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Nonsmooth Fractional Programming

with Generalized Ratio Invexity

Do Sang Kim* and Sung Je Kim

Division of Mathematical Sciences

Pukyong National University
Pusan 608-737, Korea

Abstract: In this paper, we consider nonsmooth fractional programming problems with gen-
eralized ratio invexity. We present necessary and sufficient optimality theorems and establish

duality theorems for nonsmooth fractional programming under suitable p-invexity assumptions.

1 Intorduction

We consider the following nonsmooth fractional programming problem :

(NFP) Minimize f(z)

9(z)
subject to z€X ={zreR"hj(z) L0, j=1,---,m},
where f,g:R® - R, and h; : R > R, j=1,---,m, are locally Lipschitz functions. We assume

in the sequel that f(z) = 0 and g(z) > 0 on R™.

Jeyakumar (3] defined p-invexity for nonsmooth optimization problems, and Kuk et al. [6]
defined the concept of V-p-invexity for vector valued functions, which is a generalization of the V-
invex function [4]. Khan and Hanson [5]and Reddy and Mukherjee [8] applied the (generalized)

ratio invexity concept for single objective fractional programming problems.
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Recently, Liang et al. [7] introduced the concept of (F,a, p,d)-convexity and presented
optimality and duality results for a class of nonlinear fractional programming problems under
generalized convexity and the properties of sublinear functional. In this paper, we present a
result about the fractional objective function based on p-invexity assumptions. By using p-
invexity of fractional function, we obtain necessary and sufficient optimality conditions and

duality theorems for nonsmooth fractional programming problems.

2 Definitions and Generalized Invexity of Fractional Function

The real-valued function f : R® — R is said to be locally Lipschitz if for any z € R™ there exists

a positive constant K and a neighborhood N of z such that, for each z, y € N,

|f(z) — f()| £ Kllz -y,

where | - || denotes any norm in R”. The Clarke generalized directional derivative of a locally

Lipschitz function f at z in the direction d € R", denote by f(z;d), is defined as follows:

fO(=z; d) = limsup t~(f(y + td) — f(¥)),

y—z 0
where y is a vector in R™.
The Clarke generalized subgradient of f at z is denoted by
af(z) ={¢: f(z;d) 2 éd, VdeR"}.

Definition 2.1 f is said to be regular at z if for all d € R™ the one-sided directional derivative

f'(z;d) exists and f'(z;d) = fO(z;d).

Definition 2.2 A locally Lipschitz function f : Xo — R is said to be p-invez at zp € Xo with
respect to functions n and 0 : Xo x Xog — IR™ if there exists p € R such that for any z € Xo,
and any € € df(xp),

f(x) - f(zO) = 577(3", -7:0) + P“g(x, zO)”za
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where 0(z, zg) # 0 if  # xq.
When p = 0, the definition of p-invexity reduces to the notion of invexity in the sense of

Hanson [2].

Remark. When f is of class C1 in Definition 2.2, then the above inequality reduces to

f(@) = f(@o) 2 fl,n+ pll6(z, z0) ||
where f; is the Frechet derivative of f at xo.

Theorem 2.1 If f and —g are p-invex with respect to n and 8, and f and —g are regular at

Zo, then the fractional objective function f(z)/g(z) is p-inver with respect to fj and 6, where

7z, 70) = (9(z0)/9(x)In(z,20), B(z,70) = (1/9(=))"/*0(x, zo).
Proof. Let z,zo € Xo. By the p—im'rexity of f and —g, we have
f(z)/g9(z) — f(20)/g(z0)
= (f(z) — f(z0))/9(z) — f(zo)(g(z) — 9(z0))/9(2)g(z0)
2 (1/g(x))én(=, z0) + pll(1/9(x))"/26(x, z0)||?

+(f(0)/(9(z)9(0))(=¢n(z, z0) + l8(z, z0) 1),

for any z € Xo, any £ € 0f(xo) and any ¢ € dg(zg). Since f(z) > 0 and g(z) > 0,

f(@)/g9(z) — f(z0)/9(x0)
= (g(z0)/9(2))((&/g(m0))n(z, z0) + (— F(0)¢/ (9% (%0))n(z, T0))

+oll(1/9(2))/2(1 + (F(20)/9(0)))*/*6(z, o) |I*.

Since f and —g are regular at zg, we obtain, for any & € 8(f(z0)/g(0)),

f(z)/9(z) — f(z0)/9(z0)
2 (9(z0)/9(2))bn(z, z0) + pll(1/9(2))**(1 + (f(20)/9(20)))*/*6(=, zo)|*.

