oooooooooo 13660 2004 0 22-33

Parallel Communicating Transducers

Liliana Cojocaru
Rovira i Virgili University, Alexandru I. Cuza, University of Iasi.
e-mails: lc.doc@estudiants.urv.es, clee@infoiasi.ro

Abstract

In this paper a new variant of translating devices is presented. We propose a new model based on
transducers working in parallel and communicating with each other by request. We focus our attention
upon the strategy of communication, by states or by stacks. We are dealing with the idea of applying
them in DNA computing, and in natural language processing, to check and to generate grammatical
structures. The generative power of the new systems is tackled in the paper, by taking into consideration
the generative power of Watson-Crick automata and several examples.

1 Introduction

The main goal of this paper is to describe a new variant of automata system based on two
kinds of accepting devices: transducers and parallel communicating systems. We will call
them Parallel Communicating Transducer Systems (henceforth PCTS). The reason of bring-
ing them in the literature is the necessity of improving parallel communicating systems with
output capabilities, in order to empower them with the freedom of external communication.
The mechanism could have many and interesting applications in computational morphology
and phonology, in speech recognition, in splicing systems and in DNA computing, as well.
Finite-state transducers have been introduced for the first time in [6]. Since then they have
increasingly developed and diversified due to their flexibility in representing and generating
a large size of structural data, by using time and space optimal memory '. They have been
applied especially in natural language processing, in fields such as computational morphology
and phonology [9], lexical analyzers [10] or speech recognition [17]. They have been extended
to algebraic transducers [11] and weighted finite-state transducer [19]. Transducers with pred-
icates and identities represent another kind of very efficient machines, introduced in [20], in
order to characterize phonological rules. Watson-Crick transducers have been developed in
order to manipulate DNA molecules. They are described in [21]. If a pushdown automaton
is improved with an output, the resulting machine is a pushdown transducer. It comes in the
literature from [4], [5] and [7], with many other succeeding papers. Parallel communicating
automata are systems composed of automata working independently but communicating with
each other, under a specified protocol of cooperation, in order to parse an input string. The
protocol depends on the automata type. If all the machines are finite automata then they will
communicate through states. If the machines are pushdown automata, the protocol will consist
of a pushdown memory interchange strategy. They have been defined in [2], [3], [13], [14], [15]
and [16], with forerunner related papers [1], [8].

2 Preliminaries

Systems of cooperating automata have been used till now, to model DNA phenomena, artificial
intelligence or communication among agents, but no system has been applied to model natural
language 2. The aim of this section is to find a computational model that could be applied for
natural language processing (NLP), in a better way. We have only to improve the automata
with an output device and to connect them, by following an efficient strategy of communication

!See the transducer minimization algorithm from [18].

2There are some trends in this respect, but they merely use the Parallel Communicating Grammar Systems,
see e.g. [12].

23

in order to simulate most of the phenomena that appear in morphology or in phonology. The
resulting machine will be a parallel communicating finite transducer system (PCFTS), if the
machines are finite transducers. It will be a parallel communicating pushdown transducer
system (PCPTS) if the automata are pushdown transducers. The idea of applying them in
NLP has come up due to the computational power that parallel communicating systems have.
Let X* be the set of words over an alphabet X, always composed of a finite set of letters, A the
empty word, w® and |w|, w € X*, the reverse and the length of the word w, respectively. We
denote by Xt = X* - {A}, by |X|, the cardinality of the set X and by X the twin language of X,
more exactly X = {7,r € X}.

2.1 Parallel Communicating Finite Transducer Systems

Definition 1. A parallel communicating finite transducers system of degree n, (pcft(n) for short)
is defined as: T=(,A,TN,712,...,Tw K),
where:

1. ¥ is the input alphabet,

2. A is the output alphabet,

3. T =(Qi,,A,8,,¢i, F;),1 < i < n, are finite transducers with the sets of states Q., ¢: € Q. the
initial state of the i** transducer, A the finite output alphabet, F C Q: the set of final
states and é; the transition mapping of T., defined as follows:

. 8::Qi xIT* — P (Qi x A).
4, K ={K1,K2,...,Kn} C U Q:, is the set of query states.
=1
If there exists just one 1 < i < n, such that K C @,, then the system is said to be centralized,
the master of this system being the component i.
The system is deterministic if all the components Ti,...,T.. are deterministic. It means that for
all 1 < i < n the next conditions are fulfilled:
(i.) |6:(s,a)] < 1 for all s €Q; and a € TuU {A},
(ii.) [d:(s,A)| # 0 for some s €Q; then |5:(s,a)] =0 for all a € T.
If the transition mapping 4., is defined as: 4;: Q. x TU{A\} — P (Qix A*), for alli, 1 <i < n, then
the system is said to be a parallel communicating sequential transducers of degree n (pcst(n) for
short). By a configuration of a pcft(n) we mean an 3n-tuple:
(81,1,71,82, 2,92, --»8n,&n, ¥n)
where:
e s, is the current state of the component i,
e z, is the remaining part of the input word which has not yet been read by T,
e vi € A* is the output string emitted up to this point by T, 1 <i<n.
The binary relations, on the set of all configurations of T are defined as:
(1)) (81, 21,911+« +9n, Ty Yn) F (P1, Y1, V121, -+ -, Pry Yny YnEn)
iff one of the following two conditions holds:
(1.) K n{s1,82,...,9n} =0 and z, = a,y:,a; € TU{A}, (s, 2:) € bi(si,ai),1 <1<,
(1.ii) for all 1 <i < n such that s; = K, and s,, ¢ K put pi = s,,,1 < ji <n,pr=sr,
for all the other 1<r<n, and ye =2, 1<t < n.
(2) (31,51, V1 -+ Sny Tny Yn) Fr (PL YL Y121, -0y Py Yns TnZn,)

iff one of the following two conditions holds:
(2.1) KN {s1,82,...,80,} =0 and z; = a;yi,a; € TU{A}, (pi,2i) € 8i(3¢,a:),1 < i <,
(2.ii) for all 1 < i< n such that s; = K,; and s,, ¢ K put pi = s;,,p,, = ¢j;, 1<5i< n,and py=s,
for all the other 1<r<n, and ye ==, 1<t < n.
A peft(n) system whose moves are all based on the relation F, is said to be returning (henceforth
rpcft(n)), and non-returning otherwise.

