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1 Introduction

The vanishing theorem of non-commutative case in asymptotic analysis is established
by Sibuya([12], [13]) in 1970’s to solve the so-called R-H-B problem. That was stated
in terms of vector bundles, of which the origin is in a work on matricial functions of
Birkhoff. Malgrange [6] translated Sibuya’s theorem in terms of sheaves of germs of
functions a.symptotica.lly developable on the S!, the set of directions to a point in C.
Malgrange proved also the vanishing theorem of commutative case in asymptotic analysis
and, Malgrange and Deligne showed that it was usefull to study the structure of formal
solutions to inhomogenous linear differential equations by using solutions asymptotic to
the series 0 of the associated homogeneous linear differential equations. These are succes-
sively extended to the Gevrey asymptotic case in one variable(Ramis [11],..., [7], ...), to
the general case of asymptotics in several variables (Majima [1], [2], [3]), the Gevrey case
in several variables(Haraoka [?]), and some generalizations for these results (Mozo [8]).

These are also extended to the case of hyperasymptotics. The first attempt was done
in [5](see also [4]).

In this paper, we give vanishing theorems in hyperasymptotic analysis of level 1 and 2.
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2 Vanishing Theorems in Hyperasymptotic Analysis
in the Commutative Case

In the following, we work at the infinity and for a real positive number R, real numbers
a and b, we denote by S(R, a, b) the open sector at the infinity

S(R,a,b)={z:|2| >R, a<argz<b}. (1)

Let {S(R,az,be) |£=1,---,L} be an open sectorial covering of the annulus

D(R,00) = {z| + 00> |2| > R} (2)

We say that {S(R, as,b;)|£=1,---,L} is a good covering when the following condition
is satisfied:

QL1 = G, 6g < be—y < agq1 < by, bp—as<m, £=1,--+,L. (3)
We set, for fixed aq, by, €=1,---,L,

St-—l,l(R) = S(Rr Qe-1, bl—-l) N S(R, Ay, bt) = S(R’ ay, bl--l)1 (4)

and take ~ o+b
Ty == 21_1- ' (5)

These will be the directions of the Stokes lines in the next theorem, and these Stokes lines
will be denoted by '

7o = {te'™ t€[1,00)}. o (©)

We will call {)\;|k=1,---, K} an acceptable set of exponentials for our covering when
for each 1 < k < K there exists an £ such that arg(—Ax) = —T¢, that is, Axz < 0 when
arg z = 75. For each £ we define '

Ke={ke {1, K}| arg(-M) = -7} . | (7)

We will use the notation

te[0,00)}, v={tRe"

ik =Aj = Aks  Bik = B = Pk : (8)

Theorem 1 Let {8 (R, ag, by) ‘Z =1, L} be a good open sectorial covering of D(R, o0)
and let {\;|k=1,---,K} be an acceptable set of exponentials for this covering. For
£=1,---,L, let

Upr4(2) = %‘; 85U, 4(2) (9)
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be a finite sum of functions defined in Sy_1 4(R) that are
in that sector asymptotically developable to the formal power-series

UE, J(2) ~ 73 ugzh, (10)

=0
where py, are complex constants. In (9) 6 are constants that are either 1 or 0.
Then, there exist o positive number R' (> R), a formal power-series V(z) = T2 Tr2™"
and functions V; defined in Sy(R"), £=1,---, L, such that
(1)  the relation

Ur-1.42) = Vi) = Ver (2) (11)
holds for z € Sg..l,[(R”).
(i1) Vg is aymptotically developable to the formal power-series V(2) in Se(R"), and if
we wrile

M-1 .
Vi(z) = 3 T2 + R (2, M), (12)
r=1
then
B (2, M) = e~HIO (|zfo+1/?) o (13)

as |z| = oo in the sector 7y < arg z < Ty41, where we have taken the optimum number of
terms

M = og|z] + O(1), (14)
where

o = min{|x||[k=1---K,d # 0}, (15)

fio = max{Ru|k=1--K}. (16)

(ii5) As T — 00 |
-1 K oo R
T, ~ 5—1: Z Z 6ku,kI‘(r + up — 8) (—)\k) ) (17)
k=1 s=0 . :

Remark 1: The lines arg z = 7y, 7¢41 are Stokes lines for the function Vy(z).
Remark 2: The constant oy defined in (15) is the distance from the origin to the nearest
active \; in the complex plane. By changing the values of §; the value of ap might change.