Considering that

1+ f(z0)/g(z0) 2 1,



119

we have

f(@)/g9(z) — f(0)/9(z0)

2 (g(xo)/g(2))8n(w, 0) + pll(1/9(2))"/6(z, zo) >

Therefore, the function f(z)/g(z) is p-invex, where
7i(z, z0) = (9(z0)/9(x))n(, %0),
6(z, 20) = (1/9(2))"/?6(z, z0).
3 Optimality Conditions

The Cottle constraint qualification
The Cottle constraint qualification is satisfied at zo if either hj(zg) <O forall j=1,--- ,m

or 0 ¢ conv{8hj(zo) : hj(zo) = 0}, where convS denotes the convex hull of a set S.
By Theorem 6.1.1 in [1], we can present the following Fritz John necessary conditions.

Theorem 3.1 (Fritz John Necessary Conditions). If zo € X is an optimal solution of
(NFP), then there exist A and rj, j =1,2,--- ,m, such that

0e ,\a(g((iz;) + zrjahj(wo),

j=1

erhj(xo) =0,
j=1
(A7, 0 y,Tm) 20 and (71, ,7m) 0.

Assuming the Cottle constraint qualification, we obtain the Karush-Kuhn-Tucker necessary

conditions.
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Theorem 3.2 (Karush-Kuhn-Tucker Necessary Conditions). Assume that zg € X is an
optimal solution for (NFP) at which the Cottle constraint qualification is satisfied. Then there

exist p; 20,5 =1,2,---,m, such that

0€ 0(LEDY 1 37 00 a0),

9(@0)/

Z pihi(zo) =0,

j=1

(/.b]_,"' )#m) .% 0.

Theorem 3.3 (Karush-Kuhn-Tucker Sufficient Conditions). Let (zg, i) satisfy the Karush-

Kuhn-Tucker conditions as follows:

f@o)y | v
0¢ a(g(mg)) + j;ujahj(wo),

m
> ujhi(zo) =0,
j=1

(ﬂ'l’"' 1.um) 2 0.

Assume that f and —g are p-invez at o with respect to n and 8, and f and —g are regular
at 2o, and h; is pj-invez at zo with respect to 7] and 6 with p+ Y72, pp 2 0.

Then zo is an optimal solution of (NFP).

Proof. Let x9, z € X and (zo, 1) satisfy the Karush-Kuhn-Tucker conditions. Then there exist
6 € 8(f(x0)/g(z0)) and v; € Ohj(zo) such that § + 372 pjy; = 0 and 371, pihj(zo) = O.

Since f and —g are p-invex at zo with respect to 7 and 8 and regular at zo,
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then by Theroem 2.1 we have

f(=)/9(z) — f(x0)/9(z0)

2 (—g(x)/9(20)) Y yvin(z, zo) + pll(1/9(2))"/*0(z, z0)|I?
j=1

= " uihi(mo) + ) pihi(=).
j=1 7j=1

Since h; is pg.-invex at 2o with respect to 7 and , we obtain
f(=)/9(z) — f(z0)/g(x0)

m
2 (p+ Y 1ipi)l0(z, zo)|>
=1

v
e

Therefore, zp is an optimal solution of (NFP).

4 Duality Theorems

We consider the following Mond-Weir dual problem to (NFP):

imiz &-)—
(NFD))s Max e o(a)

subject to 0¢ a(f(u)/g(u)) + Zujahj(u),

j=1
> uihi(u) 20,
£

J

(ul"" ,ﬂ"m)go

Theorem 4.1 (Weak Duality). Let x be feasible for (NFP) and (u, 1) feasible for (NFD)ys.
Assume that f and —g are p-invex with respect to n and 8, and f and —g are regular functions,

and h; is pj-invez with respect to 7} and 8 with p + Y721 pip; 2 0.
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Then

Proof. Since f and —g are p-invex with respect to n and 8, and regular, and (u, p) is feasible

for (NFD)pys, then by Theorem 2.1 we have
f(z)/9(z) - £(u)/g(u)

> (—g(w)/9(x)) Y _ ujvin(z, u) + pll(1/g(z))/20(z, w)||?,

j=1
for some ~; € Oh;(u). Since h; is p}-invex with respect to # and 6, we obtain
f(z)/g(z) — f(u)/g(u)
2 (4> w0z WP

j=1

2 0.

Theorem 4.2 (Strong Duality). Let Z be an optimal solution for (NFP) at which the Cottle
constraint qualification is satisfied. Then there exists [i such that (&, i) is feasible for (NFD)yy.
Moreover, if f, g and h satisfy the conditions of Theorem 4.1, then (Z, i) is an optimal solution

of (NFD)y; and the optimal values of (NFP) and (NFD)ys are equal.

Proof. From the Karush-Kuhn-Tucker necessary conditions, there exists ii; 2 0, j =

1,2,.--,m such that
@)\ |~ _
0e a(%—)) +5 " 1i0h;(2),
Y Ashi(@) = 0.
i=1

Thus (Z, z2) is feasible for (NFD)as. So, by Theorem 4.1, (Z, ) is an optimal solution of (NFD) .
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Theorem 4.3 (Strict Converse Duality). Let  be feasible for (NFP) and (a, i) be feasible
for (NFD)py such that f(z)/g(z) £ f(u)/g(@). Assume that f and —g are p-inver at & with

respect to 1 and 0, and f and —g are reqular ot @, and hj is p;--z'nvew with respect to 7 and 0

with p + E; 1#1/’3 2 0.
Then

r=1u.