Definition 2. Let 7 = (2,A,T1, T, ..., Tn, K) be a PCFTS, returning or not. We say that a word

24

v € A* is an output for an input string u € =¥, if and only if there exist w1, ..., Uk € T%; Viry ...,
Vi € A*, Qio, ---, Qik € Qi*, where k € N*, qao Abeing the initial state of the transducer T;, such
that, for 1<: < n the next conditions are fulfilled:

ibu=ug...uxandv=vy ... Vi, ‘

. (Qij41, Vije1) €8 (Qij, Wy41), With g € Fy, 1<i<n , 0<j< k;
such that one of the following conditions have to be realized:

ii.1. If Kn {qi;,q3;,...,an;} = 0, then due to 1.i or 2.3, at the step j+ 1 there will be an usual
transition (without any communication);

ii.2. If Kn {qi;,q2;,.-,an;} # 0, then for all i € {1,2,....n} such that qi,;=Ki,; I; € {1,2,...,n},
I, # i,and qi,;; ¢ K, using 1.ii, for a non-returning system, we will have: qi;41 = qi;;,. For a
returning system, applying 2.ii, besides the last condition, we will also have: qi;,41 = qu;0 (it
means that the transducer T:; gets into the initial state: qi,0 at the (5 + 1)-th transition).

For short, using the relation defined in (1), an word v € A* is an output for u € T*, in a pcft(n),
if and only if:
(3) (@1t Ay ooy gny u, A) F* (81,40, ..., 80, A, 1), sie Fi,1<i<n;
where +* is the reflexive and transitive closure of the relation .
Using the relation (2), v € A* is an output for u € £* in a rpcft(n) if:
(4) (qry Uy Ay ooy @ny 5, A) BT (81,0, 0,..., 80, A, 0), si € F;,1<1<n;
in which F» is the reflexive and transitive closure of the relation ..
If in definition 2. we consider u.i, ..., u.x € = then the output word for a pest(n), having as
input the word u € £*, is obtained.
Let 7 = (5,A,T1,Ts....,Tn, K) be a peft(n). For a given computation o, displayed in (3), we
define by =(a) the sequence of labels of transition rules used in o. The controlled language of
the pcft(n) is defined as: '
Letr (T) = {m()|o: (@1, u, Ay .. @n, 0, A) F* (81, A, 0,..., 80, A, v), 8; € Fy, 1<i <n},

in which v is the output word for 7, when the input string v has been read. We denote by
PCFT(n)(ctr) the family of controlled languages of pcft(n) over a given alphabet. In the same
way the controlled language and the family of the controlled languages for a pest(n), rpcft(n),
or rpest(n) is defined. If L C ©* is a language over =, accepted by the associated pcfa(n), then
the output language generated by 7 (the PCFT mapping) is defined as:

T(L) = {v | such that (u,v) € r(T), ue L},
in which 7(T) is the transduction realized by T, more exactly :
7(T)={(u,v) |where u € T%v € A* satisfy (3) for a PCFTS or (4) for a RPCFTS}

2.2 Parallel Communicating Pushdown Transducer Systems

Definition 3. A parallel communicating pushdown transducers system of degree n (pcpt(n) for
short) is a system: T =(Z,A,NT, Ty, ..., Tn, K),
where:

1. ¥ is the input alphabet |,

2. A is the output alphabet ,

3. I' is the alphabet of pushdown symbols ,

4. foreach1<i<n, T:=(Qi%,T,A,d,4q,2%;,F) is a pushdown transducer with the set of
states @, the initial state ¢ € @;, the input alphabet £, the pushdown alphabet T, A the
finite output alphabet, the initial contents of the pushdown memory Z, €T, the set of
final states F: C Q., and the transition mapping :

$i: Q@ x(BEU{AN) xT — P (Q. xT* x A").

5. K C {K1,K2,...,K,} CT is the set of query symbols.

A configuration of a pept(n) is a 4n-tuple:
(81, 21,01, 71,82, %2,02,%2, - - -, S5, T, Om,)
where:

840, - .. » Qix not necessarily being distinct

o s; € Q; is the current state of the component T,

o r; € £* is the remaining part of the input word which has not been read yet by T3,

e a; €I is the contents of the i-th stack ,

o v € A* is the output string emitted up to that point, 1 <i<n.
Two kinds of transition relations are defined on the set of all configurations of T, as follows:
(5) (1,21, B1@1, 711+« s 85, Ty Boln, va) F (P1, 91, 5101, 1121, -+, Pry Yns BrnGny YnZn),
where B; € T',a:,3 € T* and ~, 2, € A* for all 1 <i < n, iff one of the following two conditions
holds, for all 1 < i< n:

(5.i) K n{B1,Bz,...,Bx} =0 and =; = a.y.,ai € TU{A}, (pi, Bi, 2i) € dilsi, a4, Bi),

(5.ii) for all i,1 < i < n such that B; = K, and B,, ¢ K,8: = B,,a,,,

for all other r,1 <r<n,8, =B,, and y. =z, p. = s:, forall t,1 <t < n.
(6) (81,21, B1@1, 71, - - « s 81y Fny Bran, 1a) Fr (p1, 91, 8101,71 21, .., Py Yn, BnQn, TnZn),
where B; €T, a.,3, €T*,v,Z; € A*, 1 < i <n, iff one of the following two conditions holds, for all
1<1<n:

(ﬁ.i) Kn{B1,Bs,...,Bx} =0 and z; = a,yi,ai € SU{A}, (s, Bi, zi) € di(si,a., Bi),

(6.ii) for all 1 < i< n such that B; = Kj, and Bj; ¢ K,B, = B,,a,,, and §,, = Z;,

for all the other r,1<r<n,8, =By, and y; =z, p: = st,forall t,1 <t < n.
The terminology, such as deterministic, centralized, OT a returning PCPTS used for the PCFTS
systems, is carried over to these similar devices, too. If the associated pushdown automaton
Aq, to the pushdown transducer T;, is an extended one, for each 1 < i < n, then the system
T, is said to be an extended PCPTS. It means that the transition mapping é; is defined as:

8 :Qu x (ZU{AY) X T* — P (Qi xT* x A*), forall1<i<n.