The next theorem is the hyperasymptotic level 1 version. For this theorem we need
some extra information in the asymptotic expansions of the functions Ut(f)l,‘(z).
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Theorem 2 In addition to the assumption of Theorem 1, we moreover assume that there

exist constants &y, and v, k=1,--+, K, such that
K N 0
U, o) = M S ua 4+ BOGMN), (18)
=0

where for all z ‘near’ vy, and large N we have

RO (2, Ny) = et LA 20) 6y ) (19)
(Ge) ™
Define
o1 = min{@+|M||[k=1---K,8 #0}, (20)
o= max{uk+$\‘.uklk=1---K}. (21)
Then
-1 K Np—-1 .
Tom =30 3 Sual(r+ =) (-M)' ™ +ROMN,), (22)
k=1 s=0

where, when we take the optimal choice

N, = max(ay — |A},0)

T+ O(1), (23)

we have

RO (r,N,) = (I(;J("))r O (,.ﬁ1+1/2) : (24)

as r — 0o. For the remainder in (12) we have

. zl —-M K Ni-1 M+ -
RO (2, M) = - o >3 6kuskF(l)( ;"‘ ) + RV M,N,), (25)
k=1 s=0 k

‘where, when we take the optimal choice
M = ay|z| + O(1), Ni = max(os — |k, 0)|2| + O(1), (26)

we have
B (2, M, N,) = e O (|2171+1) (27)

as |z| —= oo in the sector 7y < phz < Tg41.
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In the definition we shall use the notation

(M oce™m
/ = / , neR.
A A

Let I be a nonnegative integer, RM; > 1,0, € C,0; #0,j=0,---,l. Then

FO@) = 1,

[x—80] Mo—1

F (z; MO) = / &ﬁ_ dto,

09 3 z—1
[x—8]  [7—6i] -
F+D (z; P Ml) = ettty T e,
0o, ***, O1 5 (z—to)(to —t1) - (tz 1— tz)
where 0; = argo;, j =0,1,---,l. In the case argo; = argg;4+1 (mod 27) we have to make

the choice between the #;-contour being on the ‘left’ or ‘right’ of the t;.;-contour. We
make the choice via the definition

Faen (. My, ---, M; = lim FO+D My, My, e, M, M
) o.o’ ey g1 €]0 aoe—‘ei oe” (‘ l)ei . .’a‘_le"ﬂ’ o1

which means that once again we prefer ‘right’ over ‘left’.

The multiple integrals converge when —7 — 8y < argz < 7 — 6.

The next theorem is the hyperasymptotic level 2 version. For this theorem we need
some extra information on the re-expansions of the functions U, ,_1 ,,(z)

Theorem 3 In addition to the assumption of Theorem 1, we moreover assume that there
erist constants Gy; and vy, k,j =1,---,K, j # k such that

(0) K M Ny + pjx — 8 RY
R (z Nk) _ZeAkz 1-Np+pe 235 Z uskJF(l) (z’ \ ] ) (Z Nk7NkJ)9

7k 2m 5 ik
(28)
where for all z ‘near’ v, and large Ny, — Nkj and large Nk_,- we have
(1)(2, N, Nk ) — e,\,,zzm.-N,,+2F(Nk — NkJ + NJk)F(NkJ + VkJ) ( ) (29)

Ml (@)™

Define

= min{G; + | M| + | Ae| | kG =1, K, j# Kk, & #0, Kjx #0},  (30)
= ma‘x{ykj-*-%”klk:j:1""7K1j5ék}' (31)

5 8
|
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Then
o E N P
T, = 5— Z JkuskI‘(r + Ug — S) (—)\k) (32)
m k=1 8=0
K'kﬁkj—l T+ pg — Np+ 2, N + pjx — 8
+¥Y = ug; FP | 0; ’ 7 33
g,:% 2m1 az_;) skj Aks Ajk (33)
+RW(r, Ny, Npg), (34)
where, when we take the optimal choice
- ~ -1 Akil, 0
N = e = MbO) o) g, = B s M Pb0), L o), (35)
Qg O
we have r(r)
RO(r, N,, N,g) = 20 (ria+1) 36
(7, Nps Nog) (ag)" (7' ) (36)
as r — oco. For the remainder in (12) we have
M K (N1
(0) — __z_lM (1)(.M+I‘k—s)
h -1
M+ pup— N+ 1, N +
$ KN g (5 M N Lt ) Je
J;’-’k =0 k) ik
+RP (2, M, Ny, Np,), (39)

