On The Order of Starlikeness and Strongly Starlikeness of Convex Functions of Order α and Strongly Convex of Order β

Mamoru Nunokawa (布川 護)

Let A denote the set of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

that are analytic in the unit disc $\mathbb{E} = \{z : |z| < 1\}$. It is said to be starlike of order $\alpha, 0 \le \alpha < 1$, if $f(z) \in \mathcal{A}$ and

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha$$
 in \mathbb{E} .

We denote by $S_t(\alpha)$ this family of functions. It is said to be convex of order α , $0 \le \alpha < 1$, if $f(z) \in \mathcal{A}$ and

$$1 + \operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right) > \alpha$$
 in \mathbb{E} .

We also denote by $C(\alpha)$ this family of functions.

A function $f(z) \in \mathcal{A}$ is said to be strongly starlike of order $\beta, 0 < \beta \leq 1$, if

$$\left|\arg\left(\frac{zf'(z)}{f(z)}\right)\right| < \frac{\pi}{2}\beta$$
 in \mathbb{E} .

We denote this family of functions by $SS_t(\beta)$. A function $f(z) \in A$ is said to be strongly convex of order β , $0 < \beta \leq 1$, if

$$\left| \arg \left(1 + \frac{zf''(z)}{f'(z)} \right) \right| < \frac{\pi}{2}\beta$$
 in \mathbb{E} .

This family of functions is denoted by $SC(\beta)$.

A.Marx [3] and E.Strohhäcker [5] showed that if $f(z) \in \mathcal{C}(0)$ then $f(z) \in \mathcal{S}_t\left(\frac{1}{2}\right)$. It is

well known that the number $\frac{1}{2}$ is the largest value of β for which the assertion $\mathcal{C}(0) \subset \mathcal{S}_t(\beta)$ holds, as is seen by the function $f(z) = \frac{z}{1-z}$.

I.S.Jack [1] posed the more general problem:

What is the largest number $\beta(\alpha)$ so that $\mathcal{C}(\alpha) \subset \mathcal{S}_t(\beta(\alpha))$?

Now, we introduce the new classes of starlike and convex functions. It is said to be

and

strongly starlike of order β , $0 < \beta \leq 1$, and starlike of order α , $0 \leq \alpha < 1$, if $f(z) \in \mathcal{A}$ and

 $\left| \arg \left(\frac{zf'(z)}{f(z)} - \alpha \right) \right| < \frac{\pi}{2}\beta$ in E.

We denote by $SS_t(\alpha, \beta)$ this family of functions.

On the other hand, it is said to be strongly convex of order β , $0 < \beta \le 1$, and convex of order α , $0 \le \alpha < 1$, if $f(z) \in \mathcal{A}$ and

$$\left| \arg \left(1 + \frac{zf''(z)}{f'(z)} - \alpha \right) \right| < \frac{\pi}{2} \beta$$
 in \mathbb{E} .

This family of functions is also denoted by $SC(\alpha, \beta)$. In [1], I.S.Jack obtained the following rsult.

Theorem A. If $f(z) \in C(\alpha)$, then $f(z) \in S_t(\beta(\alpha))$, where

$$\beta(\alpha) \geqq \frac{2\alpha - 1 + \sqrt{9 - 4\alpha + 4\alpha^2}}{4}.$$

In [2], T.H.MacGregor claimed and conjectured the sharp result of $\beta(\alpha)$ which improved Theorem A as the following.

Theorem B. If $f(z) \in C(\alpha)$, then $f(z) \in S_t(\beta(\alpha))$, where

$$\beta(\alpha) = \begin{cases} \frac{1 - 2\alpha}{2^{2-2\alpha}(1 - 2^{2\alpha-1})} & \text{if } \alpha \neq \frac{1}{2} \\ \frac{1}{2\log 2} & \text{if } \alpha = \frac{1}{2} \end{cases}$$

In [6], D.R. Wilken and J. Feng completed the proof of Theorem B.