Proof. Since f and —g are p-invex at 4 with respect to 7 and 8, and regular at @ and (@, fi) is

feasible for (NFD)ys, then by Theorem 2.1 we have
f(u)/g(u) - f(2)/9(z)

9()/9(2)) Y Byvim(z, ) - pll(1/9(2))/*0(z, 3))|?

J=1

+Y Bihi(@) = Y Aihi(®),
j=1

=1

for some «y; € 8h;(@). Since h; is pj-invex with respect to 7 and 8, we obtain
f(@)/g(a) — f(2)/9(%)
< —(p+ Zﬂ;pj)lla a)|?
j=1
<0.
Thus Z = 4.

We propose the following Wolfe dual problem to (NFP):

(NFD)w Maximize fé::; + Zujh (u)

subject to 0€d(flu)/g(u))+ iujahj(u), |

(’J‘la"' 1“‘"1)20
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Theorem 4.4 (Weak Duality). Let z be feasible for (NFP) and (u, u) feasible for (NFD)y .
Assume that f and —g are p-inver with respect to 1) and 8, and f and —g are reqular functions,
and h; is p;'-invezx with respect to 7j and 8 with p + Z;":l pip' = 0.

Then

<

(

\/

l

Q
~~

=1

Proof. Since f and —g are p-invex with respect to 7 and 6, regular and (u,u) is feasible for

(NFD)w, then by Theorem 2.1 we have

f(@)/9(2) = (F (w)/g(w)) + Y njhj(w))

=1

2 (—g(w)/g()) 3 (@, 1) + oll(1/9(2)26(@, W) = 3 shs(u)

7=1 Jj=1

for some 7; € Ohj(u). Since h; is pl-invex with respect to 7 and 6, we obtain

F(@)/g9(x) — ((f(u)/g(w)) + ZMJ (w))

j=

Z ihi(z) + p+Zuap,)l|9(m u)|?

j=1

2 0.

Theorem 4.5 (Strong Duality). Let Z be an optimal solution for (NFP) at which the Cottle
constraint qualification is satisfied. Then there exists [i such that (Z, i) is feasible for (NFD)y, .
Moreover, if f, g and h satisfy the conditions of Theorem 4.4, then (Z, i) is an optimal solution

of (NFD)w and the optimal values of (NFP) and (NFD)w are equal.
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Proof. From the Karush-Kuhn-Tucker necessary conditions, there exists p; = 0, 7 =

1,2, ,m such that

T

0e a( ) +Zu]8h (),

J_.

v

9(z

m .

Y aihi(@) = 0.

j=1
Thus (Z, i) is feasible for (NFD)w . So, by Theorem 4.4, (Z, i) is an optimal solution of (NFD)w .
Theorem 4.6 (Strict Converse Duality). Let Z be an optimal solution for (NFP) at which
the Cottle constraint qualification is satisfied. Assume that f and —g are p-invez at & with
respect to 1 and 0, and f and —g are regular at £, and h; is p;'-invez with respect to 7 and ]
with p+ 351, f1;p; > 0. If (&, 1) is an optimal solution of (NFD)w, then & = Z and the optimal
values of (NFP) and (NFD)w are equal.

Proof. Assume that £ # . Since Z is an optimal solution of (NFP), there exists & = 0 such

that (Z, z) is an optimal solution of (NFD)w. Then

(@) /g(w)+2uah () = £(2)/9( w)+Zuah (#) = max (f(x)/g(w)+Zth ()

j=1 j=1

where Y is a feasible set of (NFD)w. Because (£, i) € Y, we have

0€8(f(2)/9(2)) + Zﬂoah (2).

j=1

Since f and —g are p-invex at £ with respect to 5 and 8, and regular at £, then by Theorem 2.1

we have
f(z)/9(z) — f(&)/9(2)

> (~g(#)/9(2) Y Bivim(z, 2) + pll(1/9(2))/*6(2, 2)||?

=1
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for some 7; € Oh;(2). Since h; is p-invex with respect to 7 and 6, we obtain
m

£(@)/9(z) + Z — (f(#)/9(2) + Zu,h (£))

2 (p+ Y pisplf(z,2)|% > o.
j=1

It follows then that

F(@®)/9(@)+_ hihi(E)

j=1

> f(@)/9(&)+ ) Aihi(8) = F(@)/9(®) + ) _ Bih;(Z)

j=1 i=1

or that
m m
D aihi(@) > Y Aihi().
i=1 j=1

But from Theorem 3.2, we have that 3 7 ; fi;h;(Z) = O, hence 3 72, fi;h;(Z) > 0 which contra-

dicts the facts that 4; = 0 and h;(Z) < 0. Hence & = Z.
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