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A Proof of the M-Convex Intersection Theorem

HEORPRER S0EEHREER ZEH — # (Kazuo Murota)
Graduate School of Information Science and Technology, University of Tokyo

Abstract

This short note gives an alternative proof of the M-convex intersection theorem,
which is one of the central results in discrete convex analysis. This note is intended
to provide a direct simpler proof accessible to nonexperts.

1 M-Convex Intersection Theorem

The M-convex intersection theorem [3, Theorem 8.17] reads as follows, where V is a
nonempty finite set, and Z and R are the sets of integers and reals, respectively; see §3 for
the definitions of M!-convex functions and notation argmin. This theorem is equivalent
to the M-separation theorem, to the Fenchel-type min-max duality theorem, and to an
optimality criterion of the M-convex submodular flow problem.

Theorem 1 (M-convex intersection theorem). For Mi-convex functions fi, f; and a
point z* € dom f; Ndomfy we have

fil@) + fo(z") < fiz) + folz)  (Vz€ZY) (1)
if and only if there ezists p* € RV such that! |
fl-pl(=*) < Al-p*](=) (Vz € ZY), ()
fol+p%](=") < fal+p"](2) (Vz € ZY). (3)
For such p* we have
argmin(f + f2) = arg minf; [—p*] N arg min f,+p°]. (4)

Moreover, if fi and f, are integer-valued, we can choose integer-valued p* € ZV.

We shall give a constructive proof of Theorem 1 based on the successive shortest path
algorithm. Different proofs available in [3] are:

1. original proof based on negative-cycle cancelling for the M-convex submodular flow
problem (§9.5 and Note 9.21 of [3}), and

2. polyhedral proof for the discrete separation theorem based on the separation in
convex analysis (Proof of Theorem 8.15 of [3]).

'Notation: fi[-p"](@) = fi(z) = D p"W)a(v), fal+2"1(2) = fa(z) + Y p* (W)a(v).
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2 Essence of Theorem 1

The essence of Theorem 1 consists of two assertions:
1. optimality of £* = existence of p*,
2. integrality of fi, fo = integrality of p*.

To see this we make easier observations in this section.
Observation 1: Existence of p* with (2) and (3) = optimality (1) of z*.
(Proof)

f@) + fa(*) = AH-p1(") + fHl+%)(7)
< Al-P1E) + fal+%)(@) = filz) + falz).

Observation 2: For any p* € RV we have

argmin(f, + f) 2 argminf,[—p*] N arg min f[+p"].

(Proof) This follows from the inequality shown in the proof of Observation 1.

Observation 3: If

Al-p"1(=°) < fil-p'](2) (Vz € Z7),

fH[+p1(z°) £ fo[4p°](2) (Vz € ZY)
for some z° and p*, then

Al-p"1(=") £ A1]-p")(2) (Vz € ZY),

fol+p°)(z*) < fa[+p"|(=) (Vz € ZV)

for every z* € argmin(f; + f2). Hence,
argmin( fi + f2) € arg minf;[—p*] N arg min fo[+p"].
(Proof) Put z = z* in (6) and (7) to obtain
Al-p(=°) < Al-p)(=*),
f2l+p%)(=°) < fal+p"](2").
Adding these yields

f1(2%) + fo(2°)

I

Al-p"1(z°) + fol+p"](=°)
< Al-p'(E*) + fol+p'](") = file®) + falz®),
whereas z* € argmin(f; + f). Hence we have equalities in (11) and (12).

(5)

(6)
(7)

(8)
(9)

(10)

(11)

(12)

Observation 4: It suffices to consider M-convex functions rather than M-convex func-

tions.

13, §6.1].

Thus the proof of Theorem 1 is reduced to showing the following.

(Proof) This follows from the equivalence between M“—convemty and M-convexity; see
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Proposition 2. For M-convez functions f1, fo with argmin(f; + f2) # 0, there exist z° €
argmin(f; + f) and p* € RY such that

Al=p"1(=%) < fi[-p°](=) (Vz € ZY), (13)
F[+p°](=°) < fal+p")(2) (Vz € Z). (14)

If fi and f, are integer-valued, we can choose integer-valued p* € ZV.

3 Notation and Basic Facts

We denote by Z" the set of integral vectors indexed by V, and by RV the set of real vectors
indexed by V. For a vector z = (z(v) : v € V) € ZV, where z(v) is the vth component of
z, we define the positive support supp*(z) and the negative support supp~(z) by

supp’ (z) = {v € V | z(v) > 0}, supp (z)={v eV |z(v) <0}

We use notation z(S) = ), .o (v) for a subset S of V. For each S C V, we denote by
Xs the characteristic vector of S defined by: xs(v) =1 if v € S and xs(v) = 0 otherwise,
and write X, for x{y} for all v € V. For a vector p = (p(v) : v € V) € R" and a function
f:ZV - RU {+00}, we define functions (p,z) and f[p](z) in z € Z" by

(p,z) =) _p()z(), [lpl(z) = f(z) + (p, ).

veV

We also denote the set of minimizers of f and the effective domain of f by

argmin f = {z € Z" | f(z) < f(y) (Vy € Z")},
dom f = {z € ZV | f(z) < +o0}.