Transitions for an EPCPT will be defined in the same way as for a PCPTS, with difference
that extended systems may read words B, € I'* instead of symbols.

Definition 4. Let 7 = (£,A,I, Ty, T3,...,Tn, k) be a PCPTS. We say that a word v € A* is an
output for the input string u € ©*, if and only if there exist v, ... , ux €E*; Va, ..., Vir €A",
Qioy Gets --- , Gix € @i, for all 1< i < n, such that :

Lu=ug..uxand v=vy. . vy,

. (Qiy41, Zij41y Vis+1) €8,(Qiyy Uye1, 7iy) for 0< y <k and 1< i <n, where:

ii.1. If KN {v1j,72j,---»1mj} = 0, concerning with 5.5 or 6.i, at the step j+1, it will be an usual
transition, no stack communication;

ii.2. If K0 {715,725, - 75} # 9, then for all i € {1,2,...,n} such that ~;,=K,, and v;;¢ K using the
relations 5.ii, for a non-returning system, it will be: Z;+1 = By, ;101,41 (it means that, at the
transition j+1, the contents of the stack of the transducer T,,, will be sent to the stack T.).
For a returning system, concerning with 6.17, besides the last condition, we will also have: Z;;4:
= Zi,0 (it means that at the transition j+1, the contents of the stack of the T:, transducer,
contains only the initial symbol Z; o).

For short, using the relation defined in (5), a word v € A* is an output for u € £, using a pept(n),
if and only if:

(1) (q1,%,Z1, A, .., dny 4 Zny A) F* (81, A, 1,0y, 8n, A, a1, 0), 8i € Fi,1<i<n for a PCPTS accepting
by final states, and : :
(7)) (q1,8, 21, Ay, Gy Uy Zn, A) F2(81, M, 0,0, ..., 8, A, A, 0), 8 € Qi, 1<i<n for a PCPTS accepting by
empty pushdown memory .

Replacing the relation +* with the relation +} in (7) and in (7’), the definition of an output
word, for a RPCPT accepting by final states or by empty pushdown memory is obtained,
respectively. In the same way as for PCFTS, the notions of controlled language of a PCPT, or PCPT
mapping can be introduced.

3 The computational power of these systems

The problem that arises now, is to study the type of languages generated by a PCFTS or by
a PCPTS, having as input an arbitrary language L C ©*.

26

Let RE, ¢S, CF, LIN and REG be the families of languages generated by arbitrary, context-
sensitive, context-free, linear and regular grammars, respectively. The next inclusion holds:
(8) REG C LIN C CF C CS C RE

For each parallel communicating automata system we can build a PCFTS or a PCPTS, having
the same structure with the associated automaton. Following this, they are able to accept and
to generate the same kind of languages. The questions arising now are the following:

” Given an input language from a class X of the hierarchy (8), could it be possible to generate a language from
a class Y such that XC Y #7 or

” Which is the very first class of languages from the hierarchy (8) that could be used by a PC'TS to cover the
RE family ?”, and even more:

” Which is the minimal number of components that @ PCTS should have in order to satisfy the above goals?”
Answers to these questions will be given in the sequel.

3.1 Watson-Crick automata and PCFAS with two components - a compu-
tational power analogy

A parallel communicating finite automata system (PCFAS) could be viewed as a PCTS that
generates only empty strings. It is because the connection and the communication between the
components work exactly in the same manner. That is why we will skip here the definition* of
these devices. In the following the notations rpefa(2), rcpefa(2), cpefa(2) denote the returning,
returning centralized, and centralized PCFAS with two components. If x(2) is a type of the
above system, then X(n) is the class of all languages accepted by automata systems of type x.
We will show in this subsection that rpcfa(2), repefa(2) and cpcfa(2) are computational equivalent
with 1-limited Watson-Crick finite automata (henceforth 1WK). The reason has been suggested
by the Theorem 1. and Theorem 2. from [15] in which for n=2, we get to the computational
equivalence between pcfa(2) and two-head finite automata. On the other hand it is also known
that two-head finite automata have the same power as IWK [21]. So that, if we denote by
1WK(u) the languages generated by 1WK, the next result holds:

Lemma 1 PCFA(2) = 1WK(u)

It is not clear if the above result holds also for the returning or centralized finite automata
systems. Consequently, in the following, we will focus our attention on solving this problem.

Definition 5. A Watson-Crick finite automaton (WK) is a construct: M= (L,p,Q, s0, F,§),
where T is the input alphabet and @ is the set of states, T and @ are disjoint sets, p C T x T is
a complementarity relation, s, € Q is the initial state, F C Q is the set of final states, and § :
Q x(E.)— P(Q) is the transition mapping such that 4(s,()) # ¢ only for finitely many triples
(8, X, ¥) €@ x=* x T*.

