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1 Introduction

Throughout this paper, we shall discuss on the k-summability of formal solutions
of the Cauchy problem for a partial differential equation of non-Kowalevski type

Hu(t,z) = du(t, z),
(CP) { u(0,2) = p(z), Hu(0,z)=0(1<j<p-1),

where (t,z) € C2, p and ¢ are natural numbers with 1 < p < g. We first assume
that the Cauchy data ¢(z) is holomorphic in a neighbourhood of the origin. This
Cauchy problem (CP) has a unique formal solution

(L.1) a(t,7) = f: F@) s = fj un(2)t"

From the local analyticity of the Cauchy data, this series is formal power series of
Gevrey order (q— p)/p with respect to t variable, which means that the following
Gevrey estimates for the coefficients hold for some positive constants r, C' and
K

(1.2) max lun(z)] < CK"T' (14 (¢ —p)n/p), n=0,1,2,....
In this case, we write it by

(1.3) i(t,z) € O{[t]l(g-p)/p-

We put ¢(0) = (¢ — p)/p and k(0) = 1/0(0). The results of k(0)-summability
and k(0)-sum are given by M. Miyake [Miy] and K. Ichinobe {Ich 1,2} (cf. [LMS]
where they considered the case of (p,q) = (1,2)). The definitions of these termi-
nologies will be given in the next section. In [Miy], Miyake gave the characteri-
zation of k(0)-summability of the formal solution (1.1) in terms of the property
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of analytic continuation and its exponential growth condition for the Cauchy
data. Under these conditions for the Cauchy data, Ichinobe obtained an explicit
integral representation of the k(0)-sum by using a kernel function (cf. [Ich 1,2]).

Therefore our interest in this paper is that we discuss the same problems when
the Cauchy data ¢(z) is an entire function of finite exponential growth order. We
shall show that under some conditions the formal solution (1.1) is k-summable
in a direction and the integral representation of k-sum by using a kernel function
is obtained.

2 Preparations

2.1 Definitions

In order to discuss the k-summability and k-sum, we give some definitions.

Forde R, > 0and p(0 < p < o©), we define a sector S(d, 3, p) by

(2.1) S(d, B, p) == {t € C;largt — d| < —g—,O <t < p},

and d, G and p are called the direction, the opening angle and the radius of this
sector, respectively.

Let ¢ > 0 and k = 1/0. Let i(t,z) € O,[t]], and u(t,z) be an analytic
function on S(d, 8, p) x B(r), where B(r) := {z € C;|z| < r}. Then we say that
u(t,z) has the Gevrey asymptotic expansion i(t,z) of order o in S(d,8,p), if
for any relatively compact subsector S’ of S(d, 3, p), there exists a positive small
constant 7; such that for any non negative integer N, we have

: N-1
(2.2) max ut,z) — Y ua(z)t"| < CKNT(1 + cN)|tN, ted,
TS n=0

by some positive constants C' and K.

When the opening angle 3 is less than o, for any direction d € R there
exists an analytic functions u(t,z) on S(d, 3, p) X B(r) such that (2.2) holds, and
actually there are infinitely many analytic functions on the region.

When 3 > o for the opening angle 3, there does not exist such an analytic
function u(t, z) on S(d, B, p) X B(r) such that (2.2) holds in general. But if there
exit such functions u(¢,z), then it is unique. In this sense, such an function
u(t,z) is called the k-sum of 4(t,z) in d direction (k = 1/0). We write it by
u4(t, ), and we say that 4(t,z) is k-summable in d direction. (For the detail of
the k-summability, see [Bal 1].)



We remark that if the formal solution 4(¢, z) of (CP) is k(0)-summable in d
direction, then the £(0)-sum u?(¢, z) is an actual analytic solution of the equation
Ofu(t,z) = 8lu(t,z) satisfying the Cauchy data in the asymptotic meaning as
t — 0 along the sector S(d, 3, p) with 8 > o(0)r.

2.2 Known Results

We give the known results of k(0)-summability and k(0)-sum of the formal so-
lution 4(t,z). First we give the theorem for the k(0)-summability in Miyake’s
paper [Miy].

