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Recurrent dimensions of quasi-periodic orbits
with multiple frequencies: Extended common multiples
and Diophantine conditions
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1. INTRODUCTION

We consider a finite set of irrational numbers {1, 72, ..., 7»}, which are ratio-
nally independent. Diophanitine conditions for these numbers, which are very
well known for the relations to the KAM theorem, are as follows:

There exist constants v,d : v > 0, d > n, which satisfy
.
Im|?

for every integers m = (my,my,...,my,) € Z", | € Z where | - | denotes
a usual Euclidean norm.

{(mmy +mmg + - + Tomy) = 1| 2

In our previous paper [5] we treat the case n = 2 and consider the Diophan-
tine sequences of {n;/mj,r;/l;} for {m, 7}, respectively. Then we define the
extended sets of positive integers, denoted by [M]g, [L]?, which are given by us-
ing certain finite sequences in {m;}, {/;} as bases, where k£ and s point out the
largest subscripts of the finite sequences and a,5 : 0 < a,8 < 1 are the pa-
rameters given by their lengths of the finite sequences in {m;}, {l;}, respectively.
We consider a sequence of positive integers in the intersection of the two sets:
T, € M ];’ N [L]fjf , which we call extended common multiples (abr. ECM). We
introduce do-ECM condition (or pairs) where

do = lim inf max{a;, 5;} < 1
j

and, also we introduce a parametrizing Diophanitne condition, which we call do-
(D) condition where dy is the infimum of the constants d in the usual Diophanitne
condition. Under some restrictive condition for the partial quotients of continued
fraction expansions (Hypotheses (A), (A’) in [5]) we have shown the relations
between the do-ECM condition and do-(D) condition. In this paper we treat the
general case n > 2 and show the relation between the two conditions without
assuming Hypotheses (A) or (A’).

Our plan of this paper is as follows. In section 2 we introduce the definition of
Extended Common Multiples. In section 3, introducing the definitions of §,-ECM
condition and dp-(D) condition, we show the inequality relations between these
two parameters dy and dy. In section 4 we estimate the recurrent dimensions of
quasi-periodic orbits with n irrational frequencies of (KL) class.
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2. EXTENDED COMMON MULTIPLES

Let us call an irrational number 7 a Khinchin-Lévy class number or (KL) class
number if, for the denominators {m;} of the Diophantine approximation of 7,
there exist constants Cq,Cy > 1, which satisfy

(2.1) Ci<m;<Ci, ViZio

for some jo € N.

Remark 2.1. In [1] Khinchin proved that almost all irrational numbers satisfy
(2.1) and furthermore, he had shown that there exists a constant v, which
satisfies
i =
Jim (my)% =0
for almost all irrational numbers. By Lévy this constant was estimated:

72
7o = eTi®? ~ 3.27582...

Let {1, T2, ...,7n} be rationally independent irrational numbers,
7; = [@i1, @i 2y .oy Giyjs -] DE the continued fraction expansion and
{ni1/miq, nig/Mig, .., Mg /Mg ...} be the Diophantine sequence of 7; for each
i€ {1,...,n}. We assume that 7;,i = 1,...,n are (KL) class numbers:

There exist constants C;;,C;2 > 0, which satisfy

(2.2) C;?;l < my; S‘Cf,z, Vi 2 Jio
for some j;0 € N,i=1,...,n.

In view of Remark 2.1 we use the following notations:

E1 = m_in C,',l, Ez = max C,',g.

We define the following sets of positive integers by using {m;;} as the bases.

For each i € {1,...,n}, let 0 < o; <1 and k; € N, then we put
IMi]g! = {m € N:m = pip,Mik; + Pij—1Mik—1 T + Diu; Mg,

k,' - U;

ki

Dikis Piws = 1, Dijj <

ki >u > 1:

=aw; Pij € No,Jj = i, u; + 1,..,k:

Dt ’ .7 = U, U; + 17 eey ki}'

1,5
Furthermore, we define
[M,-]f:f) = {m € N : m = D g, Mik; + Pijki—1Mig—1 +**° + PidMid,
pij ENo,j=d,d+1,.,k: -

- my,j :
Tiktl g <py < —282, j=d,d+1,..,k—1}

1 < Di ks <
miyki mi)j

and define

@ = | a9

ki=
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ford=0,1,2,..., i =1,...,n. Since m;o =, = 1, we note that
N = [M;)©.