We say that s’ € §(s,(Z)), if in the state s, the automaton passes over xi, in the upper level
strand and over z; in the lower level strand of a double stranded sequence, and enters the state
s’. This can be written, in terms of rewriting rules as: s(31)—(3!)s'. A transition in a WK
automaton is defined as follows:

for (21),(42),(%2)€(Z.) such that [1“1]e WK,(T) and s, 8’ € Q, we write:

Tz uawy
s (@) =) () ()
We denote by =* the reflexive and transitive closure of the relation =5. The language recog-
nized by the upper strands ®* of Watson-Crick tapes is defined as:
Lu(M) = {w: € V*/so[41]=>"[13] 51, for 55 € F,wp € V*,[22]€ WK, (V)}.
For a computation ¢ : sow =>* wsy,w € WK,(T),ss € F, we denote by e(o) ~ wordofes, that is the
sequence of labels of transition rules used in o. the controlled language of the WK automaton

*The reader can find it in the references.
®In general only the language appearing in the upper strand is studded, the other one being linked by the
first through the complementarity relation p.

27

over an alphabet T, is defined as: ,
Letr(M) = {e{a)| o : sow =" wss,we WK,(Z), sy € F}.

Several variants of WK finite automata have been introduced in the literature. Only the next
two types are useful in our considerations:

- stateless, if in the definition 5. we have Q = F = s;

- 1-limited if for all s[2:]—[21]s' € P we have |z1z;| = 1.
We denote by AWK(a), NWK(a), IWK(a), NIWK(a) the family of languages L.(M), o € {u,ctr}
recognized by WK finite automata which are arbitrary, stateless, 1-limited, stateless and 1-
limited, respectively. Several results related to the above classes, can be found in [21], besides
the next inclusion holds:
(9) REG C AWK (u) = IWK (u) C CS
Following the ‘above statements we claim that:
Theorem 1.

1. RPCFA(2) = ROPCFA(2) = CPCFA(2) = PCFA(2) = IWK (u).
2. For every family X(2), X(2) C CS, X € {RPCFA,RCPCFA,CPCFA,PCFA}.

In order to prove Theorem 1. we will show that:

S1. For each rpcfa(2), repcfa(2) or cpcfa(2) one can construct an 1 WK that generates the same language;
and vice-versa,

Sz2. For each 1WK there exist a rpcfa(2), a rcpcfa(2) and a cpcfa(2), that can be effectively constructed to
simulate the 1 WK automaton.

Si. Let A = (%, A1, A2, K) be a rpcfa(2), where A; = (Q:, T, 8i, i, F) are finite automata systems.
Let M = (Z,p,Q: UQ2,q0, F,é) be an WK automaton, in which ¢ € {g1.¢.} is the initial state,
F C FIUF, the set of final states and the complementarity relation being the identity, (a,b) € p
if and only if a = b. Let w be an arbitrary word accepted by A. This word will be decomposed
by A; and A4, in two different partitions as follows: w =ai1a12¢13...a15 = a21a22a23...a2x Where
a;; €eLu{}}, and (g1,811@12812...81k, g2, 621 G22G23...az2x) FF (81, X, 82, A).

We have to define the § transitions for the WK automaton such that at each odd transition
the 1WK reads in the upper strand the symbol that has been read by the first automaton,
and at each even transition the IWK reads in the lower strand the symbol that has been read
by the second automaton. Suppose that at the step j,1 < j < k, rpcfa(2) performs the transition:
(10) (915-1, 01,8141 .-81k, §25—1, 02502 j+1-..G2k) F (g1, @1541.-.01k, G25, B2y 41 --G2k)

This will be simulated by the 1WK, as follows:

a1y-1 (350)F (N) 2y (S el Ly (32)91: (Guti et)b (mg) g, (G1t2: k)

For each q1;-1, g2,-1, 1, and ¢; that do not belong to the set of queries K, the § mapping has
to be defined as: 4(g1,-1,(*)Y)) = g2,-1 (derivation applied at each odd step)

8(g2y-1,(,)) =a;, (derivation applied at each even step).
If qij—1 = K> then, using the definition of the RPCFA, see e.g. [15], (10) becomes :
(11) ‘ (g2j-1,81;81541...01%, G2, B2, G2541...82k) F (q17,B1541...01k, @25, 2541 ...G2k)
so that § has to be defined as: 6(g2;-1,(°V)) = @, 5(q2,(a;)= ai;.
If in (11) we have q1; = K> then at the next step we have to define § as:

8laz-1, (V) =@, O(ar(,),)=a; and &gy, ()= q.

If ¢2;—1 = K; then the sequence (10) becomes :
(12) (91,81;G1541...01k, Q15 ~1, B2;825 41 -.-02k) F (G2, Q1741...G1k, G25, G241 ...G2k)
so that the mapping & will be: é(g:,(*%)) = q1,j-1, J(ql,_l,(a;,)= q1,, and so on.
To notice that because the symbols (aij)ieq1,2,e1.4; have been chosen in Su{)}, it is possible
pairs such as (°}) or (.}) to be equal with (}). These situations can be eliminated. For in-
stance, if in (12) we have a5, = A, and ¢,; = A then é hiave to be defined as: 6(q1,(°}7)) = q:, and
8(q1,(*4*')) = q, such that at the end of the computation the automaton will be a pure 1WK.
Because the transition é has been constructed following step by step the automaton transitions
that generate a specified language, the IWK automaton will generate the same language. It is

28

well known from [15], that each repefa(2) can be simulated by a rpcfa(2) and consequently each
rcpcfa(2) can be simulated by an 1WK automaton. In the same paper it is shown that each
epefa(2) can be converted into a pefa(2) and due to Lemmal, each cpefa(2) can be simulated by
an 1WK. With these remarks the statement S, has been proved.

S;. Vice-versa, let M= (I,p,Q, 50, F,é) be an IWK automaton, that generates the language
L.(M), and w an arbitary word from L.(M). There exist a derivation such that s, ()="(%)s;.
Let w = ajaz...ax and @ = a,a,...ar be the decomposition of w and @ respectively, by following the
1WK derivation steps, where ai, a € SU{A}. Suppose that in step j, 1 < j < k the automaton
performs the transitions:

(13) qj ajaj-“mak)"(;;:)qkf-l (uj+1...ak)I__(a]aj+1)q]+2 (aJ+9...ak)|_ .

