A Proof of the M-Convex Intersection Theorem

東京大学大学院 数理情報学専攻 室田 一雄 (Kazuo Murota) Graduate School of Information Science and Technology, University of Tokyo

Abstract

This short note gives an alternative proof of the M-convex intersection theorem, which is one of the central results in discrete convex analysis. This note is intended to provide a direct simpler proof accessible to nonexperts.

1 M-Convex Intersection Theorem

The M-convex intersection theorem [3, Theorem 8.17] reads as follows, where V is a nonempty finite set, and \mathbb{Z} and \mathbb{R} are the sets of integers and reals, respectively; see §3 for the definitions of M^{\natural} -convex functions and notation arg min. This theorem is equivalent to the M-separation theorem, to the Fenchel-type min-max duality theorem, and to an optimality criterion of the M-convex submodular flow problem.

Theorem 1 (M-convex intersection theorem). For M^{\natural} -convex functions f_1, f_2 and a point $x^* \in \text{dom } f_1 \cap \text{dom } f_2$ we have

$$f_1(x^*) + f_2(x^*) \le f_1(x) + f_2(x) \qquad (\forall x \in \mathbf{Z}^V)$$
 (1)

if and only if there exists $p^* \in \mathbf{R}^V$ such that

$$f_1[-p^*](x^*) \le f_1[-p^*](x)$$
 $(\forall x \in \mathbf{Z}^V),$ (2)

$$f_2[+p^*](x^*) \le f_2[+p^*](x)$$
 $(\forall x \in \mathbf{Z}^V).$ (3)

For such p* we have

$$\arg\min(f_1 + f_2) = \arg\min f_1[-p^*] \cap \arg\min f_2[+p^*].$$
 (4)

Moreover, if f_1 and f_2 are integer-valued, we can choose integer-valued $p^* \in \mathbf{Z}^V$.

We shall give a constructive proof of Theorem 1 based on the successive shortest path algorithm. Different proofs available in [3] are:

- 1. original proof based on negative-cycle cancelling for the M-convex submodular flow problem (§9.5 and Note 9.21 of [3]), and
- 2. polyhedral proof for the discrete separation theorem based on the separation in convex analysis (Proof of Theorem 8.15 of [3]).

¹Notation:
$$f_1[-p^*](x) = f_1(x) - \sum_{v \in V} p^*(v)x(v), \quad f_2[+p^*](x) = f_2(x) + \sum_{v \in V} p^*(v)x(v).$$

2 Essence of Theorem 1

The essence of Theorem 1 consists of two assertions:

- 1. optimality of $x^* \Rightarrow$ existence of p^* ,
- 2. integrality of $f_1, f_2 \Rightarrow$ integrality of p^* .

To see this we make easier observations in this section.

Observation 1: Existence of p^* with (2) and (3) \Rightarrow optimality (1) of x^* . (Proof)

$$f_1(x^*) + f_2(x^*) = f_1[-p^*](x^*) + f_2[+p^*](x^*)$$

$$\leq f_1[-p^*](x) + f_2[+p^*](x) = f_1(x) + f_2(x).$$

Observation 2: For any $p^* \in \mathbf{R}^V$ we have

$$\arg\min(f_1 + f_2) \supseteq \arg\min f_1[-p^*] \cap \arg\min f_2[+p^*]. \tag{5}$$

(Proof) This follows from the inequality shown in the proof of Observation 1.

Observation 3: If

$$f_1[-p^*](x^\circ) \le f_1[-p^*](x)$$
 $(\forall x \in \mathbf{Z}^V),$ (6)

$$f_2[+p^*](x^\circ) \le f_2[+p^*](x) \qquad (\forall x \in \mathbf{Z}^V)$$
 (7)

for some x° and p^{*} , then

$$f_1[-p^*](x^*) \le f_1[-p^*](x)$$
 $(\forall x \in \mathbf{Z}^V),$ (8)

$$f_2[+p^*](x^*) \le f_2[+p^*](x)$$
 $(\forall x \in \mathbf{Z}^V)$ (9)

for every $x^* \in \arg\min(f_1 + f_2)$. Hence,

$$\arg\min(f_1+f_2)\subseteq\arg\min f_1[-p^*]\cap\arg\min f_2[+p^*]. \tag{10}$$

(Proof) Put $x = x^*$ in (6) and (7) to obtain

$$f_1[-p^*](x^\circ) \le f_1[-p^*](x^*),$$
 (11)

$$f_2[+p^*](x^\circ) \le f_2[+p^*](x^*).$$
 (12)

