Nonsmooth Fractional Programming with Generalized Ratio Invexity

Do Sang Kim* and Sung Je Kim

Division of Mathematical Sciences
Pukyong National University
Pusan 608-737, Korea

Abstract: In this paper, we consider nonsmooth fractional programming problems with generalized ratio invexity. We present necessary and sufficient optimality theorems and establish duality theorems for nonsmooth fractional programming under suitable ρ -invexity assumptions.

1 Intorduction

We consider the following nonsmooth fractional programming problem:

(NFP) Minimize
$$\frac{f(x)}{g(x)}$$
 subject to $x \in X = \{x \in \mathbb{R}^n | h_j(x) \le 0, \ j = 1, \cdots, m\},$

where $f, g : \mathbb{R}^n \to \mathbb{R}$, and $h_j : \mathbb{R} \to \mathbb{R}$, $j = l, \dots, m$, are locally Lipschitz functions. We assume in the sequel that $f(x) \geq 0$ and g(x) > 0 on \mathbb{R}^n .

Jeyakumar [3] defined ρ -invexity for nonsmooth optimization problems, and Kuk *et al.* [6] defined the concept of V- ρ -invexity for vector valued functions, which is a generalization of the V-invex function [4]. Khan and Hanson [5] and Reddy and Mukherjee [8] applied the (generalized) ratio invexity concept for single objective fractional programming problems.

 $^{^{*}}$ This research of author was supported by the grant No. R01-2003-000-10825-0 from the Basic Research Program of KOSEF

Recently, Liang et al. [7] introduced the concept of (F, α, ρ, d) -convexity and presented optimality and duality results for a class of nonlinear fractional programming problems under generalized convexity and the properties of sublinear functional. In this paper, we present a result about the fractional objective function based on ρ -invexity assumptions. By using ρ -invexity of fractional function, we obtain necessary and sufficient optimality conditions and duality theorems for nonsmooth fractional programming problems.

2 Definitions and Generalized Invexity of Fractional Function

The real-valued function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be locally Lipschitz if for any $z \in \mathbb{R}^n$ there exists a positive constant K and a neighborhood N of z such that, for each $x, y \in N$,

$$|f(x)-f(y)| \le K||x-y||,$$

where $\|\cdot\|$ denotes any norm in \mathbb{R}^n . The Clarke generalized directional derivative of a locally Lipschitz function f at x in the direction $d \in \mathbb{R}^n$, denote by $f^0(x; d)$, is defined as follows:

$$f^{0}(x;d) = \limsup_{y \to x} t^{-1} (f(y+td) - f(y)),$$

where y is a vector in \mathbb{R}^n .

The Clarke generalized subgradient of f at x is denoted by

$$\partial f(x) = \{ \xi : f^0(x; d) \ge \xi d, \quad \forall d \in \mathbb{R}^n \}.$$

Definition 2.1 f is said to be regular at x if for all $d \in \mathbb{R}^n$ the one-sided directional derivative f'(x;d) exists and $f'(x;d) = f^0(x;d)$.

Definition 2.2 A locally Lipschitz function $f: X_0 \to \mathbb{R}$ is said to be ρ -invex at $x_0 \in X_0$ with respect to functions η and $\theta: X_0 \times X_0 \to \mathbb{R}^n$ if there exists $\rho \in \mathbb{R}$ such that for any $x \in X_0$, and any $\xi \in \partial f(x_0)$,

$$f(x) - f(x_0) \ge \xi \eta(x, x_0) + \rho \|\theta(x, x_0)\|^2$$

where $\theta(x, x_0) \neq 0$ if $x \neq x_0$.

When $\rho = 0$, the definition of ρ -invexity reduces to the notion of invexity in the sense of Hanson [2].

Remark. When f is of class C^1 in Definition 2.2, then the above inequality reduces to

$$f(x) - f(x_0) \ge |f'_{x_0}\eta + \rho||\theta(x, x_0)||^2$$

where f'_{x_0} is the Frechet derivative of f at x_0 .