Furthermore, since we have

m,;,122 if 0<Ti<%

and we have

m,-,1=1, m,-,222 if -;—<7','<1, '

n
we consider the intersection of the sets n[Mi] @) ag follows:

i=1

(2.3) di=1 if 0<Ti<-§- and d; =2 if %<7‘,~<1.

For each positive integer m we can consider the unique expression;
M = Pi kMg, + Digi—1Mik—1 + * = + Piju, M,

by introducing the lexicographical order as follows.
Hereafter we use the simplified notations pi = p;x,, mi = Mz, in the case not
confused. Assume that some number m has two expressions such that

M = PryMpy + Phy 1My -1+ *** + Puy My, 1= [ml]
= PryMiy + Phy—1Ma—1 + + * * =+ PupMu, 1= [M2].

Define [ml] < [m2] if ki < ko, or otherwise if k; = k and pr, < pg,, Or
otherwise if k; = ks and

Pky = Pkzs Phki—-1 = Phka—15""" s Pki—j+1 = Pka—j+1y Phi—j < Phy—j
for some j € N. Then we can take the largest expression for this order.
For example, note that p; < [mj11/m;] = a;3; and let
M = DM + QkMk-1 + Pr—2Mi—2 + * - + PuMu, Pk < Gkt1, Pr-2 2 1,
then we choose the expression

m = (pr + 1)mi + (Pk—2 — )mg—2 + « -+ + pumy,.
n

For our purpose we should choose a suitable subsequence in n{M](d‘) by the
i=1

following construction method.

(T) For a positive integer m:
M = Pij;Mik; T+ Diguyt 1M ui+1 T+ Pigu Mg
define §; : N — N by
G(m) = u;.



n
Define a sequence of positive integers T; € ﬂ[M,-](d") as follows. Let

i=1

Ty =min{m:m € ﬂ[Mi](d")}
i=1

and

7, = mingm € (YMI® : minG(m) > min (T}
i=1

Iteratively, let

Tj+1 = min{m € ﬁ[M,-]("") : min ¢i(m) > min G(Ty)}

=1

[T;] denotes the sequence {T}} in ()i_;[M;]*), which is constructed by the
method (T) and then we call [T} the sequence of extended common multiples
(abr. ECM).

Let ¢;(T;) = u;;, then we note that the sequence {min;u;;} is strictly in-
creasing and also, for each T; € (i, [M;](%), there exist sequences of parameters
(™}, { K9} i=1,..,n:

NO) oD W
(2.4) T_’, E [M]_]kfj) ﬂ [Mz]kg’) n M ﬂ [Mn]:,(:;)’ J - 1, 2, cene

3. ECM AND DIOPHANTINE CONDITIONS

In this section, introducing the Diophantine conditions, which are given by
parametrizing the famous Diophantine conditions in KAM theorem and consid-
ering a condition for the ECM sequence, we show some relations between the the
Diophantine condition and the ECM condition.

Let {r1,...,Ta} : 0 < T1,...,7a < 1, be rationally independent irrational num-
bers and let [T}] C (i, [Mi]*) be the ECM sequence constructed by (T) where
d; € {1,2} with (2.3). In view of (2.4), we put

dg := limjinf m'axa?).
Then we say that the n-tuples of irrationals {r,...,7,} satisfies 8o-(ECM) con-
dition or we call it a do-(ECM) class if 0 < dp < 1.

Usual definitions of the Diophanitine condition in KAM theorem are given as
follows.

There exist constants v,d : v > 0, d > n, which satisfy

Yy
|(7‘1m1 + e +’rnmn) — ll > TTI’T"i
for every integers m = (my,...,m,) € Z", | € Z where | - | denotes a usual

Euclidean norm.

107
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Here we say that {7y, ...,7} satisfies dop-(D) condition or we call it a do-(D)
class if there exists a constant dg : dg > n, such that, for each d > dy, there exists
~¥a > 0, which satisfies '

(3.1) [(mmy+ o+ Tamy) = 1| 2 —

for every integers m = (my,...,m,) €Z", l€ Z
and furthermore, for each d : 0 < d < dy and each v > 0, there exist integers
Moy = (Mypy, ...y Miny) € Z" and I, € Z, which satisfy

Y
(32) [(Timay + - o+ TaMny) — 4| < NG

By (3.2) the constant dy specifies the infimum value of d, which satisfies (3.1).

