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DEFINITIONS OF ORDER COMPLETENESS
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ABSTRACT

In this paper we define a notion of weakly order completeness in ordered linear spaces.
This plays important roles in dealing with the generalized supremum. We will consider
the relation between the weakly order completeness and some other definitions of order
completeness. Also we will give some examples in sequence spaces with order.

§1 INTRODUCTION AND THE GENERALIZED SUPREMUM

Let E be a linear space over R, and P be a convex cone in F satisfying
(P1) E=P-P,
(P2) Pn(—P)={0}.
By (E, P), we denote an ordered linear space with the order z < y <= y -z € P.
For a subset A of E, we denote the set of upper bounds and lower bounds by U(4) =
{re E|y<z, Vye A},L(A) ={z € E |y > z, Yy € A} respectively. (E, P) is said
to be order complete if U(A) # @ implies the existence of the least upper bound of A
(lub A). In this note we consider some weaker conditions which can be regarded as the
definitions of order completeness in wider sense. :
Let B (B') be the family of all upper bounded subset (lower bounded subset) in F,
ie. B={ACE|A#0, UA) #0}, B ={BCE|B#0, L(B) #0}.
For A € B, and A’ € B’ the generalized supremum and the generalized infimum are
defined by
SupA={a€U(A)|b<La, beUA)=a=0b} (A€B),
InfA' ={a€ L(A")|b>a, be L(A) =>a=10b} (A €PB).
The properties of generalized supremum has been investigated in [1],(2],[4]. The main
result among them is the following. We denote E = {Sup A | A € B}, and define an
order relation ' <, and a vector operation '@ ‘and '* ° on E as follows. For
Sup A, SupB € F and ) € R,
SupA <SupB < SupB CSupA+ P
Sup A @ Sup B = Sup(4 + B)
Sup(AA) (A>0)
AxSup A= {0} (A=0)
Sup(AU(4)) (A <0).
P={SupAcE|SupAcCP}
Ey={SupAc E| SupA={ao} for some ag € E}
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We consider the case when the space (E, P) has the property that for each element
x there exsists y € Sup A such that y < z, i.e.

(1.1) U(A) = (SupA)+ P (VA € B).

Proposition 1. ([2]) Let E be a Banach space with a closed positive cone P. If (E, P)
has the property (1.1), then E, forms an order complete vector lattice. Moreover,

(a) P is a conver cone in E and satisfies (P1), (P2), and
SupA < SupB <= SupB®(—1)*Sup A € P.

(b) E, is a subspace which is order zsomorphzc to (E, P) by
Es>a+—SwpA={a}ecE,

Corollary 1. For Sup A, SupB € E,
(a) Sup AV Sup B = Sup(L(U(A) NU(B))),
(b) SupAASupB = Sup(L(U(A)) N L({U(B))).

Not only this result, but also many good properties of the generalized supremum holds
under the condition (1.1) on the space (E,P). If the generalized supremum Sup A
permits only what satisfies U(A) = (Sup A) + P, it is natural to consider that the
condition (1.1) is one of the conditions for order completeness of (E, P) of wide sense.

In §2, we introduce some types of definitions of order completeness, and state the
relations among these definitions including the condition (1.1). In §3, we consider some
examples in sequence spaces which are not order complete but satisfy the condition

(1.1).

§2 DEFINITIONS OF ORDER COMPLETENESS

We say that an ordered linear space (E,P) is weakly order complete (w.o.c.)
if every subset A of E with U(A) # 0 has the generalized supremum Sup A satisfying
U(A) = (Sup A)+P. As mentioned in §1, the collection of all the generalized supremum
forms the order completion of (E, P) if it is w.o.c. Moreover, in such a space we have
the following.

Proposition 2. ([1]) If an ordered linear space (E, P) is weakly order complete, then
(1) Sup A = {a} if and only if lubA =a,

(2) SupInfSup A= SupA,

(3) Sup(A+B)+ P D> SupA+ SupB,

(4) L(Sup A + Sup B) = L(Sup(A + B)).