Theorem 2.1 If f and -g are ρ -invex with respect to η and θ , and f and -g are regular at x_0 , then the fractional objective function f(x)/g(x) is ρ -invex with respect to $\bar{\eta}$ and $\bar{\theta}$, where

$$\bar{\eta}(x,x_0) = (g(x_0)/g(x))\eta(x,x_0), \quad \bar{\theta}(x,x_0) = (1/g(x))^{1/2}\theta(x,x_0).$$

Proof. Let $x, x_0 \in X_0$. By the ρ -invexity of f and -g, we have

$$\begin{split} &f(x)/g(x) - f(x_0)/g(x_0) \\ &= (f(x) - f(x_0))/g(x) - f(x_0)(g(x) - g(x_0))/g(x)g(x_0) \\ &\geq (1/g(x))\xi\eta(x,x_0) + \rho\|(1/g(x))^{1/2}\theta(x,x_0)\|^2 \\ &+ (f(x_0)/(g(x)g(x_0))(-\zeta\eta(x,x_0) + \rho\|\theta(x,x_0)\|^2), \end{split}$$

for any $x \in X_0$, any $\xi \in \partial f(x_0)$ and any $\zeta \in \partial g(x_0)$. Since $f(x) \ge 0$ and g(x) > 0,

$$f(x)/g(x) - f(x_0)/g(x_0)$$

$$\geq (g(x_0)/g(x))((\xi/g(x_0))\eta(x,x_0) + (-f(x_0)\zeta/(g^2(x_0))\eta(x,x_0))$$

$$+\rho\|(1/g(x))^{1/2}(1 + (f(x_0)/g(x_0)))^{1/2}\theta(x,x_0)\|^2.$$

Since f and -g are regular at x_0 , we obtain, for any $\delta \in \partial (f(x_0)/g(x_0))$,

$$f(x)/g(x) - f(x_0)/g(x_0)$$

$$\geq (g(x_0)/g(x))\delta\eta(x,x_0) + \rho \|(1/g(x))^{1/2}(1 + (f(x_0)/g(x_0)))^{1/2}\theta(x,x_0)\|^2.$$

Considering that

$$1 + f(x_0)/g(x_0) \ge 1$$
,

we have

$$f(x)/g(x) - f(x_0)/g(x_0)$$

$$\geq (g(x_0)/g(x))\delta\eta(x, x_0) + \rho \|(1/g(x))^{1/2}\theta(x, x_0)\|^2.$$

Therefore, the function f(x)/g(x) is ρ -invex, where

$$\bar{\eta}(x,x_0)=(g(x_0)/g(x))\eta(x,x_0),$$

$$\bar{\theta}(x,x_0) = (1/g(x))^{1/2}\theta(x,x_0).$$

3 Optimality Conditions

The Cottle constraint qualification

The Cottle constraint qualification is satisfied at x_0 if either $h_j(x_0) < 0$ for all $j = 1, \dots, m$ or $0 \notin conv\{\partial h_j(x_0) : h_j(x_0) = 0\}$, where convS denotes the convex hull of a set S.

By Theorem 6.1.1 in [1], we can present the following Fritz John necessary conditions.

Theorem 3.1 (Fritz John Necessary Conditions). If $x_0 \in X$ is an optimal solution of (NFP), then there exist λ and r_j , $j = 1, 2, \dots, m$, such that

$$0 \in \lambda \partial \left(\frac{f(x_0)}{g(x_0)}\right) + \sum_{j=1}^m r_j \partial h_j(x_0),$$

$$\sum_{j=1}^m r_j h_j(x_0) = 0,$$

$$(\lambda, r_1, \cdots, r_m) \geq 0$$
 and $(\lambda, r_1, \cdots, r_m) \neq 0$.

Assuming the Cottle constraint qualification, we obtain the Karush-Kuhn-Tucker necessary conditions.