Theorem 1. If $f(z) \in \mathcal{SC}(\alpha, n(\beta))$, then $f(z) \in \mathcal{SS}_t(\beta(\alpha), \beta)$, where $0 \leq \alpha < 1, 0 < \beta \leq 1$,

$$n(\beta) = \beta + \frac{2}{\pi} \operatorname{Tan}^{-1} F(a_0),$$

$$F(a_0) = \operatorname{Min}_{0 < a < \infty} F(a) = \operatorname{Min}_{0 < a < \infty} \frac{G(a)}{H(a)},$$

$$G(a) = \frac{(a + a^{-1})}{2(a, \beta, l)} \left(a^{\beta} \beta \sin \left(\frac{\pi}{2} (1 - \beta) \right) + \beta l \right) - \frac{(\beta(\alpha) - \alpha)}{a^{\beta}} \sin \left(\frac{\pi}{2} \beta \right),$$

$$H(a) = (1 - \beta(\alpha)) + \frac{(a + a^{-1})}{2(a, \beta, l)} a^{\beta} \beta \cos \left(\frac{\pi}{2} (1 - \beta) \right) + \frac{(\beta(\alpha) - \alpha)}{a^{\beta}} \cos \left(\frac{\pi}{2} \beta \right),$$

$$l = \frac{\beta(\alpha)}{1 - \beta(\alpha)},$$

$$(a, \beta, l) = a^{2\beta} + 2a^{\beta} l \cos \left(\frac{\pi}{2} \beta \right) + l^{2}$$

$$\beta(\alpha) = \begin{cases} \frac{1 - 2\alpha}{2^{2-2\alpha} (1 - 2^{2\alpha - 1})} & \text{if } \alpha \neq \frac{1}{2} \\ \frac{1}{2 \log a} & \text{if } \alpha = \frac{1}{2}. \end{cases}$$

Proof Let us put

$$p(z) = \frac{zf'(z)}{f(z)}, \qquad p(0) = 1,$$

and

$$q(z) = \frac{p(z) - \beta(\alpha)}{1 - \beta(\alpha)}, \qquad q(0) = 1.$$

Then we have

$$p(z) = (1 - \beta(\alpha))q(z) + \beta(\alpha),$$

and

$$\frac{zp'(z)}{p(z)} = \frac{(1-\beta(\alpha))zq'(z)}{(1-\beta(\alpha))q(z)+\beta(\alpha)} = \left(\frac{zq'(z)}{q(z)}\right)\frac{q(z)}{q(z)+\frac{\beta(\alpha)}{1-\beta(\alpha)}}.$$

Then it follows that

$$\begin{aligned} 1 + \frac{zf''(z)}{f'(z)} - \alpha &= p(z) + \frac{zp'(z)}{p(z)} - \alpha \\ \\ &= (1 - \beta(\alpha))q(z) + \beta(\alpha) + \left(\frac{zq'(z)}{q(z)}\right) \frac{q(z)}{q(z) + \frac{\beta(\alpha)}{1 - \beta(\alpha)}} + \beta(\alpha) - \alpha \\ \\ &= q(z) \left\{ (1 - \beta(\alpha)) + \left(\frac{zq'(z)}{q(z)}\right) \frac{q(z)}{q(z) + \frac{\beta(\alpha)}{1 - \beta(\alpha)}} + \frac{\beta(\alpha) - \alpha}{q(z)} \right\}. \end{aligned}$$

If there exists a point $z_0 \in \mathbb{E}$ such that

$$|\arg q(z)| < \frac{\pi}{2}\beta$$
 for $|z| < |z_0|$

and

$$|argq(z_0)| = \frac{\pi}{2}\beta,$$

then from [4], we have

$$\frac{z_0q'(z_0)}{q(z_0)}=ik\beta$$

where

$$k \ge \frac{1}{2} \left(a + \frac{1}{a} \right)$$
 when $\arg q(z_0) = \frac{\pi}{2} \beta$

and

$$k \le -\frac{1}{2}\left(a + \frac{1}{a}\right)$$
 when $\arg q(z_0) = -\frac{\pi}{2}\beta$

where

$$q(z_0)^{\frac{1}{\beta}} = \pm ia$$
, and $a > 0$.