where, when we take the optimal choice

M = ay)z+0(1), Ny = max(az—|M],0)|z[+O(1), Ny; = max(oa—| el [, 0)]2|+O(1),
(40)
we have
BP (2, M, Ny, Nyg) = e722Hl0 (2+3/7) (41)
as |z| = oo in the sector that is bounded (from the right) by the Stokes line arg z = 7, and
(on the left) by the Stokes line arg z = Ty4y or one of the other Stokes lines arg(Ax;2) = 0,
such that this sector doesn’t contain any of these Stokes lines.

The proof of Theorem 1 is given in [MHO]([5]) except for estimate (13). We can prove
these theorems by using the integral representation:

/ Uj-1,i(€) 1J(C d¢ = Z > 2m.[r' U(" dC, )

J=1kekK;

Vi) = Z

jo12mi
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where z € S(R",74,7¢41). Hence,

L
L=y %3 / UL dg (43)
j=1keK;
e 30)( U®,(¢)eM1
1,5
RO(z, M) = ,2,2,25 ,m/ﬁ e, (44)

where, again, z € S(R", 7y, Te41)-

3 Application: inhomogeneous linear ordinary differ-
ential equations

Let . K1y
Py := —&_K +fK_1(Z) dzK-1 + - +fo(z)w 0 (45)
be a linear differential equation with a singularity of rank one at infinity, and let
00
g (2) = e 2 S ugz?, k=1,---,K, (46)
=0 '

be all the formal solutions. We assume that all Ay are nonzero and \; # A, if j # k.
With these exponentials we can construct our covering.

The complete hyperasymptotic expansions of solutions of (45) are given in [9], and with
the theory and proofs in that paper it can be checked that all assumptions of Theorems
2 and 3 are satisfied when we take U™, ¢(2) as follows.

For the moment we fix k € {1,---, K} take £ such that k € K, and let US¥), £(2) be the
solution of (45) with asymptotic behaviour 4(z) as its complete asymptotic expansion in
a sector that either contams arg z = 7y, or has this line as its boundary on the ‘right-hand
side’. In other words, U, c(z) is supposed to be the Borel-Laplace transform of (z).

Define

(®)

W) = v,(z)=§% L U{_i() &, z€S(R'anbei+21), (A7)
(-) 1 1 UBLQ) " |

W) = Veale) =5 1/7, SR, e S(Ea-Imb).  (48)

Compare (42). Thus we have taken all d; zero except one. In (47) we integrate to the
‘right’ of 2 and in (48) we integrate to the ‘left’ of z. Note that we have the relations
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Wi (@) = W (ze™) and W (2) - Wi (2) = UL (2). (49)
Compare (11). Hence,
PW{ (2) = PWED (ze2™). (50)
Thus
pe(2) = PW(2) (51)

is analytic at infinity.

Let W )(z) be the asymptotic expansion of function Ww(z) fork=1,...,K. Then,
W(+) (2) is a formal solution of the inhomogeneous equations PW = py for k =1,...,K.
If we consider P as an operator on O/O, we see that < W(z), - LG WE () > mod (@)
form a basis of Ker(P; &/0) ~ H'(S*, Ker(P : Ay))(see, for example [4]).

Namely, for any analytic function p(z) at infinity and a formal solution of Pw = p,
there exist constants Cj and an analytic function h(z) at infinity, such that

W(z) = WP (2) + -+ Cxk W (2) + h(2). (52)
Put o
W) = Z_% te2". (53)

According to Theorem 1 we have

'.

9 Z Ck Z uakr(r + pk — S) ( Ak)’—m'“r ’ (’54)
i g — -
as r — 00, with re-expansions in Theorems 2 and 3. The constants Cy can be computed
via this relation, or the higher level versions of this relation. For more details on the
computation of the connection coefficients Cj see [10].

At the moment that we have these connection coefficients, for an actual solution w(z)
of Pw = p, we can use them in the approximation

M-1 Ni—1
w(@) ~ Ytz > ual® (M T, (55)

r=0 k=1 3=0 ’\k

or higher order level versions of this approximation.

NOTE: that in (55) only the Poincaré part depends on p(z). The re-expansions are the
same for any p(z), and once we have computed these re-expansions for one function p(2),
we can use them for any other function!
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