Theorem 2.1 (Miyake) Let k(0) = p/(q — p) and ¢(x) be holomorphic in a
neighbourhood of the origin. Then the formal solution u(t,z) of (CP) is k(0)-
summable in d direction if and only if there erists a positive constant € such
that

(1) the Cauchy data ¢ can be continued analytically in a domain

(2.3) Qdina) = U S (d“’””m oo)
m=0

(2) the Cauchy data ¢ has a growth condition of ezponential order at most
q/(q — p) in Q.(d; p, q), which means

(2:4) lp(@)| < Cexp (Vel74P), @ € Qu(d;p,q),

for some positive constants C and +.

We write the condition (2) by

(25) o(z) € Exp (ﬁ;m(d; » q>) .

Next, in order to give an explicit formula for the k£(0)-sum, we need a prepa-
ration for Meijer’s G-function.

Meijer’s G-Function. (cf. [MS, p. 2|) For @ = (e,...,a,) € CP and
Y=, Y) ECTwitha,—v ¢ N0 =1,2,...,n;5 =1,2,...,m) such that
0<n<p 0<m<gq, we define

) / Dy + T) e T(1 — g — 7) 2 Tdr
% 2mi Hg—m+l (1l - — 1) [y T(ae +7) ’

(2.6) Gput |z (

where the path of integration [ runs from k —i0o to k+io0o for any fixed k € R in
such a manner that, if |7| is sufficiently large, then 7 € I lies on the line Re 7 = &,
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all poles of T'(y; +7), {—v;—k; k> 0,5 = 1,2,...,m}, lie to the left of the path
I and all poles of (1 — 0 —7), {1l —ay+ k; k > 0,£ =1,2,...,n}, lie to the
right of the path I, which is enable us by the conditions that oy —; ¢ N.

In the following, the integration fooo(e) denotes the integration from 0 to oo
along the half line of argument 6, and we use the following notations.

p:(1a27'~-7p)ENpa q=(1:2""7q)ENq

12

:(")5)"'75)) p+c=(1+c,2+c,...,p+c) (CEC)1
1,=(1,1,...,1) € N4,
P P
I (p/p)=[ITG/p), T(p/p+o)=]IT(/p+0).
j=1 j=1

We give the theorem for the integral representation of the k(0)-sum in Ichi-
nobe’s papers [Ich 1, 2].
Theorem 2.2 (Ichinobe) Under the conditions (1) and (2) in Theorem 2.1, the
k(0)-sum u®(t,z) is obtained by the following function

oo(pd/q) '

(27) wlt,a)= [ @ale, OBo(t,Cip )
where (t,z) € S(d, B, p) x B(r) with 8 > (¢ — p)n/p and sufficiently smallr,

gq-1
(2.8) ®(z,¢) = X plz+Lwg), w, = exp(2mi/q),

m=0
and the kernel function Ey(t,¢;p,q) is given by

_T@/P) 1 qe0 (p_” ¢?

(2.9) Eo(t,¢3p,q) = T(g/q) ¢ PI\gatr

p/p
a/q ) '
3 Result

When the Cauchy data ¢(z) is an entire function of finite exponential growth
order, we consider the k-summability of the formal solution of (CP) which is
given by

(3.1) a(t, ) = f‘, o (z) (;:)! .




We first remark that the formal solution 4(t, z) is convergent in a neighbourhood
of the origin in C? if and only if

(32) ¢(z) € Exp (—(;%;; C) ,

which means that ¢(z) is an entire function of exponential order at most g/(g—p).
In fact, the condition (3.2) is equivalent to the condition

(33) | (0)] < CK™(pn)!, n=0,1,2,...,

for some positive constants C and K.
Therefore instead of the assumption that ¢(z) is holomorphic in a neighbour-
hood of the origin, we assume in the following that

(3.4) ¢(z) € Exp (%; C) ,
where £ is a natural number with 1 < ¢ < ¢ — p — 1, which means
(3.5) e (0)| < CK™((g - On)l,n=0,1,2,....