B 8541 Bk A48k \ayai4 8,430

where |aai| = 1, and ¢ € @ for each 5 <! < k. In terms of é rules the above transitions are
defined as: '

(14) 8ai,(3)) = a1, 8(ay41,(3711)) = gis2

Let A = (T, A1, A3, K) be the rpcfa(2) that we want to develop. Let s, be the initial state of the
first automaton, ro the initial state of the second automaton, ro not being necessarily from Q,
Q1 CQand Q; C {r}uQ, I, = F, = F the sets of final states and the mappings 4., i € {1,2},
defined below. At each derivation step done by the 1IWK automaton the first automaton of the
PCFAS reads the string from the upper strand, the second automaton reads the string from
the lower strand, and the current state of the IWK has to be taken over by one of the PCFAS
components. For a returning, non-centralized system, the strand that contains A determines
which one of the components has to communicate, a component will be in the current state
of the 1WK automaton and the other one will be in its initial state. For a centralized type
only the chosen master has to ask, both automata being in the current 1WK state for a non-
returning system. To note also that each § rule from the IWK will be simulated by two rules
in a PCFAS, that depend on the last pair of states in which the 1WK automaton has been
stated. That is why in the construction of 4;, i € {1,2} we have to follow step by step, the IWK
derivations, in order not to miss the same é rule but in a different pair of states. Let us suppose
that at the transition step j-1 the system finishes in the pair of states (g;,r0). Considering the
above remarks, the first rule from (14) will be rewritten as follows:

If a, = A then J(q,,(;‘j)) = g,41 becomes: §;(g;,) = K> (because of the empty string in the upper
strand) and é;(ro,d;) = ¢,4+1 (because one of the automata has to conceive the IWK state) and,
because of the returning condition, the rpcfa(2) system will finish this step in the pair of states:
(g541,70)-

If, in (14), a, = A then 8(g;,(%)) = g+ will be simulated by éi(gj,a;) = g;41 and &:(r0,}) = K1,
after which the system gets into the states: (so,gj41).

Because the transitions §;, i € {1,2} have to be constructed following step by step the 1IWK
transitions, that generate a specified language, denoted by L.(M), the rpcfs(2) system will gen-
erate the same language ®. We conclude that the above constructed rpcfa(2) simulates the 1IWK
automaton, and it had been correctly defined. In order to obtain a repcfa(2) we have to allow
only one component to ask. Supposing that the second component has this permission, and at
the step j-1, the system gets into the states: (s0,g;) then, at the next step j, the é function will be
rewritten in: 8;(so,A) = gy+1 and d82(q;,@,) = K1, if a; = A. It will be transformed in 61 (so, a;) = g,4+1
and &,(g;,)) = K1, if @, = A. In all the cases the system finishes the communication in the states
(s0,g;+1). Because of the centralized character of the system only the second automaton has to
conceive the IWK current state, the first one finishing always in its initial state. If we want to
convert the 1WK automaton into a ecpcfa(2) then we have to allow only one of the automata to
ask without letting the other one to return in its initial state. Such an automaton will finish
the transition step j-1 in the states (g;,g;), so that the first function, from (14) will be rewritten

$Nothing had been changed, we had only built the transitions §; and 8> and synchronized them with respect,
to the RPCFA definition.

in: 8i(g,,A) = ¢j+1 and 82(q;,a,) = K1, if @, = A or in 81(g,a;) = g;41 and b2(q;, A) = K1, if @, = A,

If we denote by L...(A) the controlled language defined by A over an alphabet T, that is the set
of sequences of labeled transition rules for an accepting computation, and by PCFA(2)(ctr) the
family of controlled languages for a pcfa(2), then the next result is an immediate consequence
of the theorem 1:

Corollary 1 1WK (ctr) = PCFA(2)(ctr)

In the next example we show how to build, using the above explained method, a rpcfa(2),
a rcpefa(2) or a cpefa(2) starting from an 1WK automaton that accepts the language L =
{a"b"c"|n > 1}.
Example 1. Let M = ({a,b,c}, p, {34, 86, 8¢}, 80, F = {sa},6), be the IWK automaton that accepts
the language L, in which p = {(z,)|z € £}, and the function § is defined as:

1. 5(84,(‘;)):80, 2. 6(50,(3))=sb, 3. 6(35,(2)):50,

4. 8(s0,(2)) =5, 5. 8(s,(})) =92, 6. 8(sa,(})) = 3.
the controlled language of M over T = {a,b,c} is:

Lo (M) = {17(23)"(45)"6"|n > 1}.

The derivation steps performed by the above 1WK automaton, in order to accept the language
L, are deplcted below:

o)) 82 Q0D te (0 2) 8120 ()3 () 2D 9020

v “ T v

~ 7 -’

n times n times n times n times

The rpcfa(2), that simulates the above WK automaton is : 4 = ({a,b,c}, 41, A2, K), where A,
and A, are two finite automata with the initial and final states s, and ro, respectively, and the
transition mappings defined as:

1.81(8a,a) = sa, 5.82(r0, A) = K

2.61(8q,b) = su, 6.02(8u,A) = K1,

3.51(84,0) = 3¢, 7.82(ss,8) = 3a,

4.61(84,2) = K2, 8.42(sc,b) = 8a,

9.82(ro,¢) = Sq.

In the above system the WK rules are simulated as follows: 1 is simulated by 15 and 18, 2 is
simulated by 26 and 25, 3 by 47, 4 by 35, 5 by 48 and 6 by 9. the controlled language of the

rpcfa(2) will be: Lee (A) = {I5(18)"~2637(3537)"~" (3548)"(39)"|n > 1}.
For the rcpcfa(2), that simulates the above WK automaton, the §; functions are described in
the following: 1.61(84,0) = 34, 5.82(r0, \) = K1

2.51(8a,b) = Sb, 6.62(34, X) = I\’l,

3.61(8a,c) = s, 7.62(sb,a) = K1,

4.61(84,A) = Sa, 8.02(s.,b) = K1,

9.62(8e,¢) = K
The simulation is: 1 is simulated by 15 and 18, 2 is by 26, 3 by 47, 4 by 38, 5 by 48 and 6 by 45
the controlled language of the repefa(2) is:
Leer (A) = {15(16)""(2647)"(3648)"(49)"|n > 1}.