Theorem 3.2 (Karush-Kuhn-Tucker Necessary Conditions). Assume that $x_0 \in X$ is an optimal solution for (NFP) at which the Cottle constraint qualification is satisfied. Then there exist $\mu_j \geq 0, j = 1, 2, \dots, m$, such that

$$0 \in \partial \left(rac{f(x_0)}{g(x_0)}
ight) + \sum_{j=1}^m \mu_j \partial h_j(x_0),$$
 $\sum_{j=1}^m \mu_j h_j(x_0) = 0,$ $(\mu_1, \cdots, \mu_m) \geq 0.$

Theorem 3.3 (Karush-Kuhn-Tucker Sufficient Conditions). Let (x_0, μ) satisfy the Karush-Kuhn-Tucker conditions as follows:

$$0 \in \partial \left(rac{f(x_0)}{g(x_0)}
ight) + \sum_{j=1}^m \mu_j \partial h_j(x_0),$$
 $\sum_{j=1}^m \mu_j h_j(x_0) = 0,$ $(\mu_1, \cdots, \mu_m) \geq 0.$

Assume that f and -g are ρ -invex at x_0 with respect to η and θ , and f and -g are regular at x_0 , and h_j is ρ'_j -invex at x_0 with respect to $\bar{\eta}$ and $\bar{\theta}$ with $\rho + \sum_{j=1}^m \mu_j \rho'_j \geq 0$.

Then x_0 is an optimal solution of (NFP).

Proof. Let $x_0, x \in X$ and (x_0, μ) satisfy the Karush-Kuhn-Tucker conditions. Then there exist $\delta \in \partial(f(x_0)/g(x_0))$ and $\gamma_j \in \partial h_j(x_0)$ such that $\delta + \sum_{j=1}^m \mu_j \gamma_j = 0$ and $\sum_{j=1}^m \mu_j h_j(x_0) = 0$. Since f and -g are ρ -invex at x_0 with respect to η and θ and regular at x_0 ,

then by Theroem 2.1 we have

$$f(x)/g(x) - f(x_0)/g(x_0)$$

$$\geq (-g(x)/g(x_0)) \sum_{j=1}^{m} \mu_j \gamma_j \eta(x, x_0) + \rho \|(1/g(x))^{1/2} \theta(x, x_0)\|^2$$

$$- \sum_{j=1}^{m} \mu_j h_j(x_0) + \sum_{j=1}^{m} \mu_j h_j(x).$$

Since h_j is ρ'_j -invex at x_0 with respect to $\bar{\eta}$ and $\bar{\theta}$, we obtain

$$f(x)/g(x) - f(x_0)/g(x_0)$$

$$\ge (\rho + \sum_{j=1}^{m} \mu_j \rho_j') ||\bar{\theta}(x, x_0)||^2$$

$$\ge 0.$$

Therefore, x_0 is an optimal solution of (NFP).

4 Duality Theorems

We consider the following Mond-Weir dual problem to (NFP):

$$({
m NFD})_M$$
 Maximize $\dfrac{f(u)}{g(u)}$ subject to $0\in\partial\Big(f(u)/g(u)\Big)+\sum_{j=1}^m\mu_j\partial h_j(u),$ $\sum_{j=1}^m\mu_jh_j(u)\geqq 0,$ $(\mu_1,\cdots,\mu_m)\geqq 0.$

Theorem 4.1 (Weak Duality). Let x be feasible for (NFP) and (u, μ) feasible for $(NFD)_M$. Assume that f and -g are ρ -invex with respect to η and θ , and f and -g are regular functions, and h_j is ρ'_j -invex with respect to $\bar{\eta}$ and $\bar{\theta}$ with $\rho + \sum_{j=1}^m \mu_j \rho'_j \geq 0$. Then

$$\frac{f(x)}{g(x)} \ge \frac{f(u)}{g(u)}.$$

Proof. Since f and -g are ρ -invex with respect to η and θ , and regular, and (u, μ) is feasible for $(NFD)_M$, then by Theorem 2.1 we have

$$f(x)/g(x) - f(u)/g(u)$$

$$\geq (-g(u)/g(x)) \sum_{j=1}^{m} \mu_j \gamma_j \eta(x,u) + \rho \|(1/g(x))^{1/2} \theta(x,u)\|^2,$$

for some $\gamma_j \in \partial h_j(u)$. Since h_j is ρ'_j -invex with respect to $\bar{\eta}$ and $\bar{\theta}$, we obtain

$$f(x)/g(x) - f(u)/g(u)$$

$$\geq (\rho + \sum_{j=1}^{m} \mu_j \rho'_j) \|\bar{\theta}(x, u)\|^2$$

$$\geq 0$$
.