Then we have
(3.6) W(t, ) € Og[t)](q-p-0)/p-

We put o(¢) = (¢ —p— £)/p and k(¢) = 1/0(€) =p/(¢ —p = ©).
Our results of the k(£)-summability of 4(¢,z) and its k(£)-sum are stated as
follows.
Theorem 3.1 Let
(3.7) o(z) € Exp (% c) .
Assume that ‘
= g pd
(3.8) ®,(z,C) = ) oz + (wy) € Exp, (q_:;’ S ('&',5, 00)) ,
m=0

uniformly for small |z|, which means that there exist positive constants r, C and
v such that

d
39 mexloe0l < Com (o), ces (M a0).

Then the formal solution i(t,x) is k(£)-summable in d direction, and the integral
representation of k(£)-sum just coincides with the one of k(0)-sum in Theorem
-2.2. Ezactly speaking, the k(£)-sum u®(t,z) is given by

(3.10) w(te)= [ @ole OBalt, (i3, ),

.
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where (t,z) € S(d, B, p) x B(r1) with 8 > (¢ — p — £)7/p and small r1, and the
kernel function Eo(t,(;p,q) is the same one as in Theorem 2.2.

In order to prove Theorem 3.1, we use the following important lemma for the
k-summability.

Lemma 3.2 Let 0 > 0, k = 1/0 and d € R. Let i(t,z) = Toloun(2)t" €
O¢[[tlls- Then the following three statements are equivalent.
(i) 4(t,z) is k-summable in d direction.
(i) Let vi(s,x) be the formal k-Borel tmnsformatzon of u(t, z)

(3.11) vi(s,z) = (Brit) (s, ) := Zun T)

n=0

(1 +n/k)

“which is holomorphic in a neighbourhood of the origin in C*. Then vy(s,z) can be

continued analytically in a sector S(d, e, 00) in s-plane for some positive constant
€ and satisfies
(3.12) v (s,z) € Exp, (k; S(d,&,0)),

uniformly for small |z|.
(iii) Let j > 2 and k1 > 0,...,k; > 0 satisfy 1/k = 1/ky +--- + 1/k;. Let
va(s, ) be the following iterated formal Borel transformations of 4(t, )

(313) U2(S: m) = (ékj ©-:-0 BAklﬁ‘)(sa 11)
Then vq(s,x) has the same properties as vl(s,aﬁ) above.

Under these conditions, the k-sum u(t,z) is given by the analytic continua-
tion of the following k-Laplace integral of v;.

(3.14)  ui(t,z) = (Lrav1)(t, z) = —1—/°°(d) exp {—— (%)k] v1 (s, z)d(s),

where (t,z) € S(d,8,p) x B(r) with B < or. Exactly speaking, the analytic
continuation of u?(t,z) in t variable is done by rotating the argument d of the
path of integration.

The k-sum u®(t, z) is also obtained as s the following iterated Laplace integrals
of v,.
(3.15) u(t,x) = (Lry a0 0 Ly, qv2) (¢, 7).

Proof of Theorem 3.1
Let v(s,z) be the (g—p— 13) times iterated formal p-Borel transformations of
Uu(t, x)
(3.16) v(s,z) = (B" P4 )(s z) = Zga(q”)(x)

]
oy pn)'n‘q p—£
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which is convergent in a neighbourhood of (s,z) = (0,0). Then under the con-
dition (3.8) for ®,(z, (), it is enough to prove that for some positive constant
€

(3.17) v(s,z) € Exp, (;—g——é S(d,e oo))

uniformly for small |z| .
In doing so, we first consider the following function w(n, z)

N (Rt _ (Ra-ps = (an) "
(3.18) w(n,z) = (Bw) (n,z) (= (B2 ?d) (n,2)) = > @)
By Cauchy’s integral formula, for sufficiently small |n| and |z|, we have

1 ez +¢) & (g/a)n P
319)  wnz)=gof FE S (ppca) %

where r > ¢/(q?/p?)|n|P. We put

320) 100 = 3 e,y

‘ Q/q —1)
F,_ 1 X , Xp
gt'g—1 ( p/p, lq—p—l n n

pp Cq np7
where F},_; is called the generalized hypergeometric series.