One of the sufficient conditions for the weakly order completeness is given in terms
of the facial structure of the positive cone P. We suppose that P is algebraically closed,
that is, every straight line in F meets P by a closed interval. A point z of a convex
subset A C FE is called an algebraic interior point of A if for every z € E, there exists
A > 0 such that £ + Az € A. A convex set C of P is called an exposed face of P if
there exists a supporting hyperplane H of P such that C = PN H. By §(P), we denote
the set of all exposed faces of P. For C € §(P), dimC is defined as the dimension
of affC’ where affC' denotes the affine hull of C. Let (E, P) be an ordered linear space
with algebraically closed positive cone P, and suppose that P has at least an algebraic
interior point. It has been proved in [4] that if dimC < oo for every C € F(P), then
(E, P) is weakly order complete. In particular, in finite dimensional cases, (E, P) is
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w.o.c. if and only if P is closed. Some other sufficient conditions for weakly order
completeness in ordered Banach spaces are given in [2].

An ordered linear space (E,P) is said to be monotone order complete (m.o.c.)
if every upper bounded totally ordered subset of E has the least upper bound in E. In
finite dimensional cases (R%, P) is m.o.c. if and only if P is closed ([4]). Moreover, in
the case when (F, P) is a Banach space and the dual cone P* = {z* | < z*,z >>
0 for z € P} in E* satisfies P* — P* = E*, (E*, P*) is m.o.c. It is also known that the
algebraic closedness of P in an ordered linear space (E, P) is a necessary condition for
the monotone order completeness.

Proposition 3. ([4]) . Suppose that an ordered linear space (E, P) is monotone order
complete. Then it is weakly order complete.

As an example, the space of n x n symmetric matrices with the positive cone P
consisting of all positive semidefinite matrices is m.o.c., because P is closed. Hence it
is also w.o.c. by Proposition 3.

By (E,P,| ||) we denote an ordered linear space which is also a normed space.
(E,P,|| |) is said to be boundedly order complete (b.o.c.) if every || ||-bounded
increasing net A in E has a least upper bound lub A. The positive cone P is said to
be normal if there is a neighborhood basis of the origin consisting of neighborhoods V'
satisfying (V + P)N(V — P) = V. Let (E,P,|| ||) be a normed space with a normal
positive cone P, and let A be a totally ordered subset in E such that U(A) # 0. For
ap € A the set A’ = {a € A | ag < a} has the same upper bounds as U(A), and
A’ C [ag,u] = {x € E | ap < r < u} for some u € U(A). Hence A’ is || ||-bounded since
P is normal. If (E, P, || ||) is b.o.c., there exists lub A’ = lub A. Thus we have

Proposition 4.  If(E, P,| |) is a normed space with a normal positive cone P, then
the boundedly order completeness implies the monotone order completeness. Particu-
larly, the weakly order completeness also follows.

§3 EXAMPLES IN SEQUENCE SPACES

In the case E = R3, the two positive cone P, = {(z,9,2) € R® | z > |z| + |y|} and
P, = {(x,y,2z) € R® | 22 > z? + y?} are fundamental in considering the generalized
supremum. They are not order complete but weakly order complete. (R3, P;) is order
isomorphic to the space of 2 x 2 symmetric matrices with the positive cone P consisting
of all positive semidefinite matrices. Since P; is a circular cone, every nontrivial face of
- P, is one dimensional. Moreover, the order completion of (R?, P,) is infinite dimensional
while that of (R3, P,) is four dimensional. In this section we consider some examples in
sequence spaces with the positive cones which are considered to be the natural extension
of P1 and P2 in Rs.

Let Iy = {z = (z0,%1, T2, *) | 2 o|Tn| < 0o} and Iz = {z = (x0, 21,72, ) | Lo
12 < 00}. We define two cones;

e .
P = {97: (-’130,5171,252,"') €ly|xzo > lenl},
n=1

P, = {z = (z0,21,2Z2," ) € la | T > (Z-’Bi)%}
n=1

There is a face of P; which is infinite dimensional. Indeed, H = {(zo,Z1,%2, ") €
Iy | £g = £ 7, } is a supporting hyperplane of P, and the face F' = H N P is infinite



44

dimensional. In contrast, every nontrivial face of (I1, P;) is one dimensional, and hence
(I2, P;) and (11, P;) are weakly order complete. Here in (I, P») we consider the positive
cone to be Py N ;.

