l—f logw)t is larger
than the oneT, of cos wz " wWhen ¢>0 w>1.
(I11) Investigation for ¢|, ,
Inthe case of 7 =2, we have
PR.,e)= (s5a/dHw (43)
)

and
02,e)=w(1-5logw)=0 (44)

from(10)and (11 )respectively, because we have
2k +1
coszt-(l—g) -sm—- 2( )"-(—E-M (le5n/dl<0),  (45)

2 & (2k +1)!
,Sn( € sSn (e5m/4)*
—i1l-= =oo———-— leSn /4l <), 46
sin > 2) S ;( ) ———— 20 (le <®) (46)
and (34).
Therefore, we have
@l =P [cos Qt +isinQ1t], (lel<<1). (47)

The solution ( 47 ) is divergent for £ >0 and is convergent ( damping form ) for

€ <0, w>0. And we have
O=w(l-4logw)>w (£<0,0>1). (48)

Therefore we have
I,<T, (Q>w) when £<0,w>l.

That is, we have that " the period 7, of cos Qf =cos w(1- f logw)t is smaller
(IV) Repeating the same procedure as (1) ~(I11), we have this theorem clearly.

Note. Notice that when @ >0 ,the solutions
@l (k=0,1,2,-+) are convergent ( damping form ) for ¢ <0 , and
@ l(u ., are convergent ( damping form ) for €>0 , respectively.

Theorem 3. When w >0 the nearly simple harmonic vibration equation

2 ww=0 » @= (p(t)a
. - 4
Pree + @ 0" =0 ( t,aER,IeI<<1) (49)
has converging alm ost general solutions '
P glz a @ly, when €<0 (50)
and
P
14 ~Z a2k+l‘pl(2/‘+1) when £>0 4 ( 51 )
=0
where |

p s finite when € is a rational number, and.

P Isinfinite when ¢ is an irrational number.
Proof. Itis clear from the proof of Theoem 2, since we have (9) as solutions to
equation ( 49) |
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§ 3. Some Graphs for ¢

To equation @,,, + - w?> =0 (O<e<<l) we havea
convergent ( damping form ) solution

P|, e PO [cos Qr - i sin Qt], (w>0).

To this function we have T,(>T,) as its period for ¢ >0,

Reg since Qmw(l-4logw) <w (>0, w>1),

-(8xie)er (g>0)
e [}
[}
- !
i

To equation @,+ @-w?* =0 (€ =0)we have the solution
Reg @ =cos wt +isinwt . The period of whichis T, = 2/ w .

(e =0)

\/ T (220 h

To equation @,,, + @ w’ =0 (O0<-g<<l) wehavea
convergent ( damping form ) solution

fl’,m)n-e“"“)"" [cos Q1 + isith]' (w>0)

To this function we have T,(< T,) as its period for ¢ <0,
Reg since Q= (l-£logw) > 0 (e<0,w>1)

<N ~__e (ex/d4)w (l:‘ <O)/\i

- 1

‘ ;

o \/ |

R

Fig.1. Caseof w>1.
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In Fig.1.,the graphs of Re (pl(o) and Re (pl(l) , for the case w >1,are shown in
which the portion of amplitude and the one of vibration are separated . When
0 <w < Lwe have Ty(of Re@| ) <T, (¢>0) and Ty(of Reg|,) >T, (£<0).

When o =1, we haveT, (of Re ¢ )=T, (¢>0) and Ty (of Reg|,) =T, (¢<0)

since we have Q=w(e>0,8<0).(See Fig.2 and Fig.3, respectively.)

(i) For example the nearly simple harmonic vibration equation
2.01

¢z+o.01+<p-w’=—‘;5?+¢-wz-o (¢=0.01>0) (52)
has solution
(p|(b§e-(omxaz/4)m [COS Ot - i Sith] (w>0), (53)
whose amplitudeis e *®*'¥®' and the period is
T, 2= 27 SE LT (0>l (54)
2" 0 w(1-0.005'logw) o °
(ii) The equation
N d199¢ 2
@001t PO ="&F5‘+¢'(D =0 (&e=-001<0) (55)
has solution
(p|(0)~e(-o.om4)m [COSQI+iSith]- (w > 0), (56)
whose amplitudeis ¢ “°**®*"  and the period is
TQ=2£=‘ 2n <2-£=Tw (w>1). (57)
0 w(1+0.005logw)
(iii) The equation
(p2+(p-w2=0 (58)

has solution

@g=coswt+isinwt . (59)

This solution is produced in the process in which ¢ changes its sign in the equ-
ation
2
Pruct @ =0 (49)

Notice that; When w >0,
Re ¢ | o having n = even number, give the same form damping vibration curves

as the one of Re @]  for £<0, and

(0
Re (pl ! having 7 = odd number, give the same form damping vibration curves

as the one of Re ¢|  for £>0.

)
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To equation @,,, + ¢ @’ =0 (0<e<<1) wehavea
convergent ( damping form ) solution

@l =e P [ cos Qr ~isin O], (w>0).

To this function we have 7,(<T,)as its period for ¢>0,
A since Q=w(l-£flogw)>w (>0, O<w<l).

e-(chM)wt (8 > 0)
‘

~
S -

\/ T)(&>0) o

To equation @,,, + @ w’ =0 (¢=0) we have a solution
R?(p @ =cosw! +isinw?. The period of whichis T, =2x/w .

A

(e=0) I
|
I

0 \_/ e K

To equation @,,, + @ w’ =0 (0<-¢<<1) we havea

convergent ( damping form ) solution

q)l(o) s e 0o Q1 +isinQt), (w>0).

To this function we have T,(>T,) as its period for € <0,
Reg since Q=w(l-%flogw)<w (<0, O<w<l).

e(:x/4)wl (8 <0)
/

-
el N

b - - —— -

T,(e <0)

Fig. 2, Caseof O<w< 1.
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To equation @,,, + @ @’ =0 (0<e<<1) we have a
convergent ( damping form ) solution

@l, =e " [cos Q1 —isin0r], (w>0).
To this function we have T,= T, as its period for >0,
Reg since Q=w(l-%logw)=w (¢>0, w=1).

e-(tS:rM)wl(s > O)

>
\/ To(e>0) =1,

To equation ¢,,, + @ w’=0 (e=0) we have a solution
Reg @ =cosw!+isinw?. The period of whichis T, =27/ w .

(e=0)

7,.(e=0)

To equation @,,, + (p-m2 =0 (0<-g<<1) wehavea
convergent ( damping form ) solution
@l o, = e“*' Y [cos Qt +isinQt], (w> 0).

‘To this function we have T,= T, as its period for € <0,
since Q=w(l-flogw)=w (e<0, w=1).

e(:z/4)wv (€<O)

\/ Le<0-T

Fig. 3. Caseof w=1.
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