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1. Introduction

It is known in [10] that the normed conjugate product of gamma functions

such as
2 1

— 1
w12, (1 + z2/n2)’ (1)
is an infinitely divisible density. In the process in showing the infinite divisi-
bility of the probability distribution with density (1), a family of polynomials
with roots outside the unit disk appeared. From the infinite divisibility of
the above probability distribution and from numerical analysis of roots of the
terminating hypergeometric series we conjectured that the following density
function cousisting of normed conjugate product of gamma functions is an
infinitely divisible density.
CII‘(m+iw)'2 _ c

I'(m) I32o(1 + 2%/(m + n)?)
(cf. [1. 6.1.25]) In this case the Gauss hypergeometric series, i.e., 2F1(—n,
2m;2m + n + 1; z) appears in general form and it is much more complicated
than the case m = 1. We are necessary to study the location of roots of

the Gauss hypergeometric series in showing the infinite divisibility of the
probability distribution with density (2).

2P(1 - )01 +iz) =

(m € N) (2)

2. The hypergeondetric series doesn’t have roots
on the unit circle | |

Let
gn(2) = 2F1(—n,2m; 2m + n + 1; 2).
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It is often convenient for us to treat the polynomial 2™ g, (2) in stead of gn(2).
Consider the unit circle C : z =€ (0 <t < 2m). Let

‘We have

and

+

+

u(m,n;t) = Re e™t g, ("),

v(m,n;t) = Im €™ ga(e").

(=n)@m)

u(m,n;t) = cosmt + P r——

cos(m + 1)t

(—n)g(2m)2 cos(m +2)t  (—n)s(2m); cos(m + 3)t ey
‘ (2m+n+ 1)2 2! (2m+n+ 1)3 3!

(—n)k(2m)x cos(m + k)t
(2m+n+ 1) k!

(—=n)n(2m), cos(m 4 n)t
(2m+n+1), n!

+ ..

1) — & (=n)(2m)
v(m,n;t) =sinmt + o sin(m + 1)t
(—n)(2m)y sin(m+2)t | (—n)3(2m)s sin(m + 3)¢
(2m+n+1)2 2! (2m+n+1); 3!

(—n)x(2m); sin(m + k)t b
(2m+n+ 1) k!
(=n)n(2m)n sin(m + n)t
(2m +n+ 1), n! '

(4)

Here (a); = a(a+ 1)(a +2)--- (a+k — 1) denotes the Pochhammer symbol.
We note that u(m,n;t) and v(m,n;t) do not always make a Jordan curve
when ¢ runs through the interval [0,2n]. It is known in [1] that the Gauss
hypergeometric series is a solution of a differential equation. That is, gn(2)
satisfies the hypergeometric equation.

d2

z2(1-2) E;z'g"(z) +(2m+n+1—-(2m—n+ l)z)%gn(z) +2mngn(z) = 0. (5)

Lemma 1 When 1 < m and 1 < n the functions u(m,n;t) and v(m,n;?)
are solutions of the following differential equation

t o, t t
sin 5 t” (t) — ncos 3 z'(t) + (n + m)msin 5 z(t) = 0.

(6)



Proof. Let h(z) = z™gn(2). Then we obtain the following differential equa-
tion

21 = 2)h"(2) + (n + 1+ (n — 1)2)zh'(2) — (m + n)m(1 — 2)h(2) =0. (7)
If 2 = e we obtain the following equation

(1- e‘t)——d2Z£:it) n(l +e*)i ( il + (n+m)m(l — e®)h(e") =0 (8)

and hence we can see that the functions u(m,n;t) and v(m,n; t) are solutions
of the following differential equation

t t t
sin 3 z"(t) — ncos 3 z'(t) + (n + m)msin 5 z(t) = 0.

g.e.d.

By using the above Lemma we can obtain the following result.

Theorem 1. If 1 < m and 1 < n the Gauss hypergeometric series gn(z)
does not have roots on the unit circle.

Proof. In order to show that 2™g,(z) does not have roots on the unit circle
we will show that the following relation

w(t) = u(m,n;t)v'(m,n;t) — v'(m,n;t)v(m,n;t) = ¢(1 — cost)” (9)

holds, where c is positive constant not depending on the variable ¢. If and
only if tg = 0, 27 then w(tp) = 0. But we have cos(k + m)tp = 1 and by
Vandermode’s formula u(m,n;ty) = (n + 1),/(2m +n + 1), > 0 and so
v'(m,n;tg) = 0. Let us set

aft) =27 sin'zn(%)
and

B(t) =27 (n+1) sin‘2"(%).

Then the differential equation (6) can be written such as the following form,

{a(®)d' @)} + B(B)=(t) =
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and the wronskian w(t) can be expressed as the following form,
a(t)w(t) = c (const).
From the above differential equation we obtain
w(t) = {a(t)} e = c 22 sinzn(-;-).
To determine ¢ we take t = 7. Then it implies
w(r) = u(m,n; m)v'(m, n; w) — o' (m, n; T)v(m,n;m) = c 22,

We see that if m is an even positive integer then

w(m)
(=n)(2m) (=n)2(2m)2 | (=m)sm)s (=1)
= {1+ 2m+n+1(_1)+ (2m+2n+1)2 (2m+3n+ 1233 CTI
(=n)e(@m)e (=D)* (=n)n(2m)n (=1)"
+ 2m+n+1) K e 2m+n+1), n! -}
—n)(2 —-n)e(2m m+2

Am+ 2(m—f—)EzT)1 (m+1)(=1) + (ém -l)— ’I(L + )12)2 ( 2—*" )

L Ems@m)s (m43)(-1) |

@mtntl)s 3
(=n)x(@m)_(m +k)(=1)*

(2m +n + 1) k!
(=m)n(2m)n_(m +m)(=1)"

2m+n+ 1), n!