For the Liouville class numbers, we call {ry,..,7,} a 0o-(D) class if, for every
dy > 0, there exists d : d > dgy such that for each v > 0, there exist integers
Moy = (M1, ey Miny), by, Which satisfy

fy
[(rimaqy + o 4 TaMiny) — by < —.
v v) =y m. |2

Theorem 3.1. Let {r,...,7} be (KL) class irrational numbers, which satisfy
(2.1). Then, for constants do, 8 : do > 1, 0 < & <1, if {m,..., 72} satisfies do-
(D) condition, then it is a do-(ECM) class for some constant &y, which satisfies
do log Ey

. <1- .
(33) %<1 n+(n—1)dy logE;
and on the contrary, if {T1,...,Tn} Satisfies do-(ECM) condition, then it is a do-
(D) class for some constant dy : n < dy < 00, which satisfies
1-—8)log Ey

log E; )

Remark 3.2. Tt follows from Theorem 3.1 that, if {1, ..., 7.} i8 do~(D) class, then
it is dp-(ECM) class for

(3.4) do>n—1+2%

do—(n—1) logFE, do log E;
- . <P <1 — .
1 n log E; Sh =1 n+(n—1)dy logE,
Since F; =~ E,, we obtain the relation
do — (n—1) do
1l <Hp<l-—.
n =70= n+ (n—1)dg

It follows that the Liouville type condition (do ~ 00), which is of null measure
in the Lesbeague sense, yields the do-(ECM) condition: &y < (n —2)/(n — 1).
That is, if &g > (n — 2)/(n — 1), the set of irratrional numbers satisfies the
Diophantine condition: dy < co. If n = 2 and dy ~ o0, then we have §; = 0.
The typical example of 0-(ECM) is the class of irrational pairs, which admit a
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common subsequence in the denominators of the Diophantine approximations
such that

{mig;} C {max}, {mae;} C{mas}: {mix,} = {mas}.

On the other hand, since the class of n irrational numbers, which satisfy do-(D):
dy = n, is of full measure, it follows that almost all irrational class {7y, ..., 7,} is

50-(ECM) class for 6o = 1 — %
The proof is given by the transference theorem (cf. [1]) for the case where
s=1lm=nands=nm=1.

Theorem 3.3 (Transference Theorem). Define the linear forms L;,j =1, ..., s,
M,',’I: = 1, aam by

LJ(.'L') = Zﬂijxi, M,(’U,) = Z'ﬂﬁuj‘
=1 i=1
where we consider the case z;,u; € Z, ¥;; € R. Suppose that there are integers
z #0:
ILi(@)| £C, || < X,
for some constant C and X: 0 < C < 1 < X. Then there are integers u # 0:
[Mi(w)| £ D, |u| <,
where
D=(l- 1))((1—3)/(1—1)08/(1*1),
U=(-1) Xm/(l—l)c(l-m)/(l—l)’
l=m+s,
and ||a|| = min{|a — 2| : z € Z} for a € R.
Proof of Theorem 8.1. Let {7y, ..., T»} be do-(D) class, then for every d: 0 < d <
do and every v > 0, there exist integers m., = (M1,y, ..., Mny), Ly, Which satisfy

(i + -+ TaMpy) = by] < 1.
‘m'yl

We put
X = max{|myn|, oy [Mny|} < IMy|, C:=74X"%

By applying Transference Theorem with s = 1,m = n we can show that there
exist postive integers M., l14,..., lny, Which satisfy

(3.5) |nM, —liy| <D, |1aM, — byl < D,...,|TaMy — lnyl £ D,
(3.6) M, <U
where

D =nCx, U=nXC=1.
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It follows that _
(3.7) M, ~ ) <y X3,

I’r""]\l’)’ - ln,fy' < n’)’%X*gf,
M, <nX(yX %5t = nyn X1,
Since it follows that
X > (n"ytn M,,)?-?T:Ti)?,
we have
1My —liyly oy [TaMy = lng)
< ey (n iyt R M)A

(d+1)
= nﬂ:(ﬂ—l)dfyn+(n—1)dM "+("_ 13

We note that as v — 0, then M, — oco. In fact, if M, is bounded, then we can
take a convergent subsequence. Then, using (3.5) with D — 0 as v — 0, we
obtain a contradiction that 7; is a rational number.

