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On The Order of Starlikeness and Strongly
Starlikeness of Convex Functions of Order o and
Strongly Convex of Order S

Mamoru Nunokawa (ffi/ll )

Let \A denote the set of functions

f(z)=2 +Z an2"

n=2

that are analytic in the unit disc E = {z : |z| < 1}. It is said to be starlike of order
a, 08 <1, if f(z) € Aand

Re (E%S)-) >a inE.

We denote by S;(a) this family of functions. It is said to be convex of order 2,0 S a < 1,

if f(z) € A and
Zf”(z)> ,
1+ Re <——-—-— >a inE
| )
We also denote by C(a) this family of functions.
A function f(z) € A is said to be strongly starlike of order 3,0 < 8 £ 1, if

()| <5 e

We denote this family of functions by SS8;(3). A function f(z) € A is said to be strongly
convex of order #,0< <1, if

larg (1+_z}f1’£_iz))_>’<_27[ﬂ in E.

This family of functions is denoted by SC(8).
A Marx [3] and E.Strohhacker [5] showed that if f(2) € C(0) then f(2) € & (-;-) It is

well known that the number % is the largest value of 3 for which the assertion C(0) C S:(9)
z
— z '
I.S.Jack (1] posed the more general problem:
What is the largest number 8(a) so that C(a) C S;(8(a))?
Now, we introduce the new classes of starlike and convex functions. It is said to be

holds, as is seen by the function f(z) = T
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strongly starlike of order ﬂ 0 < B £ 1, and starlike of order a,0 £ a < 1, if f(z) €

and )
451

We denote by SS;(«, 3) this family of functions.
On the other hand, it is said to be strongly convex of order 3,0 < f £ 1, and convex
of order @,0 S a < 1, if f(z) € Aand

14583

This family of functions is also denoted by SC(a,8). In [1}, L.S.Jack obtained the
following rsult.

Theorem A. If f(2) € C(e), then f(z) € S;(B(c)), where
Ba) 2 2 — 1+ 9 = da + 4a?
= 4 N

In [2], T.H.MacGregor claimed and conjectured the sharp result of 4(c) which improved
Theorem A as the following.

Theorem B. If f(z) € C(a), then f(2) € 8i(B(a)), where

1-2a . 1
22-2a(] — Q%-1) if a# 2

< —13 in E.

< -g-ﬁ in E.

fla) =
1 : 1

2log? ife=3
In [6], D.R.Wilken and J.Feng completed the proof of Theorem B.

Theorem 1. If f(z) € SC(o,n(B)), then f(z) € SSi(B(e),P), where 0 € @ < 1,0 <
B s,

n(B) = ﬂ+ %Tan"lF(ao),
G(a)
H(a)’

G(a) = (a + o (aﬂﬂgin (1'-(1 - ﬂ)) + ﬂl) - Qﬁ—(%'—“)sm (gﬂ) ,
o (a+a™) 5, (T (Bla)—a) (m
H(a) = (1 - fl)) + 57, 5@ Beos (3(1 - B)) + 2= cos (38) ,
1o Bl) |
1= B(a)’ |
(a,B,1) = a® + 20°1 cos (2[5’) + 12

F(GO) = Min0<a<oo F(a) = Min0<a<oo

d
an 1-2a

97-2a(] — g3a-1) if a# g

[y

[ )

Ble) =
1

2log2 o ifa=

N



Proof Let us put

and

Then we have

and
w(z) __ (1-Be)zq(z) _ (zq’ z)) q(2)
p(z) (1= B(a))g(z) + B(e) 9(2) / q(2) + {252
Then it follows that
) o wE
M =00