+ +...

+

} (10)

is positive and so c is positive constant. In the same way we see that if m is
an odd integer then c is positive constant. q.e.d.

3. The hypergeometric series has roots out-
side the unit disk

If m = 1 it is known in [9] that the roots of g.(z) appears outside the
closed unit disk. If n = 1 the root of g;(2) is z1 = (m + 1)/m and if n = 2
the roots of gz(2) are

_m+1m+2 . [3(m+2) _ m+1lm+2 . [3(m+2)
zl_2m+1(m+1+z m )’. z2—2m+1(m+1 ¢ m )




for all m € N. These roots are outside the unit disk. Concerning the roots of
the Gauss hypergeometric function gn(z) for n larger than 2 we obtain the
following result.

Theorem 2. If1 < m and 1 < n the Gauss hypergeometric series g,(2) has
roots outside the unit disk.

Proof. Let

p(-n: 2m;2m+n+1; t) = RE{zFl(—'n, 2m;2m +n+ 1; eit)} '

and
q(—n,2m; 2m +n + 1;t) = Im{3F1 (~n, 2m; 2m + n + 1;€*)}.
If t = 0 then |
(n+1),
- 2 '2 . = —
and
: (2m)n (n+ 1)n-1
- 2 '2 1' —-— — .
q’( n, am, m+n+ )0) 2m+n+1(2m+n+2)n_1<0
If t = then

n (—n)k(zm)k ("‘1)k — p(ﬂ')

p(=n,2m; 2m +n + Lim) = By (2m +n + 1)k!

and p(0) < p(7), and

(@m)n gy (=t De(@m + De(=1)

- > 0.
2m +n+ 1 *=° (2m + n + 2)ik!

d(-n,2m;2m+n+ 1;7) =

The closed interval [—1, 1] of real line is mapped to the interval [p(0), p(7)] of
the real positive line by the function g,(2). gn(€%) is symmetric on the inter-
val [0,27]. In order to show that all the roots of the Gauss hypergeometric
function g,(z) are outside the unit disk, it suffices to show that |gn(e®)|?
is strictly increasing in ¢ on the interval [0,7]. It suffices to show that the
derivative of the function |g,(e®)|? is positive in ¢ on the interval (0, 7). We

make use of the following formula
2 F1(—n, by c; 2)2 Fi(—n, b; ¢; Z)

- <_(*)i Fal-n,bye,1—n+b - c;22,(1 - 2)(1 - 2))
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for z = ¢, Z = e~ and b = 2m, ¢ = 2m +n + 1, where

Fyl-n,bjc,1—n+b—c;2Z,(1—2)(1 - 2Z)

_n gn CMras(0)ra(22)7[0 = 2) (1~ 2))°
= HreoXico (c)r(l —n+b—c)rls! '

From the above we obtain

l (ez't)l2 — (n + l)n yn I (—n),,+s(2m)r+3[2y]23
In @m+n+1), 7= 2m+n+ 1), (—2n),rls!’

where y denotes sin(t/2). By Vandermode’s formula we see that
‘gn(eit”z

- 2 () (") tn - svewr

=Vm+n+1)a2m+n+1)n\s n

Let us denote the derivative of |gn(e®)|2/2 by d(t). We can write d(t) such
as the following form

d(t) = nsin t[A0+AI(2y)2 + A2(2y)4 T +Aﬂ_2(2y)2(n-—2)
+An—1(2y)2(n_l)] s (11)

and the coefficient A,_; is given by

Ay = (Brogat (e [

2m+n+1)y 2m+n+1)j\n—j
for j = 1,2,--+,n. Since all the coefficients A,_; are positive we see that
the function d(¢) is positive on the interval (0,7).
g.e.d.

At last we mention of the computational result of the above theorem
3.1. The following curves which are images of the unit circle by the Gauss
hypergeometric functions g,(z) don’t enclose the origin and these graphs
show us that all the roots of g,(z) are outside the unit disk. The notation
log’ in the label means that the curve is the image of the unit circle by g,(z)
and it is modified by a transformation of logarithm. The figure 13 is the curve
of normal scale to contrast with the figure 14. The figure 15 is consisted of
curves of images of the 5 circles with radii r = 1, 0.95, 0.90, 0.85, 0.80.
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Figure 1: m=20,n=6 log Figure 2: m=20,n="7 log




Figure 7:”'1;1‘“:20,11:12 log

Figure 8: m=20,n=13 log

Figure 9: m=20,n=14 log
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Figure 14:‘_>._I'1}‘:40,n=40 log

Figure 13: m=40,n—=40
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Figure 15: m