We notice that f(n,{)(= ,F,-1) has ¢ singular points in {-plane at g roots
of (¢ = (q?/p")nP since (Fy_1(---;2) is a holomorphic solution at the origin of
a Fuchsian ordinary differential equation with three regular singular points at
z=0,1,00. We put {(n) = (q?/pP)/mP/? (the root with argument p argn/q) for
any fixed 7 # 0 and we denote by [0,{(n)] the segment joining the origin and
¢(n). Then f(n,() is singled-valued and analytic in C, \ UIZ5[0, ¢(n)w?] (cf. [Ich
1,2]). Therefore by deforming the contour of integration (3.19) on ¢ segments,
we get the following expression

(3.21) w(n,z) = -1—/ o %Z’—Q{f(n&) ~ f(n, Cwg)} &

273

We remark that th integrability at the end points of each segments is assured
from the properties of 4F,_;. From this expression and the assumption that
o(z) € Exp(q/¢; C), we obtain

(3.22) max |w(n,z)| < Cexp (8nP/f), neC,

|lz|<ry

by some positive constants r;, C and 6.



Therefore the function v(s,z) is given by the following £ times iterated p-
Laplace integrals of w(n, z) for any direction 8 over n-plane

(3.23) v(s, @) = (LEgw) (s,).

We fix argn = 8 = d for n # 0. By exchanging the order of integrations, we
have

oco(pd/q) T,
(3.24) v(s,z) = 211m / 2 ( <) {( ) ( 50— f(',Cwq_l))} (s)d¢

Now, we calculate the explicit integral representation of the kernel functions
of w and v. For that purpose, we employ the Barnes type integral representation
for the function ,F,_;. Then we always assume (p,q) # (1,2), (1, 3) since we can
remove such the restriction by employing the Euler type integral representation
instead of Barnes type, but we shall not go into details about this here. (See [Ich
2, Appendix].)

We recall the following Barnes type integral representation of f(7,() = ¢Fg-1

T'(g/q+7)T(-7)

(=X, “HTdr X 1= e
p/p+)T(1+ 7)a—p-1% 77 >

pP e’

(3.25) f(n,¢) =35~ /1 I(

where |arg (— X, ')} < 7, the path of integration I runs from & — 400 to & + ico
with —1/q < k < 0 and Cpq = I'(p/p)/T(q/q). (cf. [IKSY])

Since the function f(n,¢) — f(n,{w; 1), which is the kernel function of w, is
well-defined on the line of arg{ = p argn/q for any fixed n # 0, we have after
easy calculation

I'(g/q+7) —r
p+71)[(1+ T)‘I‘pX” ar

p/z;,/ qq‘p )

(326)  f(n,¢) = f(n¢wg") = ”"/I‘(p/
= 2miCp,GLY (Xn

p:;_; QWiCEq—p(TI: C?py Q)>

and for the kernel function of v, we get

(3.27) {(€ta) (£CO = FCgwgM) } ()
I'(g/q+ )

= Cw ), Tlp/p+ 1T+ Der i o7

= 27”'CPQGQ—€Q ( p/p)q/(;-—p—l ) = 27TiCEq—-p—£(3) C7p1 Q).




In order to prove (3.17) under the condition (3.8) for ®,(z,(), we use the
asymptotic expansion of the G-function (cf. [Luk, p. 179])

p/p’ qg—p—¢ )
3.28 G?°
(8.28) 1= ( a/q
(e-1)/2
(27‘31/2 exp (_Ezl/l) z—(q—p—l)/?[ [1 + O (z—l/e)] ,

as |z| — oo, |argz| < fr.

From this property of the G-function and expressions (3.24) and (3.27) for v(s, z),
we have for sufficiently small

ﬁl&)ﬂv(s )| < A {nlc'iXI@ (, Q)| | Eg—p-e(s, Cip, )| |dC]
¢l

< € [7a1¢ Ish exp (¢ exp (—cl ,,,/e) dcl,

where p(a,b) denotes a power function of ¢ and b, and C, v and ¢ are some
positive constants. v

There is no problem if |{| is sufficiently large, since ¢/(q¢—p) < q/¢. Hence on
0 < |¢] £ M for any large fixed M > 0, we calculate the maximum with respect
to ¢ of the function

(3.29) F(|¢;|s]) == exp (ﬂqq/(q—p) — c|<|q/£|3|~p/€) .