- (1= pla)ate) + ola) + (22) q(z)"’(z’ 4 (@) - a

Y P @) __a) _ Bl)-a
- {0 o+ (5F) e e }

If there exists a point z5 € E such that
' s
largg(z)] < -z—ﬁ for ]zl < |}
and

then from [4], we have

20 () _ g

Q(zo)
where _
1 1 T
> -— —-— b~
k2 5 (a + a) when argq(z) 2ﬁ
and
FS = (o hen argq(zo) = —
$-3 - when argg(z) = -3
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where 1
g(20)7 = xia, and a>0.
At first, let us suppose .
argg(z) = 56, (=)= (ia)?,
and a > 0, then we have " :
2f"(z
arg | 1+ —
1+ 755 )
ifk B(e) — a) —izp
= argq(2o) + arg< (1 — B(c +——-———-———+(-—-——— e 7
gq(20) +arg {( (@) P + T 7
: ot 641
= -é-ﬂ + arg {(1 - ﬂ(a)) + a?f + 24Plcos (%ﬂ) + ]2 + oF e 3

—
b

Then it follows that

| 72 arg{(1- o) +

a+a™?!

T

2(a,6,1)

B+J

say.

x

) (aﬂﬂe"g‘(l"ﬂ) + i) + (________,3(02’3— a) e 3%

')

a+at e Bla)—a\ . /.
(3 -2 l)) (a?Bsin (3(1 - B)) + 1) - (_(_;)7,—) sin (£6)
= Tan™} — a+a-1 s Bla) — a i
(1-B(a))+ (m) afBcos (-5(1 -8) + ("‘"'_'B__) cos (-5,3)
- G(a - . -
= Tonieco (it ) = Tonshece @) 2 Ton™ Flon).
Therefore, we have
"
arg (1 + Z(‘)f{(i:;) - a) 2 -72[,0 + Tan™! F(ao)
n
This contradicts the hypothesis of Theorem 1.
For the case argg(zy) = —g—ﬂ , applying the same method as the above, we can complete

the proof of Theorem 1.

Putting 8 = 1 in Theorem 1, we
J.Feng’s result [6].

obtain T.H.MacGregor [3] and D.R.Wilken and

Corollary 1. If f(z) € SC(a,n(1)) = 8C(a, 1) = C(a), then f(z) € SS:(B(a),1)

Si(B(a)).
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Proof In the proof of Theorem 1, let us suppose that if there exists a point 29 € E
such that .
largg(z)] < 3 for |2| < |2]

and

(s
Jarga(zo)] = 5,

then we have

q(20)
where ) )
s
> = - = -
k2 5 (a + a) when argq(zp) 5
d 1 1
.1
< -z et = -
k< 5 (a + a) when argg(zo) 5

where ¢(z,) = *ia and a > 0.
At first, let us suppose

NE

argg(z) = =,  q(%) =1ta

and a > 0, then we easily have H(a) > 0.
On the other hand, from A,Marx [3] and E.Strohhécker’s result [5], we have 8 2 - for

2
0 £ a < 1, therefore we have

Bl _
T-p@ 2t

(@a+a )l o)
2(a®+12) a

1 2 __[8
=_2__{a+l Y+1 ,B(a)+a}
L
2a

Then it follows that

G(a) =

a? + 12
{1(1"12)+1-—ﬂ(a)+a}

il

2+l2

1 -3
é'a(l 2 ﬁ(a)+a)

(1= (1~ a)B(a) - B(e)’)

>

oy

[\

(=]
=
2

2

Now then, Q(a) is a quadratic expression of 3(«), the axis of parabolic curve is ad <0,

this parabola opens downwards,

Q(0) =1~ (1-0)8(0) - A = 7,
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and
Q) =1-(1-0)4(1) - f(1)* =1,

This shows that Q(a) 2 0 for 0 £ « < 1, therefore we have G(a) 2 0 for 0 < a < oo and
it follows that
limyy0o G(a) = 0.

Therefore, we have

. . G
Ming<a<oo F(a) = limg 400 ("I?L(E%) =4,
and 5
n(l)=1+ ;Ta.n“lF(ao) =1.

For the case, .
argq(zo) = 3 ¢(z0) = —ia, a>0,

applying the same method as the above, we can complete the proof of Corollary 1.
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