Theorem 4.2 (Strong Duality). Let \bar{x} be an optimal solution for (NFP) at which the Cottle constraint qualification is satisfied. Then there exists $\bar{\mu}$ such that $(\bar{x}, \bar{\mu})$ is feasible for $(NFD)_M$. Moreover, if f, g and h satisfy the conditions of Theorem 4.1, then $(\bar{x}, \bar{\mu})$ is an optimal solution of $(NFD)_M$ and the optimal values of (NFP) and $(NFD)_M$ are equal.

Proof. From the Karush-Kuhn-Tucker necessary conditions, there exists $\bar{\mu}_j \geq 0$, $j = 1, 2, \dots, m$ such that

$$0 \in \partial \left(\frac{f(\bar{x})}{g(\bar{x})} \right) + \sum_{j=1}^{m} \bar{\mu}_j \partial h_j(\bar{x}),$$

$$\sum_{j=1}^{m} \bar{\mu}_j h_j(\bar{x}) = 0.$$

Thus $(\bar{x}, \bar{\mu})$ is feasible for $(NFD)_M$. So, by Theorem 4.1, $(\bar{x}, \bar{\mu})$ is an optimal solution of $(NFD)_M$.

Theorem 4.3 (Strict Converse Duality). Let \bar{x} be feasible for (NFP) and $(\bar{u}, \bar{\mu})$ be feasible for $(NFD)_M$ such that $f(\bar{x})/g(\bar{x}) \leq f(\bar{u})/g(\bar{u})$. Assume that f and -g are ρ -invex at \bar{u} with respect to η and θ , and f and -g are regular at \bar{u} , and h_j is ρ'_j -invex with respect to $\bar{\eta}$ and $\bar{\theta}$ with $\rho + \sum_{j=1}^m \bar{\mu}_j \rho'_j \geq 0$.

Then

$$\bar{x} = \bar{u}$$
.

Proof. Since f and -g are ρ -invex at \bar{u} with respect to η and θ , and regular at \bar{u} and $(\bar{u}, \bar{\mu})$ is feasible for $(NFD)_M$, then by Theorem 2.1 we have

$$\begin{split} &f(\bar{u})/g(\bar{u}) - f(\bar{x})/g(\bar{x}) \\ & \leq (g(\bar{u})/g(\bar{x})) \sum_{j=1}^{m} \bar{\mu}_{j} \gamma_{j} \eta(\bar{x}, \bar{u}) - \rho \| (1/g(\bar{x}))^{1/2} \theta(\bar{x}, \bar{u}) \|^{2} \\ & + \sum_{j=1}^{m} \bar{\mu}_{j} h_{j}(\bar{u}) - \sum_{j=1}^{m} \bar{\mu}_{j} h_{j}(\bar{x}), \end{split}$$

for some $\gamma_j \in \partial h_j(\bar{u})$. Since h_j is ρ'_j -invex with respect to $\bar{\eta}$ and $\bar{\theta}$, we obtain

$$f(\bar{u})/g(\bar{u}) - f(\bar{x})/g(\bar{x})$$

$$\leq -(\rho + \sum_{j=1}^{m} \bar{\mu}_j \rho_j') ||\bar{\theta}(\bar{x}, \bar{u})||^2$$

$$\leq 0.$$

Thus $\bar{x} = \bar{u}$.

We propose the following Wolfe dual problem to (NFP):

$$(\mathrm{NFD})_W$$
 Maximize $\dfrac{f(u)}{g(u)} + \sum_{j=1}^m \mu_j h_j(u)$ subject to $0 \in \partial \left(f(u)/g(u)\right) + \sum_{j=1}^m \mu_j \partial h_j(u),$ $(\mu_1, \cdots, \mu_m) \geq 0.$

Theorem 4.4 (Weak Duality). Let x be feasible for (NFP) and (u, μ) feasible for $(NFD)_W$. Assume that f and -g are ρ -invex with respect to η and θ , and f and -g are regular functions, and h_j is ρ_j' -invex with respect to $\bar{\eta}$ and $\bar{\theta}$ with $\rho + \sum_{j=1}^m \mu_j \rho_j' \geq 0$.