We see that the function F'(|(];|s|) takes the maximum at
(a=p)
€I = eals| 777 =[G

and
(3.30) F(1Gol s1) = exp (calsf?/@2-9)

where c¢; and c; are some positive constants. From this we have the desired
properties (3.17) of v(s, z).
Finally, the k(¢)-sum is given by the following iterated p-Laplace integrals of

v(s, x)
(331)  wi(t,z) = (LEF ) (t,2)
_ Cpq /~Ooo(Pd/‘1) Qq (IL', C) [(ﬁq—p—!)ane,q (X

¢
_ °°<P"/q)<1>(w O g ( p/p)

P )| o

87



68

This completes the proof of Theorem 3.1.

Remark 3.3 Comparing the condition for k(0)-summability in Theorem 2.1

| (3.32) o(z) € Exp (q 1 Q(d;p, q ))

and the condition for k(£)-summability in Theorem 3.1

-1
(3.33) ®,(z,¢) = E o(z + (wy') € Exp, (a—— S(pd/q,e¢, oo))

m=0
uniformly for small |z|, we seem that they are different ones. But we see that
these conditions are equivalent each other. In fact, it follows from the relation
formula

1t .
(3.34) I V(z+¢) = . 3 a;ag—l—fcbq(x, 0).
j=0

Hence Theorem 3.1 actually follows from the above fact and a property of the
k-summability (cf. [Bal 1, p. 31, Exercises 2]). The claim of our theorem is
the fact that the integral representations of k(¢)-sum and k(0)-sum are the same
ones!

Remark 3.4 In Theorem 3.1, the condition (3.33) is only a sufficient condition
for k(¢)-summability though it is necessary and sufficient condition for k(0)-
summability from Theorem 2.1 and Remark 3.3. We do not know yet whether it
is also a necessary condition.

In the paper [Bal 2], W. Balser gave the necessary and sufficient condition
by using different conditions with ours in case of heat equation which is the case
of (p,q) = (1,2) in our notation. According to his argument, we can get the
necessary and sufficient condition as follows:

Let o > 0 and k = 1/0, and let 4(t, ) = 32, 09 (z)tP"/(pn)! € O[[t]], be
a formal solution of (CP). We put

(3.35)  9(a) = Ola(z,0) = > w(q"J“J’(O)(—T 0<j<qg-1).
n=0
Then (t, x) is k-summable in d direction if and only if Pi(x) (0<j<p—1)is
k-summable in d direction.
In fact, the necessity is trivial. For the proof of the sufficiency, let 9, (x) be
the k-sum of ;(z) in d direction. We put

n+

(3:36) 2%6’% pea



Then one can prove that u(t, z) has the Gevrey asymptotic expansion #(t, z) of
order o in a sector whose direction is d and its opening angle is greater that o,
which shows that u(t, z) is the k-sum of 4(t, ) in d direction.

4 Hierarchy of equations

Let 4(t, z) = £, ¢ (2)t?"/(pn)! be the formal solution of (CP) We put

(4.1) (s, x) := (Bﬁ ) 8,%) = Zocp(q”)( (pn)' Pyl

where / is a natural number with 1 </ <qg—p— 1.
Then it is seen that (s, z) satisfies the following Cauchy problem

¢
(CP), &’ (%383) v(s,z) = (s, z),
v(0,2) = ¢(z), 0v(0,2)=0(1<j<p-1)

In fact, it follows from the following commutative diagram

i (Bp)e sPn
(pn)! (pn)!(n!)¢
1 ¢
" % (;0)
¢p(n=1) (B,)* gP(n—1)
{p(n -} {p(n — D}{(n - 1)!}sP

Then we can prove the following proposition in a similar way to Theorems 2.1
and 2.2.