Adding these yields

$$f_1(x^{\circ}) + f_2(x^{\circ}) = f_1[-p^*](x^{\circ}) + f_2[+p^*](x^{\circ})$$

$$\leq f_1[-p^*](x^*) + f_2[+p^*](x^*) = f_1(x^*) + f_2(x^*),$$

whereas $x^* \in \arg \min(f_1 + f_2)$. Hence we have equalities in (11) and (12).

Observation 4: It suffices to consider M-convex functions rather than M^{\natural} -convex functions.

(Proof) This follows from the equivalence between M^{\dagger} -convexity and M-convexity; see [3, §6.1].

Thus the proof of Theorem 1 is reduced to showing the following.

Proposition 2. For M-convex functions f_1, f_2 with $\arg \min(f_1 + f_2) \neq \emptyset$, there exist $x^{\circ} \in \arg \min(f_1 + f_2)$ and $p^* \in \mathbb{R}^V$ such that

$$f_1[-p^*](x^\circ) \le f_1[-p^*](x) \qquad (\forall x \in \mathbf{Z}^V),$$
 (13)

$$f_2[+p^*](x^\circ) \le f_2[+p^*](x) \qquad (\forall x \in \mathbf{Z}^V).$$
 (14)

If f_1 and f_2 are integer-valued, we can choose integer-valued $p^* \in \mathbf{Z}^V$.

3 Notation and Basic Facts

We denote by \mathbf{Z}^V the set of integral vectors indexed by V, and by \mathbf{R}^V the set of real vectors indexed by V. For a vector $x = (x(v) : v \in V) \in \mathbf{Z}^V$, where x(v) is the vth component of x, we define the positive support supp⁺(x) and the negative support supp⁻(x) by

$$\operatorname{supp}^+(x) = \{ v \in V \mid x(v) > 0 \}, \quad \operatorname{supp}^-(x) = \{ v \in V \mid x(v) < 0 \}.$$

We use notation $x(S) = \sum_{v \in S} x(v)$ for a subset S of V. For each $S \subseteq V$, we denote by χ_S the characteristic vector of S defined by: $\chi_S(v) = 1$ if $v \in S$ and $\chi_S(v) = 0$ otherwise, and write χ_v for $\chi_{\{v\}}$ for all $v \in V$. For a vector $p = (p(v) : v \in V) \in \mathbf{R}^V$ and a function $f: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$, we define functions $\langle p, x \rangle$ and f[p](x) in $x \in \mathbf{Z}^V$ by

$$\langle p,x \rangle = \sum_{v \in V} p(v)x(v), \quad f[p](x) = f(x) + \langle p,x \rangle.$$

We also denote the set of minimizers of f and the effective domain of f by

$$rg \min f = \{x \in \mathbf{Z}^V \mid f(x) \le f(y) \ (\forall y \in \mathbf{Z}^V)\},$$

 $\operatorname{dom} f = \{x \in \mathbf{Z}^V \mid f(x) < +\infty\}.$

A function $f: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$ with dom $f \neq \emptyset$ is called M^{\natural} -convex if it satisfies

(M¹-EXC) for all $x, y \in \text{dom } f$ and all $u \in \text{supp}^+(x-y)$, there exists $v \in \text{supp}^-(x-y) \cup \{0\}$ such that

$$f(x) + f(y) \ge f(x - \chi_u + \chi_v) + f(y + \chi_u - \chi_v),$$

where χ_0 is defined to be the zero vector in \mathbf{Z}^V .