Then

$$\frac{f(x)}{g(x)} \ge \frac{f(u)}{g(u)} + \sum_{j=1}^{m} \mu_j h_j(u).$$

Proof. Since f and -g are ρ -invex with respect to η and θ , regular and (u, μ) is feasible for $(NFD)_W$, then by Theorem 2.1 we have

$$f(x)/g(x) - ((f(u)/g(u)) + \sum_{j=1}^{m} \mu_j h_j(u))$$

$$\geq (-g(u)/g(x)) \sum_{j=1}^{m} \mu_j \gamma_j \eta(x,y) + \rho \|(1/g(x)^{1/2} \theta(x,u)\|^2 - \sum_{j=1}^{m} \mu_j h_j(u))$$

for some $\gamma_j \in \partial h_j(u)$. Since h_j is ρ'_j -invex with respect to $\bar{\eta}$ and $\bar{\theta}$, we obtain

$$f(x)/g(x) - ((f(u)/g(u)) + \sum_{j=1}^{m} \mu_j h_j(u))$$

$$\geq -\sum_{j=1}^{m} \mu_j h_j(x) + (\rho + \sum_{j=1}^{m} \mu_j \rho'_j) ||\bar{\theta}(x, u)||^2$$

$$\geq 0.$$

Theorem 4.5 (Strong Duality). Let \bar{x} be an optimal solution for (NFP) at which the Cottle constraint qualification is satisfied. Then there exists $\bar{\mu}$ such that $(\bar{x}, \bar{\mu})$ is feasible for $(NFD)_W$. Moreover, if f, g and h satisfy the conditions of Theorem 4.4, then $(\bar{x}, \bar{\mu})$ is an optimal solution of $(NFD)_W$ and the optimal values of (NFP) and $(NFD)_W$ are equal.

Proof. From the Karush-Kuhn-Tucker necessary conditions, there exists $\bar{\mu}_j \geq 0$, $j = 1, 2, \dots, m$ such that

$$0 \in \partial \left(\frac{f(\bar{x})}{g(\bar{x})}\right) + \sum_{j=1}^{m} \bar{\mu}_{j} \partial h_{j}(\bar{x}),$$

$$\sum_{j=1}^m \bar{\mu}_j h_j(\bar{x}) = 0.$$

Thus $(\bar{x}, \bar{\mu})$ is feasible for $(NFD)_W$. So, by Theorem 4.4, $(\bar{x}, \bar{\mu})$ is an optimal solution of $(NFD)_W$.

Theorem 4.6 (Strict Converse Duality). Let \bar{x} be an optimal solution for (NFP) at which the Cottle constraint qualification is satisfied. Assume that f and -g are ρ -invex at \hat{x} with respect to η and θ , and f and -g are regular at \hat{x} , and h_j is ρ_j '-invex with respect to $\bar{\eta}$ and $\bar{\theta}$ with $\rho + \sum_{j=1}^{m} \hat{\mu}_j \rho'_j > 0$. If $(\hat{x}, \hat{\mu})$ is an optimal solution of (NFD)_W, then $\hat{x} = \bar{x}$ and the optimal values of (NFP) and (NFD)_W are equal.

Proof. Assume that $\hat{x} \neq \bar{x}$. Since \bar{x} is an optimal solution of (NFP), there exists $\bar{\mu} \geq 0$ such that $(\bar{x}, \bar{\mu})$ is an optimal solution of (NFD)_W. Then

$$f(\bar{x})/g(\bar{x}) + \sum_{j=1}^{m} \bar{\mu}_j h_j(\bar{x}) = f(\hat{x})/g(\hat{x}) + \sum_{j=1}^{m} \hat{\mu}_j h_j(\hat{x}) = \max_{(x,\mu) \in Y} (f(x)/g(x) + \sum_{j=1}^{m} \mu_j h_j(x)$$

where Y is a feasible set of $(NFD)_W$. Because $(\hat{x}, \hat{\mu}) \in Y$, we have

$$0 \in \partial(f(\hat{x})/g(\hat{x})) + \sum_{j=1}^{m} \hat{\mu}_{j} \partial h_{j}(\hat{x}).$$