Let v =1; : 7; — 0 as j — o0o. Consider the expressions of M., by {mi,kgj)}

e
M, € m[M]kcm
i=1
s
My, = Pyaomyo +Po_ My + 0+ P omy o € [ 1],,,0')

PNE)
= Poa M) T Py _(Mgpld g+ Py My ) € [M2]k<a)

)
pn,ks.j)mn,kg) + pn,k,(,.")—lmn,kgf)—l +-t pn,ug)m’n,"&j) € [M ]k(’)
Then we have

(38) In omy o+ + 0 0m 0) = (BN e+ P o0 o)l

m. . m, &
Lk +1 Luy +1
< ———Inm o —n el + -+ ——|nm o —n ol
m. .o Wy ky m, (i e T
1,k Lug
1 1
My 1) My W@
k(&") _uU)+1
1 (G 1)
S =%
Ckl Cl,l -1
1,1
E —(1—al k@



It follows that
(3.9) |r 1(P1’k§j)m1,k§j) + o +p1’u§j)m1’u§j)) - (Pl,kgi)nl,kgﬂ‘) +oee +P1,u§j>"1,uga‘))f

= nMy, — i

. d R 1 d @)
nt{n—1)d n+in—-15d — k
< c7jM7j < c7jmk§j) < c,yj(-E-};)an mat

(3.10) Cy; = nﬁ%%}mﬁﬁﬁ

where the first equality holds, since the first and the second terms are less than

one.
On the other hand, applying the argument in the proof of Theorem 4.4 in [5],
we have

(3.11) [ra(p, yormy o + -+ + Py 0) = Py oy 4 + - Py o1y o)

1 (3.4
>c > ¢ =)Ao k",
> o) 2 )
It follows from (3.9) and (3.11) that we have
1 (D) 1 d ()
="M o (2 Gk
g T Syl
Thus we have
. loge — loge,,.
o MNIog B> b g F 4 OBC T 0BGy
(1 al)og 2_n+(n_1)d10g 1+ kgj)
Since ¢ > ¢,, for small +;, we obtain
d IOg El

12 O <1- .
(3.12) e <1 n+(n—1)d logE,

for every d < dy. Similary, we have
d log E1

1 W<1- : | =2,...
(3.13) U= n+(n—1)d logE;’ PE S n
for every d < dy. Thus we can obtain the first estimate
— T @ <q_ do . log B
(3.14) do hjrr_l’glfm?xa, <1 ni n—1)d ogE <1.

Next, let {ri,...,7} be dp-(ECM) class: 0 < dp < 1. That is, there exists a
sequence [T;] of ECM, constructed by (T), which satisfies

T < (Y,

=1
oD ©) N
T; € [Ml]kfﬁ N [Mz]:g,.) n---N [M,,]Zg), j=1,2,..

for the sequences of real numbers agj) :0< a,(j ) < 1, j=1,2,... such that

0o = lim inf max agj )< 1.
j t

111
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Let

Tj =Py pomy g0 + Pip® 1Myl g T TPy 0y )
and

Nyj =Py om0 + Piad Mgy T PN 6

It follows from (3.8) that we can estimate

E —(1—a )
1Ty = Nygl < e B O
| —
and, similarly
1 1
InT; = Niy| < +oeet
mi,k,(”- ) mi,u? )
(@@
< B oW,

Fi—11 )
Thus we have

InT; — Nij| <C, i=1,..,n
where we can put

Ey —(l—max-agj))mimk("‘)
= E P P
C=g_1b

and also, since we have
T < UFONE
we can put
()
X = BEM™N >,

By applying Transference Theorem for s = n,m = 1, we can show that there
exists positive integers u; = (14, ..., nj), l;, which satisfy

(3.15) |(Tspizg + -+ + Tapin) = 15| < D, maxps; <U
where we have
D= nCX%‘l, U =nX~.
Since
:/l—ﬁlﬂjl Smaxpy; <U,
we have

(3.16) X> (ﬁ)”lujl“.
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And also, we have

—log Py (1 _max; aﬁj)) min; kgj)

_ log Eg
C = CEZ
u_—w(érm (1—max; a?)) 108 B,
— CE2 log Eg X" log Eg
Thus we have
L (1—max; al)) 10 By (1-max; a,-(f))los B -1
D=nX+lcE, "% XT  weh

For a small ¢; > 0 it follow from (3.15) and (3.16) that we have

[(Tiprg + - + Tabng) — Ul

log B1(1—max; agj))

<o 1 1

&

nlog B4 (1—max; a
Tog B

. l'ujltl . n—1+
|1l 51
Note that for each small £; > 0 we can admit a large number j, that is, T}:
maxagj) <d+e<1l
?
Since for every small 7y > 0, there exists a large number ji:

log B
v > cE;‘;‘—E% .