A function $f: \mathbf{Z}^V \to \mathbf{R} \cup \{+\infty\}$ with dom $f \neq \emptyset$ is called *M-convex* if it satisfies

(M-EXC) for all $x, y \in \text{dom } f$ and all $u \in \text{supp}^+(x-y)$, there exists $v \in \text{supp}^-(x-y)$ such that

$$f(x) + f(y) \ge f(x - \chi_u + \chi_v) + f(y + \chi_u - \chi_v).$$

A nonempty set $B \subseteq \mathbf{Z}^V$ is called M-convex if it satisfies

(B-EXC) for all $x, y \in B$ and all $u \in \text{supp}^+(x - y)$, there exists $v \in \text{supp}^-(x - y)$ such that $x - \chi_u + \chi_v$, $y + \chi_u - \chi_v \in B$.

The minimizers of an M-convex function have a good characterization.

Lemma 3 ([3, Theorem 6.26]). For an M-convex function f and $x \in \text{dom } f$, $x \in \text{arg min } f$ if and only if $f(x) \leq f(x - \chi_u + \chi_v)$ for all $u, v \in V$.

Lemma 4 ([3, Proposition 6.29]). For an M-convex function f, $\arg \min f$ is an M-convex set if not empty.

An M-convex set has the following property. (See [1, Lemma 4.5] and [2, Lemma 2.3.22, Remark 3.3.24]. This is a special case of [3, Proposition 9.23].)

Lemma 5 ("no-short cut lemma"). Let B be an M-convex set. For any $x \in B$ and any distinct $u_1, v_1, u_2, v_2, \dots, u_r, v_r \in V$, if $x - \chi_{u_i} + \chi_{v_i} \in B$ for all $i = 1, \dots, r$ and $x - \chi_{u_i} + \chi_{v_j} \notin B$ for all i, j with i < j, then $y = x - \sum_{i=1}^r (\chi_{u_i} - \chi_{v_i}) \in B$.

4 Proof of Proposition 2 by SSP

We give a proof of Proposition 2 on the basis of the successive shortest path algorithm (SSP) [3, §10.3.4] as adapted to finding a minimizer of $f_1 + f_2$. We may assume that the effective domains of f_1 and f_2 are bounded.

Let x_1 and x_2 be arbitrary minimizers of f_1 and f_2 , respectively. We construct a directed graph $G(f_1, f_2, x_1, x_2) = (V, A)$ and an arc length $\ell \in \mathbf{R}^A$ as follows. Arc set A is the union of two disjoint parts:

$$A_{1} = \{(u,v) \mid u,v \in V, u \neq v, x_{1} - \chi_{u} + \chi_{v} \in \text{dom } f_{1}\}, A_{2} = \{(v,u) \mid u,v \in V, u \neq v, x_{2} - \chi_{u} + \chi_{v} \in \text{dom } f_{2}\},$$

$$(15)$$

and $\ell \in \mathbf{R}^A$ is defined by

$$\ell(a) = \begin{cases} f_1(x_1 - \chi_u + \chi_v) - f_1(x_1) & \text{if } a = (u, v) \in A_1, \\ f_2(x_2 - \chi_u + \chi_v) - f_2(x_2) & \text{if } a = (v, u) \in A_2. \end{cases}$$
(16)

The length function ℓ is nonnegative due to Lemma 3.

Put $S = \text{supp}^+(x_1 - x_2)$ and $T = \text{supp}^-(x_1 - x_2)$. A path exists from S to T by Lemma 6 below. Let P be a shortest path from S to T in G with a minimum number of arcs, and let $t \in T$ be the terminal vertex of P.