The cpcfa(2), that simulates the same WK automaton is:

1.61(8a,a) = 8q, 7.82(ro,\) = K

(8a,b) = b, 8.02(8a,A) = K1,

3.61(8a,¢) = 8¢, 9.62(ss,a) = K1,

461(8,;,)«) = 8a, fO.ﬁz(sc,b):I\'l,

5.61(sb, A) = sa, 11.82(84,¢) = K1,

6.01(5¢,A) = 34.
In which 1 is simulated by 17 and 18, 2 is by 28, 3 by 59, 4 by 38, 5 by 610 and 6 by
controlled language of the pcfa(2) is:

Leer (A) = {17(18)"~1(3855)"(38610)" (311)"|n > 1}.

. the

ey
o

30

The next results have been proven in [21]:

Theorem 2. _
Fach language L € RE can be written in the form L = h(L'), where L' € AWK (u) and h is a projection’.

Theorem 3.
Each language L € RE is the image of a deterministic gsm® mapping of a language in the XWK(ctr), X
€ {A,N,1,1N}. .

From theorem 1. and theorem 2, using the relation (9), we obtain:

Theorem 4.
Each language L € RE can be written in the form L = h(L'), where L' € X(2), with X € {RPCFA, RCPCFA,
CPCFA,PCFA} and h a projection.

From Theorem 1. and Theorem 3. we get to:

Theorem 5.
Each language L € RE is the image of a deterministic gsm mapping of a language in the family PCFA(2)(ctr).

3.2 From Watson-Crick automata to the computational power of pcft(2)

If an 1WK automaton is improved with the output capability the resulting device is known
in the literature as Watson-Crick finite transducer (henceforth 1IWKT). They are explicitly
defined in [21]. In the previous section we have seen that Watson-Crick automata are powerful
equivalent with pcfa(2). Because of this the same equivalence is true for the corresponding
transducers. As 1WKT are able to cover the family RE starting from regular languages it
is expected that for PCFT(2) the same property holds. The next operations, on words and
languages, are useful in the sequel:
The shuffle of two strings is an arbitrary interleaving of the substrings of two original strings. For
two strings z,y € ©* and two symbols a,b € T, we have:

(i) rle=elz=x, (ii) axr by = a(zLby)Ublar L y).

The shuffle of two languages Ly, L, is defined as: LilLy= U rliy,
r€Ly,y€Ls
The twin shuffle language over the alphabet T, defined by: TSs = U £ L2,
€V

The following representation of the family RE is well known from [21]:

Theorem 6. Each recursively enumerable language L C T* can be written as L = h(T'Ss N R), where X is an
alphabet, R i3 a regular language, and h is a projection.

Furthermore, in [21] it is proven that:

Lemma 2. For every alphabet &, TSs€ N1WK(ctr).

Lemma 3. NI1WK({ctr) CIWK (ctr) C AWK (ctr) C CS.
From Lemma 2. and Lemma 3, using the Corollary 1. we conclude that:

Lemma 4. For every alphabet T, TSy € PCFA(2)(ctr).
As the controlled language of a pcfa(2) can be expressed as the output of a pcft(2), from Lemma
4. we get to the following result:

Corollary 2. For every alphabet T, there is a pcft(2), such that TSy = T(PCFA(2)), where T is the corespond-
ing pcft(2) mapping.

From Theorem 5. and Corollary 2. we obtain:

Corollary 3. Each language L € RE can be written in the form L = g(T(PCFA(2))), where g is a deterministic
gsm and T is the corresponding pc ft(2) mapping.

< 7A homomorphism that erases some symbols and leaves unchanged the others.
8A generalized sequential machine (sequential transducer) is a system g = (Q, T, A, go, F, 6), where T and A
are alphabets (the input and the output alphabet respectively), Q is the set of states, go is the initial state, F
is the set of final states, and 6 : @ x & — P(Q@ x A*).

31

From Theorem 6 and Corollary 2, taking into consideration that both, intersection with regular
languages and morphism are realized by pcft(2)°, we get to:

Theorem 7. For each recursively enumerable language L C T* there is a pcft(2), such that L = T(PCFA(2)),
where T is the corresponding PCFT mapping.

As REG C IWK = PCFA(2), see the relation (9), we conclude that PCFTS are able to cover the
family of all RE languages having as input regular languages.

3.3 On the computational power of PCFPT

In order to express the computational power of PCFPT we will take into consideration only
some constructive example. They come to show that the questions from the beginning of these
section have a positive answer for these systems, too.
Example 2. Let us consider the next deterministic PCPT(2) :
- ({a7 C}, {Zo, Zly a}’ Tl, T27 {Kvla 1{2}))
in which T; = (@;, %, T, A, 6, ¢, Z;, F;), © € {1,2}, are two pushdown automata, defined as:
= ({qh 814 rlapl}w {(1', C}, {207 2y, (2}, {a}1 617 q1, 21, {pl})1

= ({QQ’ 52»1’2}» {a" C}, {ZOa Zl, a}, {a}, 62’ g2, Zla {p2})1
having the next transition mappings :

L. 51 (111, a, Zl) = (slv Zl)a') 9. 52(Q2, A’ Zl) = (QQ, I{], ’\)
2. 51 (sl, a, Zl) = (31’ aaZlv (l) 10. 52(‘12, A) (l) = (42» Klav a)
3. 61 (51, a, a) = (317 aaa, a) I1. 52 ((h, Aa ZO) = (521 Aa a’)
4. §,(s1,¢,a) = (r1, Zoaaa, A) 12. §3(sg,a,a) = (52, A A)
5. 81(r1, M a) = (7‘1, AA) 13. 83(s2,c,a) = (p2, A, A)