Proposition 4.1 Let o(¢) = (¢ —p — £)/p and k(£) = 1/o(f). Let (s, ) be
the formal solution of the Cauchy problem (CP), where the Cauchy data o(z) is
holomorphic in a neighbourhood of the origin. Then (s, z) € Oz[s]]o). Then
the formal solution 0(s, z) is k(£)-summable in d direction if and only if

(4.2) ®,(z,¢) € Exp, (——3——— S (pd,e oo))

g—p-—10

uniformly for small |z|. Moreover, the k(£)-sum v%(s,z) is given by

“3) v(o,2) = [T Bole, ) Bels, B L,
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where the kernel function Ey(s,(;p, q) is given by

L(p/p) 1 noo (y_’” <

(44) EZ(SaC;p’Q) = r(q/q) C p+iq qqg;

pfzj?qlz )

We fix ¢ as above. We take a natural number m with 1 < m < qg—p—~.
Then we can prove the following proposition in a similar way to Theorem 3.1.

Proposition 4.2 Suppose p(z) € Exp (¢/m;C). Then 0(s,x) € Oz[[s}lo(m+s)-
Assume that

(4.5) ®,(z,¢) € Exp, (—-—q—-— s‘(?-;‘-i,e,oo)) ,

g—p-0
uniformly for small |z|. Then the formal solution 9(s,z) of (CP), is k(m + £)-
summable in d direction, and the integral representation of k(m + £)-sum just
coincides with the one of k(£)-sum in Proposition 4.1.

5 Singular Perturbation

The idea developed in the previous sections can be extended directly to the
study of k-summability for divergent solutions to singular perturbed ordinary
differential equations. In this section, we shall present the idea.

Let p and g be two natural numbers, and consider the following equation

(5.1) (I — 138 u(t, z) = p(z),

where (z) is assumed to be holomorphic in a neighbourhood of the origin and
I denotes the identity operator. Then a unique formal solution is obtained by

o0
(5.2) it,0) = 3. ¢(@)™ € Oullt]lyp.
n=0
From this expression of formal solution, we easily see that 4(t, z) is convergent
in a neighbourhood of the origin in C? if and only if p(z) € Exp(1;C).
As a fundamental result on the p/g-summability and the integral expression
of the p/g-sum, we can prove the following proposition which corresponds to
Theorems 2.1 and 2.2.

Proposition 5.1 Let p(z) be holomorphic in a neighbourhood of the origin.
Then 4(t, z) is p/q-summable in d direction if and only if

(5.3) 8,(5,0) = 5 (o + () € Bxp, (1-, s (%l,e, oo)) ,

m=0



uniformly for small |x| for some constant € > 0. Moreover, in this case, the
p/q-sum ul(t, ) is given by the following integral formula

oo(pd/q)
(54) ut,a) = [ @4(z, QR OdS,
where the kernel function Fy(t,() is given by

11 (10
(55) | FO(t’O—I‘(q/q) ¢ oa (?F a/q )

The proof of this proposition is reduced to those of Theorems 2.1 and 2.2 for
the Cauchy problem (CP). In fact, by taking formal 1-Borel transformation to
the equation (5.1), we obtain an integro-differential equation

(5.6) (I - 8;702) v(s, ) = (),

since the multiplier by ¢? is send to an integral operator 0;7. Therefore by
operating 0% to the obtained equation, we get the following Cauchy problem.

Fv(s,z) = 65”(& z),

(5.7) { v(0,z) = p(z), Fv(0,z)=0(1<j<p-1).

Thus, when ¢ > p, the problem is reduced to the Cauchy problem (CP) and
the previous results are applicable. On the other hand, when p > ¢, by putting
T = tP we change the problem to the following one

(5.8) (I - 1) w(r, z) = p(z),
by which the problem is reduced to the above case.

Now, instead of the assumption that ¢(z) is holomorphic in a neighbourhood
of the origin, we assume that

5.9) @) e bp (Lyic) (1<e<o-).
Then we have

(5.10) u(t,z) € O[t]lesp-

In this case, we can prove the following proposition for the p/¢-summability
and the p/f-sum of the formal solution 4(t, z) of the singular perturbed equation
(5.1), which corresponds to Theorem 3.1.

11
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Proposition 5.2 Let o(z) € Exp(q/¢;C) and assume (5.3) for ®4(x,(). Then
the formal solution @(t, ) of (5.1) is p/¢-summable in d direction, and the integral
representation of p/f-sum just coincides with the one of p/q-sum in Proposition
5.1.

We can present the corresponding results to Propositions 4.1 and 4.2, but we
omit to write them down in explicit form, since they will be easily recognized.
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