Let $d: V \to \mathbb{R} \cup \{+\infty\}$ denote the shortest distance from S to all vertices with respect to ℓ . Then we have

$$\ell(a) + d(u) - d(v) \ge 0$$

for all arcs $a = (u, v) \in A$. Define $p \in \mathbb{R}^V$ by $p(v) = \min\{d(v), d(t)\}$ for all $v \in V$. It follows from the nonnegativity of ℓ that

$$\ell(a) + p(u) - p(v) \ge 0$$

for all arcs $a = (u, v) \in A$. The above system of inequalities is equivalent to

$$f_1(x_1 - \chi_u + \chi_v) - f_1(x_1) + p(u) - p(v) \ge 0,$$

$$f_2(x_2 - \chi_u + \chi_v) - f_2(x_2) - p(u) + p(v) \ge 0$$

for all $u, v \in V$, which is further equivalent to

$$x_1 \in \arg\min f_1[-p], \quad x_2 \in \arg\min f_2[+p],$$

by Lemma 3. Note that for all arcs $a = (u, v) \in A$,

$$\ell_p(a) = \ell(a) + p(u) - p(v)$$

are the lengths of a in the graph $G(f_1[-p], f_2[+p], x_1, x_2)$ associated with $f_1[-p], f_2[+p], x_1$, and x_2 .

Since $\ell_p(a) = 0$ for all $a \in P$, we have

$$x_1 - \chi_u + \chi_v \in \arg\min f_1[-p] \qquad \text{for all } (u, v) \in P \cap A_1,$$

$$x_2 - \chi_u + \chi_v \in \arg\min f_2[+p] \qquad \text{for all } (v, u) \in P \cap A_2.$$
(17)

Since P has a minimum number of arcs, we also have

$$x_1 - \chi_u + \chi_w \not\in \arg\min f_1[-p], \quad x_2 - \chi_w + \chi_u \not\in \arg\min f_2[+p]$$
 (18)

for all vertices u and w of P such that $(u, w) \notin P$ and u appears earlier than w in P.

Furthermore, arcs of A_1 and A_2 appear alternately in P. This can be proved as follows. Suppose that consecutive two arcs $(u, v), (v, w) \in P$ belong to, say, A_1 . Then, by (M-EXC),

$$f_1(x_1+\chi_u-\chi_v)+f_1(x_1+\chi_v-\chi_w)\geq f_1(x_1)+f_1(x_1+\chi_u-\chi_w),$$

which yields

$$\ell(u,v) + \ell(v,w) \ge \ell(u,w),$$

a contradiction to the minimality (with respect to the number of arcs) of P. Consequently, we have

$$a_{1}=(u_{1}, v_{1}), a_{2}=(u_{2}, v_{2}) \in P \cap A_{1}, a_{1} \neq a_{2} \implies \{u_{1}, v_{1}\} \cap \{u_{2}, v_{2}\} = \emptyset, a_{1}=(u_{1}, v_{1}), a_{2}=(u_{2}, v_{2}) \in P \cap A_{2}, a_{1} \neq a_{2} \implies \{u_{1}, v_{1}\} \cap \{u_{2}, v_{2}\} = \emptyset.$$

$$(19)$$

From Lemmas 4 and 5 together with (17), (18), and (19), we have

$$x_1' \equiv x_1 - \sum_{(u,v) \in P \cap A_1} (\chi_u - \chi_v) \in \arg \min f_1[-p],$$
 (20)

$$x_2' \equiv x_2 - \sum_{(v,u) \in P \cap A_2} (\chi_u - \chi_v) \in \arg\min f_2[+p].$$
 (21)

Thus the modification of (f_1, f_2, x_1, x_2) to (f'_1, f'_2, x'_1, x'_2) , where $f'_1 = f_1[-p]$ and $f'_2 = f_2[+p]$, keeps the conditions

$$x_1' \in \arg\min f_1', \quad x_2' \in \arg\min f_2'.$$

We have

$$x_1' - x_2' = (x_1 - x_2) - (\chi_s - \chi_t)$$

with $s \in \text{supp}^+(x_1 - x_2)$ and $t \in \text{supp}^-(x_1 - x_2)$, since P is a path from $\text{supp}^+(x_1 - x_2)$ to $\text{supp}^-(x_1 - x_2)$ and arcs of A_1 and A_2 appear alternately in P. This implies that $\sum_{v \in V} |x_1(v) - x_2(v)|$ is decreased by two. Repeating the modification above we eventually arrive at $x_1 = x_2$, when we have

$$x_1 \in \arg\min f_1[-p] \cap \arg\min f_2[+p].$$

Finally note that, if the functions f_1 and f_2 are integer-valued, the length function ℓ is integer-valued, and hence p is also integer-valued.