Proposition 5. (I1, P;) is m.o.c., and it is weakly order complete in particular.

An ordered linear space (E, P) is said to be sequentially monotone order complete
(s.m.o.c.) if every totally ordered countable subset A of E with U(A) # @ has the least
upper bound lub A in E. This condition is slightly weaker than the monotone order
completeness in general.

Proposition 6. For every upper bounded totally ordered subset A in (I3, P;), there
exsits a countable subset {an,}5%; of A such that U(A) = U({an}).

proof. We write A = {ax = (ax0,ar1,ax2,"+*) | A € A}, and let (bo,b1,b2,--+) be an
upper bound of A. Since axg < by (A € A), there exists ap = supayg. If there exists
ax = (ax0,ax1,ax2, ) € A such that axo = ag, then ay is the maximum of A and
the lemma is trivial. Hence we assume that ayo < ag (A € A). We can choose a
sequence A, Ag,--- such that {ay, }52, is nondecreasing and ay, — ag. For arbitrary
ax = (@xo,ax1,ax2,- ) € A, there exists n € N such that a) < ay,, and this means
that U(A) = U({ax, }).

proof of Proposition 5. By Proposition 6, it suffices to show that (I, P;) is s.m.o.c. Let
am = (@m0, Gm1,Ame, -+ ) (M = 1,2,3,--+) be an upper bounded increasing sequence
in (I3,P1), and let (bg,b1,b2,--+) be an upper bound of {an}. Since {amo}X_, is
nondecreasing and a0 < bp (m = 1,2,--+), it is a convergent sequence. Moreover,
am < @y (1 < m < n) implies

o0
(3.1) Gno = Gmo > Z |ani —ami|] (1 <m < n).
i=1
Hence, for each i = 1,2,---, {ani}32, is a convergent sequence. Thus we can define

ao = (aoo, @01, %02, -*) by ao; = 1_i£11 an; (1=0,1,2.-.). By (3.1), we have for each
n o0

N=1,2--,

no — Gmo > Eﬁ‘;llani — ami| (1 £m < n). Hence we obtain by letting n — oo that

@00 — @mo > =N 1|a0i — ami| (m,N € N). Since N € N is arbitrary and a,, € I, this

inequality yields that ag € I; and

oo
G00 — @m0 > ) lagi — ami| (m€N).

i=1

This means ag > am (m € N), and ag € U({an,}). It remains to prove that ao is the
minimum of U({an}). For b= (bg,b1,b2,:-+) € U({am}), we have

N
bo — @ymo 2 Z lb,; - am,:| (m,N (S N)

=1

Letting m — oo, we obtain by — agg > Ef;l |b; — agi] (N € N). Since N € N is
arbitrary we also have by — ago > ) ¢o; |bi — ao;|. This means b > aqg and the proof is
complete.
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Proposition 7. (1, P2) is not m.o.c.

Remark As mentioned at the beginning of §3, (l1, P») is weakly order complete.
Moreover, the proof of this proposition answers a natural question; Sup A consists of at
most a single element if A is tatally ordered subset in E' ? For a cirtain totally ordered
subset A in the following proof, one can see that for every b € U(A) there is b’ € U(A)
such that b £ b’ and b # b'. This fact means that the generalized supremum Sup A has
at least two elements.

proof. Let us consider the convergent series E:o=1'771§' = 162—. First we show that there is

a subsequence {ng}$ , of the sequence 1,2, 3,--- such that no =1 and
S= A+ Az + A+
< 400,
where Ap = 1 + ! + +L (k=1,2,3 )
k= ('nk_l + 1)2 (nk_l + 2)2 N2 o )
Indeed, if we choose the subsequence {ng}$, by nx =2 (k=0,1,2,3,--), then
Ap= et bt o
T RTr)2 T (2R 1 2)? 22k
1 1 1 1

R

< 92(k—1) + 92(k—1) +- 92(k—1) _ 9k—1"