At first, let us suppose

$$\arg q(z_0) = \frac{\pi}{2}\beta, \qquad q(z_0) = (ia)^{\beta},$$

and a > 0, then we have

$$\arg\left(1 + \frac{zf''(z)}{f'(z)} - \alpha\right)$$

$$= \arg q(z_0) + \arg\left\{ (1 - \beta(\alpha)) + \frac{i\beta k}{(ia)^{\beta} + \frac{\beta(\alpha)}{1 - \beta(\alpha)}} + \left(\frac{\beta(\alpha) - \alpha}{a^{\beta}}\right) e^{-i\frac{\pi}{2}\beta} \right\}$$

$$= \frac{\pi}{2}\beta + \arg\left\{ (1 - \beta(\alpha)) + \frac{\beta k e^{i\frac{\pi}{2}} \left(a^{\beta} e^{-i\frac{\pi}{2}\beta} + l\right)}{a^{2\beta} + 2a^{\beta}l\cos\left(\frac{\pi}{2}\beta\right) + l^{2}} + \left(\frac{\beta(\alpha) - \alpha}{a^{\beta}}\right) e^{-i\frac{\pi}{2}\beta} \right\}$$

$$= \frac{\pi}{2}\beta + J \quad \text{say}.$$

Then it follows that

$$J \geqq \arg \left\{ (1-\beta(\alpha)) + \left(\frac{a+a^{-1}}{2(a,\beta,l)}\right) (a^{\beta}\beta e^{i\frac{\pi}{2}(1-\beta)} + i\beta l) + \left(\frac{\beta(\alpha)-\alpha}{a^{\beta}}\right) e^{-i\frac{\pi}{2}\beta} \right\}$$

$$= \operatorname{Tan}^{-1} \left\{ \frac{\left(\frac{a+a^{-1}}{2(a,\beta,l)}\right) \left(a^{\beta}\beta\sin\left(\frac{\pi}{2}(1-\beta)\right) + \beta l\right) - \left(\frac{\beta(\alpha)-\alpha}{a^{\beta}}\right)\sin\left(\frac{\pi}{2}\beta\right)}{(1-\beta(\alpha)) + \left(\frac{a+a^{-1}}{2(a,\beta,l)}\right) a^{\beta}\beta\cos\left(\frac{\pi}{2}(1-\beta)\right) + \left(\frac{\beta(\alpha)-\alpha}{a^{\beta}}\right)\cos\left(\frac{\pi}{2}\beta\right)} \right\}$$

$$= \operatorname{Tan}_{0 < a < \infty}^{-1} \left(\frac{G(a)}{H(a)} \right) = \operatorname{Tan}_{0 < a < \infty}^{-1} F(a) \ge \operatorname{Tan}^{-1} F(a_0).$$

Therefore, we have

$$\arg\left(1 + \frac{z_0 f''(z_0)}{f'(z_0)} - \alpha\right) \ge \frac{\pi}{2}\beta + \operatorname{Tan}^{-1} F(a_0)$$
$$= \frac{\pi}{2}n(\beta).$$

This contradicts the hypothesis of Theorem 1.

For the case $\arg q(z_0) = -\frac{\pi}{2}\beta$, applying the same method as the above, we can complete the proof of Theorem 1.

Putting $\beta = 1$ in Theorem 1, we obtain T.H.MacGregor [3] and D.R.Wilken and J.Feng's result [6].

Corollary 1. If $f(z) \in \mathcal{SC}(\alpha, n(1)) = \mathcal{SC}(\alpha, 1) = \mathcal{C}(\alpha)$, then $f(z) \in \mathcal{SS}_t(\beta(\alpha), 1) = \mathcal{S}_t(\beta(\alpha))$.