VJ 2 jl)
|l
we can show that there exist integers p; = (1,4, .- fin,j), lj, Which satisfy

v
I(Tlul,j 4 Tn/—‘"n,j) - l]‘ S Iu.l'"'—l"'n!l—a?(;:églogEl — .
i

Since all class of irrational numbers satisfy do-(D) condition for some dp : dy > 7,
or dy = oo and 1,2 can be given arbitrarily small, we can conclude that the
8o-(ECM) class of irrational numbers satisfies do-(D) condition for some dy:
n(l — &) log E;

log E2 )

do>n—1+

4. RECURRENT DIMENSIONS OF QUASI-PERIODIC ORBITS

In this section, considering a quasi-periodic orbit in a Banach space X with
n-irrational frequencies:

¥ ={o(l) € X : o(l) = f(ril,mal, ..., Tul), | € No},
we estimate the recurrent dimensions of ¥ (see [4] or [5] for the definitions).
Here, let f : R® — X be a nonlinear function, which satisfies the following
Holder conditions:
(H1) There exist constants K; >0 and ¢, : 0< ¥ < 1, which satisfy
n

”f(th '",tn) - f(sh eeey Sn)n < Kl Z |ti - silﬂl’ t,-,S,‘ eR: z ltﬂ - S," <€

=1
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for a small constant g3 > 0.

(H2) There exist constants K; > 0 and ¥, : 0 < ¥, <1, which satisfy
- 1
”f(tl, ...,tn) - f(Sl, ...,Sn)” Z K2 Z |ti - 8,;'192, t,;, S; € R: ltz - Sil S -2-
i=1

Then, by applying the arguments in the proof of Theorem 3.3 and Theorem 4.4
in [5] to the n frequencies cases, we can estimate the upper and lower recurrent
dimensions as follows.

Theorem 4.1. Under Hypothesis (H1), let {r,...,7} be (KL) class numbers
and for the sequence [T;] of ECM, constructed by the method (T), such that

©) ) o

7}' 6 [Ml]:g:n n [M2]:§’) ﬂ e n [Mn]k,(:;), J = 1’ 2, seey

assume that the sequences of real numbers ag") 10 <L agj) <1l j=12..,
satisfies

g := lim inf max agj) <1
J i
Then we have
(4.1) d(z) < — o8
' = - (1 - 50)‘191 log E4 '

For the lower estimate we need the following Hypotheses on the partial quo-
tients of continued fraction expansions of 7;: 7 = [a;1,@i2, ..., @i j,...] Where we
consider the case 0 < 7; < 1/2, i = 1,...,2 for simplicity.

(A) @222 or aip=1 and a3=1, i=1,..,n

Theorem 4.2. Under Hypotheses (H2) and (A), let the irrational frequencies
1i:0< 71 <1/2,i=1,..,n be (KL) class numbers. We assume that the infinite
sequence of ECM [T}], constructed by the method ('T), satisfies

01 = limsupmaxagj) < 1.
j ?

Then we have
- log E

4.2 ) > .
(42) &(2) 2 (1—6,)9;log E;

Using Theorem 4.1 and Theorem 4.2, we can also estimate the gaps of the
recurrent dimensions, defined by

9:(Z) = do(Z) - 4, ().

Corollary 4.3. Under Hypotheses (H1), (H2) and (A), let the irrational fre-
quencies 7; 1 0 < 1, < 1/2, i=1,...,n be (KL) class numbers. Assume the same
Hypotheses as those of Theorem 4.1 and Theorem 4.2 for ECM [T;] C (),[Mi]®),
given by (T), with the parameters 8y,8;. Then we have

log E log E,
4. () 2 - .
( 3) 9 (2) - (1 - 61)’!92 IOg Eg (1 - (50)'&91 log E1
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Remark 4.4. Since we can take the limit suprerhum in (3.14), we have

; do 10g E1
6, = limsupmaxol® <1 - . .
: j-—-)oop i T n+(n—1)dy log E;
Thus, considering E; ~ E,, the gaps of the recurrent dimensions become positive
if the difference between d; and dy is positive and %, ~ ¥5. However, for the case
where the Diophantine condition is satisfied and dy = n, we have

Sy =6y =1——.
n

The gaps between §; and §, can be positive in the null measure case where do > n.
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