The SSP algorithm is summarized below.

Algorithm SSP $(f_1, f_2: M\text{-convex})$

Step 0. Find $x_1 \in \arg \min f_1$ and $x_2 \in \arg \min f_2$. Set p := 0.

Step 1. If $x_1 = x_2$ then stop.

Step 2. Construct G and compute ℓ for $f_1[-p]$, $f_2[+p]$, x_1 and x_2 by (15) and (16). Set $S := \text{supp}^+(x_1 - x_2)$, $T := \text{supp}^-(x_1 - x_2)$.

Step 3. Compute the shortest distances d(v) from S to all $v \in V$ in G with respect to ℓ . Find a shortest path P from S to T with a minimum number of arcs, and let t be the terminal vertex of P.

Step 4. For all $v \in V$, set $p(v) := p(v) + \min\{d(v), d(t)\}$. Update x_1 and x_2 by (20) and (21). Go to Step 1.

Lemma 6. If dom $f_1 \cap \text{dom } f_2 \neq \emptyset$ and $x_1 \neq x_2$, then there exists a path from $S = \text{supp}^+(x_1 - x_2)$ to $T = \text{supp}^-(x_1 - x_2)$.

Proof: To prove by contradiction, suppose that there exists no path from S to T and let W be the set of the vertices reachable from S. Then $W \supseteq S$ and $W \cap T = \emptyset$.

Define set functions $\rho_i: 2^V \to \mathbf{Z} \cup \{+\infty\}$ as

$$\rho_i(X) = \sup\{z(X) \mid z \in \mathrm{dom}\, f_i\}$$

for i = 1, 2. For $z \in \text{dom } f_i$ we obviously have²

$$z(X) \le \rho_i(X) \quad (\forall X \subseteq V).$$

$$\operatorname{dom} f_i = \{ z \in \mathbf{Z}^V \mid z(X) \le \rho_i(X) \ (\forall X \subset V), z(V) = \rho_i(V) \}.$$

However, we do not need this fact for the proof of Lemma 6.

²As is well known (see [3, §4.4]), the M-convexity of dom f_i implies that ρ_i is submodular and

We also have $z(V) = \rho_i(V)$ since y(V) is constant for all $y \in \text{dom } f_i$. Hence, for all $z \in \text{dom } f_1 \cap \text{dom } f_2$ we have

$$\rho_1(V) = z(V) = z(V \setminus X) + z(X) \le \rho_1(V \setminus X) + \rho_2(X) \quad (\forall X \subseteq V).$$
 (22)

Since $x_1 \in \text{dom } f_1$ and there exists no arc of A_1 from W to $V \setminus W$, we have

$$x_1(V \setminus W) = \rho_1(V \setminus W)$$

by Lemma 3 applied to an M-convex function

$$f(z) = \left\{ egin{array}{ll} -z(V\setminus W) & ext{if } z\in ext{dom } f_1, \ +\infty & ext{otherwise.} \end{array}
ight.$$

Symmetrically, since $x_2 \in \text{dom } f_2$ and there exists no arc of A_2 from W to $V \setminus W$, we have

$$x_2(W)=\rho_2(W).$$

Adding these yields

$$x_1(V) - [x_1(W) - x_2(W)] = \rho_1(V \setminus W) + \rho_2(W).$$

This contradicts (22), since $x_1(V) = \rho_1(V)$ and $[x_1(W) - x_2(W)] > 0$ by $W \supseteq S$ and $W \cap T = \emptyset$.

Acknowledgement The author thanks Akihisa Tamura for helpful comments.

References

- [1] S. Fujishige: Submodular Functions and Optimization, Annals of Discrete Mathematics, 47, North-Holland, Amsterdam, 1991.
- [2] K. Murota: Matrices and Matroids for Systems Analysis, Springer-Verlag, Berlin, 2000.
- [3] K. Murota: Discrete Convex Analysis, SIAM Monographs on Discrete Mathematics and Applications, Vol. 10, Society for Industrial and Applied Mathematics, Philadelphia, 2003.