Since f and -g are ρ -invex at \hat{x} with respect to η and θ , and regular at \hat{x} , then by Theorem 2.1 we have

$$f(\bar{x})/g(\bar{x}) - f(\hat{x})/g(\hat{x})$$

$$\geq (-g(\hat{x})/g(\bar{x})) \sum_{j=1}^{m} \hat{\mu}_{j} \gamma_{j} \eta(\bar{x}, \hat{x}) + \rho \|(1/g(\bar{x}))^{1/2} \theta(\bar{x}, \hat{x})\|^{2}$$

for some $\gamma_j \in \partial h_j(\hat{x})$. Since h_j is ρ'_j -invex with respect to $\bar{\eta}$ and $\bar{\theta}$, we obtain

$$f(\bar{x})/g(\bar{x}) + \sum_{j=1}^{m} \hat{\mu}_j h_j(\bar{x}) - (f(\hat{x})/g(\hat{x}) + \sum_{j=1}^{m} \hat{\mu}_j h_j(\hat{x}))$$

$$\geq (\rho + \sum_{j=1}^{m} \hat{\mu}_{j} \rho'_{j}) ||\bar{\theta}(\bar{x}, \hat{x})||^{2} > 0.$$

It follows then that

$$f(\bar{x})/g(\bar{x}) + \sum_{j=1}^{m} \hat{\mu}_j h_j(\bar{x})$$

$$>f(\hat{x})/g(\hat{x})+\sum_{j=1}^{m}\hat{\mu}_{j}h_{j}(\hat{x})=f(ar{x})/g(ar{x})+\sum_{j=1}^{m}ar{\mu}_{j}h_{j}(ar{x})$$

or that

$$\sum_{j=1}^{m} \hat{\mu}_{j} h_{j}(\bar{x}) > \sum_{j=1}^{m} \bar{\mu}_{j} h_{j}(\bar{x}).$$

But from Theorem 3.2, we have that $\sum_{j=1}^{m} \bar{\mu}_j h_j(\bar{x}) = 0$, hence $\sum_{j=1}^{m} \hat{\mu}_j h_j(\bar{x}) > 0$ which contradicts the facts that $\hat{\mu}_j \geq 0$ and $h_j(\bar{x}) \leq 0$. Hence $\hat{x} = \bar{x}$.

References

- [1] CLARKE, F. H., Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983.
- [2] HANSON, M. A., On sufficiency of the Kuhn-Tucker conditions, Journal of Mathematical Analysis and Applications, Vol. 80, pp. 544-550, 1981.
- [3] JEYAKUMAR, V., Equavalence of saddle-points and optima, and duality for a class of non-smooth non-convex problems, Journal of Mathematical Analysis and Applications, Vol. 130, pp. 334-343, 1988.
- [4] JEYAKUMAR, V., AND MOND, B., On generalized convex mathematical programming, Journal of the Australian Mathematical Society, Vol. 34B, pp. 43-53, 1992.

- [5] Khan, Z. A., and Hanson, M. A., On ratio invexity in mathematical programming, Journal of Mathematical Analysis and Applications, Vol. 205, pp. 330-336, 1997.
- [6] Kuk, H., Lee, G. M., and Kim, D. S., Nonsmooth multiobjective programs with V-ρ-invexity, Indian Journal of Pure and Applied Mathematics, Vol. 29, pp. 405-412, 1998.
- [7] LIANG, Z.A., HUANG, H. X., AND PARDALOS, P. M., Optimality conditions and duality for a class of nonlinear fractional programming problems Journal of Optimization Theory and Applications, Vol. 110, pp. 611-619, 2001.
- [8] VENKATESWARA REDDY, L., AND MUKHERJEE, R. N.,, Some results on mathematical programming with generalized ratio invexity, Journal of Mathematical Analysis and Applications, Vol. 240, pp. 299-310, 1999.