6. 6 (le ’\ ZO) 7’1, A A) 14. 52 (p?; As a) = (p2, ’\7)‘)
7. 61(r1, A, Z1) = (p1, K3, a) 15. 82(p2, A, Z1) = (72, A, A)
8. 6 (pla) pl’ ’\’ a) 16. 62(7'2, A a) = (’I"z,)‘ a’)

17. 82(re, A, Z1) = (12, A, A)
Taking as input, the regular language: L = {a"c |n > 1} the PCPTS will generate the following
context-sensitive language L = {a”2 | n > 1}, by following the transitions: (qi,a", Z1,), g2,a"¢, Z1,})
Fite (81,8" '¢, Z1,a,q2,a"c, K1, A)

Fats (81,8" 2c,aaZ1,aa, ¢2,a"c, K1,)
P—;L"l'(;n (s1,c,a2"" V72, a” go,a"c,a®" "V Z;...a2Z1,a"?)
F4+1o (1‘1, A, Zoa2"Z1,a”, qg,a"c, I\’102(n—1) A ..(1221,(1"—])
Fet11 (r1,\,a®"Z1,a"™, s2,a"¢,a** Z1a>""V Z;..4a* Zy,a")
5tz (rl,A,a"Zl,a",32,c,a"Zlaz“‘“l)Zl..azZl,a”)
|—5+13 (T1,)\ a("-l) Zl ,a",pg, A,a‘"_l) Zlaz(ﬂ—1)21 ..azzl, ﬂ")
;g’ul) (ri, X, Zv,a",p2, A, Z1a*" Y a2 Zy,a"™)
Frgis (p1, A, K2,a", 12, A, 62"~V Z1 .62 Z1 ,a")
";1(1"6—” (P, A, Z1...6°Z1,a"a®) po, A, Zra...a? Zy,a"a? (V)
Frpr (p1, A, @2"D Z1 6?2y, a"a® " pp, A, a2 2, .62 21, a"a? ")
";i({:;-z)(m A, Zia2 =927, ang?(rmhgdln=) o\ 7 g3 n=3)g2 g a"a?(n=1) g2(n=2)y

2(n—2 2(n—4
Fr417 . |‘;+(1’:-,) N L TR 2 “;_‘_(1';) |‘7+17 v “gim cee "7+17|';.2Hg e
I"7+lT (Pl, A, A,ana2(n—1)a2(‘n-2) 2(11—3) 0402 P2, A A, anGZ(n—l)az(n—2)a?.(n—3) (1402)

The output is: a”a2("=Dg2(n=2) _ g4g2=q2n+2n—1)+..+4+2-n— gnintl)-n—gn’

The meaning is that there exist context-sensitive languages, that can be generated by PCPTS,
taking as input a regular language. Furthermore, the next result holds:

Theorem 8.

For each recursively enumerable language Lpg there exist a regular language Lrgc and a
PCPTS such that T (Lreg) = Lgg.

91WKT are able to perform these.

32

We leave open the problem of computational power of PCPTS, since we have another example
that stands for NLP.
Example 3. We will build a PCPTS in order to check the correctness of the next grammat-
ical structure: pronoun—clitic'®~verb. We want also, to simulate phonological phenomena
that appear in such a phrase. Let A=(X,T, 71,75, T3, K) be an EPCPT, where ¥ = g U
{1,2,3,% p,4} , Sr being the Romanian alphabet. We consider as input, strings of the form:
eu 15 imi f1sintilnesc13, where the first symbol behind f stands for person and the second
for number ($ is for singular and p is for plural). If all the grammatical agreements hold, the
output must be: eu mi-ntilnesc (I am meeting my...). The J rules are defined as being:

6:(gi, 2, Z;) = (gi, Zi, x), where 2 € X7 = {a,e,4,l,0,n,t,u,v}, i € {1,2,3};
The functions read and output the personal pronoun.

8:(qi 8, Z;) = (8i, 25, A), for all i € {1,2,3};
The symbol §§ changes the states, in order to obtain a deterministic system.

81(s1,2,71) = (81,221, A), where z € Xo, X2 ={1,2,3};

61(s1,9,) = (81,2Y, A), where = € X3 and y3, X3 = {5,p};

8i(siy2,2;) = (8i, Zi, A), for i € {2,3} and z € X, U X3;
Onlv the first stack stores the grammatical attributes: the person and the number.

01(s1,2,2) = (81,2,A), where 2 € £ — X3 and z € Xy;

53(3 Z, Z3) (S3,Z3, A)) TeEX - -X—3; 52(S2a Z2) - (32, IZZ’ ’\)

62(32,1 1) = (s, 1z, A), where x € {m, 1, ¢, s};

52 82, Ly { im, i@, i§ }) = (Sg, i{m, §,] }1,/\), 52(82,5, i) = (32,1{1 i,A),
Clitic pronouns will only be read, but the second stack memorizes them. The second stack
asks also the first one, to see if the clitic agrees in number and person with the pronoun. The
spelling is made using the Romanian grammar rules *.

52(82,1,{2,3})= (52,/\,)\), 52 .52,2 {l 3}) 82,)\ /\)

62(327 3, {17 273})=(323 ’\9 A) 62(82’ Z, iII) (32, T, ’\)a T € X2~ {3}1

82(s2, 4, 2Y)=(p2, A, A), € X2 — {3}, y € X3, 82(p2, A, y)=(ra, A,), y € X5
Other situations will block the system, the functions not being defined!?.

01(81, X3, X3)=(p1, K2,), 03(s3, X3, Z3)=(p3, K3, A), 82(52, X3, X3)=(r2, A, A);
The first and the third transducer ask the second one for the memorized clitic.