Hence we have
(o o] [o o] 1
D VARS) e < Foo.
k=1 k=1

Now we define a sequence {an}32, in I by

ap=1(0,0,0,0,0,0,0,0, ---rcveeereee-. )s
1 1
a1 = (Sy, 3 ;;,I’ 0,0,0,0, -ovreeereeeseeens ),
1 1 1 1
az = (52, 3 I o 0, 0,0, «cocvvrenen ),
1 1 1 1 1 1
= (S y T _— , —, , —_—, 0, 0, .........
a3 ( 3 2 ny ny+1 ng na+1 " ng )’
by = (23, 0,0,00--------- )

where S, = Y p_; VAir (n=1,2,--). Since Y p_; Ax < S for every n, we see that

2
(3.2) %- ~1< 82

By the definition of Ay, we have vVA; = (g + gy + -+ mer)? (k=
1, 2, 3, - --). Therefore,
cee, —, 0, -

— Q-1 = Ak, 0, -++ 0, —————, --
Ok — Ak-1 (V k ne_1+ 1 e
eP, (k=1,2,3,---).

1 1

N’
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Moreover, by (3.2), (2S—Sk)2—(%)2—-.-—(%)2= (25— Sp)2—A1—Ag—- —Ax 2
S2— Ay —Ay— - — A>T —1— A — Ay — - — Ay > 0, it follows that

bo — ax = (25 — Sk, — - Lo . )er

0 ar = ks 2a ) nk’ ’ 2y .

for every k € N. Hence the sequence {ay} is increasing and upper bounded in (1, Py).
Let b = (by, b, b3, - -+ ) be an arbitrary element in U({ax}). Since b € l;, there is at least
a number n € N such that b, # ;11- We define

1
b’ = (b17 b2, b3, cee bn.—l, E’ bn+1, -..)’

then b—b' = (0,0, ---, b, — ;1;, 0, 0, ---) ¢ P,U(—P;). This means that b and b’ are
not comparable with respect to the order of P,. Moreover, it follows from the relation
b>ax (k=0,1,2,---) that

1 1
0L (br—Sk)? = (ba—5)" = (bs— )" — -
— R SRS _ 1y _ 1 2_..
(b1 = 2=7)" = = 20" = B = 229)

1 1
< (b= 5% = (b= )P = (ba— 5)° =

1
— (bn-1-— n—_")2 — (bnt1 — m)z -

for sufficiently large k. This means b’ > ax (k= 0,1,2,---). Thus we find that b is not
the minimum of U({ax}), and since b is arbitrary it follows that lub{ax} does not exist.

Let (E,P,| ||) is a normed space with a positive cone P. P is said to be a strict
b-cone if there is a constant M > 0 such that each z € E has a decomposition z = y— 2z
where y,z € Pand ||y ||| 2 [< M | z .

Proposition 8. Let (E, P,|| ||) is a normed space with a strict b-cone P, and suppose
that every order interval [z,y] = {z € E |z < z < y} is || || bounded. If (E,P,| ||) is
boundedly order complete then E is complete with respect to the norm || ||.

Proposition 9. (I3, Py, || [|2) is not b.o.c. where || z |la= {3 ne, z2}3.

proof. For x = (zo,Z1,Z2,-++) € l2, we take y = (a,21,%2,--+) and z = (a —
Z0,0,0,---) where o = {37 ; mi}% Clearly, z,y € P, and z = y — 2. It is easy
to see that || y ||2, || z [|]2< 2 || = |- Hence P, is a strict b-cone in (I1, Pa,|| ||2). Next
for y = (yo,y1,Y2, - -) € Pa, we take z = (x9,21,Z2,--+) € [0,y] arbitrarily, and put
t' = (21,%2,%3, ), ¥ = (Y1,Y2,¥3,+ ). Since 0 < 2o < yo <|| ¥ ||l2, we have || 2’ ||2
=19 ll2<l 2" =¥ l|l2< yo— %0 < yo <|| y ||2. Hence || 2’ [2<|| g ll2 + || ¥ [2< 2] y |2,
and || z ||a< zo+ || 2’ ||2< 3 || ¥ ||]2. This means that [0, y] is || ||2 bounded, and so is
every order interval. If (Iy, Py, || ||2) is b.o.c., it follows from Proposition 8 that it must
be complete with respect to the norm || ||2. But it is not, and a contradiction yields.
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