Proof In the proof of Theorem 1, let us suppose that if there exists a point $z_0 \in \mathbb{E}$ such that

$$|\arg q(z)| < \frac{\pi}{2}$$
 for $|z| < |z_0|$

and

$$|\arg q(z_0)|=rac{\pi}{2},$$

then we have

$$\frac{z_0q'(z_0)}{q(z_0)}=ik,$$

where

$$k \ge \frac{1}{2} \left(a + \frac{1}{a} \right)$$
 when $\arg q(z_0) = \frac{\pi}{2}$

and

$$k \le -\frac{1}{2}\left(a + \frac{1}{a}\right)$$
 when $\arg q(z_0) = -\frac{\pi}{2}$

where $q(z_0) = \pm ia$ and a > 0.

At first, let us suppose

$$\arg q(z_0) = \frac{\pi}{2}, \qquad q(z_0) = ia$$

and a > 0, then we easily have H(a) > 0.

On the other hand, from A,Marx [3] and E.Strohhäcker's result [5], we have $\beta \ge \frac{1}{2}$ for $0 \le \alpha < 1$, therefore we have

$$\frac{\beta(\alpha)}{1-\beta(\alpha)}=l\geq 1.$$

Then it follows that

$$G(a) = \frac{(a+a^{-1})l}{2(a^2+l^2)} - \frac{\beta(\alpha)}{a}$$

$$= \frac{1}{2a} \left\{ \frac{(a^2+l^2)l+l-l^3}{a^2+l^2} - \beta(\alpha) + \alpha \right\}$$

$$= \frac{1}{2a} \left\{ \frac{l(1-l^2)}{a^2+l^2} + l - \beta(\alpha) + \alpha \right\}$$

$$> \frac{1}{2a} \left(\frac{l-l^3}{l^2} + l - \beta(\alpha) + \alpha \right)$$

$$= \frac{1}{2a\beta(\alpha)} \left(1 - (1-\alpha)\beta(\alpha) - \beta(\alpha)^2 \right)$$

$$= \frac{1}{2a\beta(\alpha)} Q(\alpha) \quad \text{say.}$$

Now then, $Q(\alpha)$ is a quadratic expression of $\beta(\alpha)$, the axis of parabolic curve is $\frac{\alpha-1}{2} < 0$, this parabola opens downwards,

$$Q(0) = 1 - (1 - 0)\beta(0) - \beta(0)^{2} = \frac{1}{4},$$

and

$$Q(1) = 1 - (1 - 0)\beta(1) - \beta(1)^{2} = 1.$$

This shows that $Q(\alpha) \ge 0$ for $0 \le \alpha < 1$, therefore we have $G(a) \ge 0$ for $0 < a < \infty$ and it follows that

$$\lim_{a\to\infty}G(a)=0.$$

Therefore, we have

$$\operatorname{Min}_{0 < a < \infty} F(a) = \lim_{a \to \infty} \left(\frac{G(a)}{H(a)} \right) = 0,$$

and

$$n(1) = 1 + \frac{2}{\pi} \text{Tan}^{-1} F(a_0) = 1.$$

For the case,

$$\arg q(z_0) = -\frac{\pi}{2}, \qquad q(z_0) = -ia, \qquad a > 0,$$

applying the same method as the above, we can complete the proof of Corollary 1.

References

- [1] I.S.Jack, Functions starlike and convex of order α , J. London Math. Soc. (2), 3(1971), 469 474.
- [2] T.H.MacGregor, A subordination for convex functions of order α , J. London Math. Soc. (2), 9(1974), 530 536.
- [3] A.Marx, Untersuchungen über schlichte Abbildungen, Math. Ann. 107(1932/1933), 40 67.
- [4] M.Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc Japan Acad. 67(7), (1993), 234 237.
- [5] E.Strohhäcker, Beiträge zur Theorie der schlichten Funktionen, Math. Z. 37(1933), 356 - 380.
- [6] D.R. Wilken and J. Feng, A remark on convex and starlike functions, J. London Math. Soc. (2), 21(1980), 287 290.

Mamoru Nunokawa Emeritus Professor Department of Mathematics University of Gunma Aramaki, Maebashi, Gunma 371-8510 Japan