6 (piy Ay X3)=(ri, A, A), for all @ € {1,2,3};

&:(ri{i, 1 }, Zy{imi,iti,1si}) = (r;, A, { mi-, ti-, gi- }), respectively, 7 € {1,2,3};

5.,-(7',-,(1, Zy{imi,itd,isi}) = (1, A, { mi-a, §i-a,, si-a }), 1 € {1,2,3};

8i(riy z, Z{imi,td,181}) = (r;, A, { imi, iti, isi }), ¢ € {1,2,3}, 2 & {a,4,i};
All the components cutput the clitic pronoun.

8:(ri, Sry{ imi, iti, isi }Z2)=(rs, A, Zg)}, for all i € {1,2,3};
The content of each stack is deleted until it gets to the pronoun features. In the same time all
the components output the verb that follows the clitic.

01(r1, Ry X3)=(r1, X2, ZR); O1(r1, 7, Xo)=(r1, X2,A), x € Xo U X3 U {Hi};

62("21 ADj -8)‘)z(r'b A SR); 52(7‘2, Ty A)=(f‘2, A, A)a x € X2UX3U {ﬁ}o

83(rs, LR, Z3)=(rs, Z3, XR), d3(rs, §, Z3)=(rs, K1, A);
After all the components read and output the verb, the third stack asks the first one, in order
to check if the verb and the pronoun agree in number and person:

83(rs, z,2)=(r3, A, A), x € Xz; 03(rs,4,y)=(r3, A, A), ¥y € X3;
Taking r; as final state for the i-th automaton, 1 < i < 3, in the case that all the agreements
are fulfilled, the system has as output strings such as: eu mi-ntilnesc for the input: eu imi
intilnesc (I am meeting my..), or el gi - aduce for el igi aduce (He is bringing to him..),

10A clitic, in the Romanian language, is an unstressed pronoun.

" Rules such as concordance between pronoun and verb, or between strong pronoun and clitic are used.

12The Romanian clitic system does not allow, for instance, combinations such as:1§ (pers.l singular) for
pronoun and 1p (pers.1 plural) for clitic. A pair such as:(1§,1p) will be discarded.

and so on. These operations are known in phonology as vowel deletion phenomena.

4 Conclusions

In this paper we have introduced the notion of PCTS and other definitions related to this
topic. We dealt with the mechanism of parallel communication and we have applied it in
the natural language processing. A description of Watson-Crick automata has been done in
order to describe the computational power of pcft(2). We have touched the problem of PCPTS
taking into consideration various examples. Several characterisations of recursively enumerable
languages have been given for these systems. '

References

[1] A. O. Buda.1977. Multiprocessor automata, Inform. Proces. Lett. 25(1977),257-261.

[2] E. Csuhaj-Varju, C. Martin-Vide, V. Mitrana, G. Vaszil. Parallel communicating pushdown au-
tomata systems. Internat. J. Found. Comput. Sci. 11 (2000), no. 4, 633-650.

[3] J. Dassow, V. Mitrana, Stack cooperation in multi-stack pushdown automata, J. Comput. System
Sci. 58(1999), 611-621.

[4] R. J. Evey. 1963. The Theory and Application of Pushdown Store Machines, Ph.D. Thesis and
Research Report, Mathe. Linguistics and Automat. Trans. Project, Harvard University, NSF-10,
May1963.

[6] P. C. Ficher.1963. On Computability by certain classes of restricted Turing machines, Proc.Fourth
IEEE Symp. on Switch. Circuit Theory and Logical Design.

[6] S. Ginsburg. 1962. Example of abstract machines, IEEE Trans. on Electronic Computers 111: 2,
132-135.

[7] S. Ginsburg, G. F. Rose. 1966. it Preservation of languages by transducers, Information and Control
9:2, 153-176.

[8] O. H. Ibarra. 1973. One two-way multihead automata, J. Comput. System Sci. 7(1973), 28-36.

[9] R. M. Kaplan, M. Kay. 1994. Regular models of phonological rule systems, Computational Linguis-
tics, 20(3)

[10] L. Karttunen. 1993. Finite-state lexicon compiler, Technical Report Xerox PARC P93-00077, Xerox
PARC.

[11] W.Kuich, A. Salomaa. 1986. Semirings, Automata, Languages, EATCS Monographs on Theoretical
Computer Science, Springer-Verlag, Berlin,-Germany.

[12] M. D. Jiménez-Lopez, C'. Martin-Vide. 1997.Grammar Systems for the Description of Certain Nat-
ural Language, New Trends in Formal Languages, Contreol, Cooperation and Combinatorics. Ghe-
orghe Paun and Arto Salomaa (Eds.)

[13] C. Martin-Vide, V. Mitrana.1997. Parallel Commumcatmg Automata Systems, A Survey.Korean
J. Comput. Appl. Math. 7 (2000}, no. 2, 237-257.

[14] C. Martin-Vide, V. Mitrana, Some undecidable problems for parallel communicating finite au-
tomata systems. Inform. Process. Lett. 77 (2001), no. 5-6, 239-245.

[15]) C. Martin-Vide, A. Mateescu, V. Mitrana. Parallel finite automata systems communicating by
states. International Journal of Foundation of Computer Science Vol. 13 No. 5 (2002) 733-749.
[16]. V. Mitrana. 1999. On the degree of communication in parallel communicating finite automata
systems. Descriptional complexity of automata, grammars and related structures (Magdeburg, 1999).

J. Autom. Lang. Comb. 5 (2000), no. 3, 301-314.

[17] M. Mohri. 1997. Finite-State Transducers in Language and Speech Processing, Computational
Linguistics, 23(2), pp. 269-311.

[18] M. Mohri. 2000. Minimization algorithms for sequential transducers, Theoretical Computer Science,
234:177201.

[19] M. Mohri, F. Pereira, M. Riley. 1996. Weighted automata in text and speech processing, In ECAI-96
Workshop, Budapest, Hungary. ECAL

[20] G. van Noord, D. Gerdemann. 2001. Finite State Transducers with Predicates and Identities.

[21] G. Paun, G. Rozenberg, A. Salomaa. 1998. DNA Computing: new Computing Paradigms.

33