A function f: Z¥ — R U {400} with dom f # @ is called Mi-convez if it satisfies

(MB-EXC) for all z,y € dom f and all u € supp™(x—y), there exists v € supp~(z—y)U{0}
such that

f@) + f(y) = fl = xu+ Xx0) + F+ Xu — Xo)s
where g is defined to be the zero vector in ZV.
A function f: Z¥ — RU {+oo} with dom f # 0 is called M-convez if it satisfies

(M-EXC) for all 2,y € dom f and all u € supp™(z — y), there exists v € supp~(z — y)
such that

@)+ £@) 2 fl@ = xu +X0) + FH+ xu = Xo)-

A nonempty set B C ZV is called M-convez if it satisfies
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(B-EXC) for all z,y € B and all u € supp™(z — y), there exists v € supp™(z — y) such
tha'tx”‘Xu+Xu’ y+xu_x'v EB-

The minimizers of an M-convex function have a good characterization.

Lemma 3 ([3, Theorem 6.26]). For an M-conver function f and z € dom f, z €
argmin f if and only if f(z) < f(z — Xu + Xv) for allu,v e V.

Lemma 4 ([3, Proposition 6.29]). For an M-convez function f, argminf is an M-
convez set if not empty.

An M-convex set has the following property. (See [1, Lemma 4.5] and [2, Lemma 2.3.22,
Remark 3.3.24]. This is a special case of [3, Proposition 9.23].)

Lemma 5 (“no-short cut lemma” ). Let B be an M-convez set. For any x € B and
any distinct uy, vy, Ug, Va, - U, Ur EV, if T — Xy, + X, € B for alli =1,--- ,r and
T — Xu; + Xv; € B for alli,j withi < j, theny =2 — 3 7_ (Xu, — Xu) € B.

4 Proof of Proposition 2 by SSP

We give a proof of Proposition 2 on the basis of the successive shortest path algorithm
(SSP) [3, §10.3.4] as adapted to finding a minimizer of f; + f,. We may assume that the
effective domains of f; and f; are bounded.

Let z; and z, be arbitrary minimizers of f; and f;, respectively. We construct a
directed graph G(fi, fa2, %1, %2) = (V, A) and an arc length £ € R4 as follows. Arc set A is
the union of two disjoint parts: ' ' '

Al = {(u,v) | u,v GV) u;é'v, I "'Xu+Xv Edomfl})

Ay = {('Uiu) | u,v € Va u 7é YV, Ty — Xu+ Xv € dOmfg}, (15)
and £ € R4 is defined by |
f1(x1 - Xu + Xu) - fl(iﬂl) ifa= ('U.,‘U) € Al)
(a) = ] : 16
(a) { (T2 — Xu + Xo) — fa(z2) if a= (v,u) € As. (16)

The length function £ is nonnegative due to Lemma 3.

Put S = supp*(z; —z2) and T = supp~(z1 — ;). A path exists from S to T by Lemma
6 below. Let P be a shortest path from S to 7" in G with a minimum number of arcs, and
let t € T be the terminal vertex of P. o

Let d: V — RU{+o0} denote the shortest distance from S to all vertices with respect
to £. Then we have

#(a) + d(u) — d(v) > 0

for all arcs a = (u,v) € A. Define p € RV by p(v) = min{d(v),d(t)} for allv € V. It
follows from the nonnegativity of £ that

£(a) +p(u) —p(v) 2 0
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for all arcs a = (u,v) € A. The above system of inequalities is equivalent to

fil@i = xu + Xx0) — fi(z1) + p(u) — p(v) > 0,
Fa(z2 — Xu + Xo) — fo(z2) — p(u) + p(v) Z 0

for all u,v € V, which is further equivalent to
21 € argmin fi[-p], =, € argmin fo[+p],
by Lemma 3. Note that for all arcs a = (u,v) € A,
ty(a) = £(a) + p(u) — p(v)

are the lengths of @ in the graph G(fi[—p|, fo[+p], z1, z2) associated with fi[—p|, fo[+p],
T1, and z,. :
Since £,(a) = 0 for all a € P, we have

Ty — Xu + Xv € argmin fi[—p] for all (u,v) € PN A4, (17)
Ty — Xu + Xov € argmin fo[+p] for all (v,u) € PN A,.

Since P has a minimum number of arcs, we also have
Ty —XutXw € argmin fi[—p], ZT2—Xw+Xu € argmin fo[+p] (18)

for all vertices u and w of P such that (u,w) ¢ P and u appears earlier than w in P.
Furthermore, arcs of A; and A, appear alternately in P. This can be proved as follows.
Suppose that consecutive two arcs (u, v), (v, w) € P belong to, say, A;. Then, by (M-EXC),

f1($1+xu_xv) + fl(x1+Xv“Xw) > fl(ml) + f1(x1+Xu—Xw),
which yields
£(u,v) + (v, w) > £(u,w),

a contradiction to the minimality (with respect to the number of arcs) of P. Consequently,
we have

a1 =(uy,v1), 6a=(uz,v2) € PNAj,a; # a3 = {ug,v1} N {uz, v} =0,

19
ar=(u1, ), 00=(tig, v3) € PNAgay £ a3 —=> {w,m} N {00} =0, )
From Lemmas 4 and 5 together with (17), (18), and (19), we have
B=z— Y, (Xu—x») € argminfi[-p], (20)
(u,v)EPNA;
Ty =Ty — Z (Xu —Xv) € argmin fo[+p]. (21)
(v,u)ePNAz

Thus the modification of (fi, fo, z1,%2) to (f, f5, =}, 7), where fi = fi[—p] and f} =
fo[+p], keeps the conditions

/ s ! / s !
z] € argmin f], 5 € argmin f,.
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We have
Ty — Ty = (T1 — T2) — (Xs — Xt)

with s € supp*(z; — z2) and ¢t € supp~(z; — %), since P is a path from supp™(z; — )
to supp~(z; — z2) and arcs of A; and A, appear alternately in P. This implies that
Y vev |Z1(v) —32(v)]| is decreased by two. Repeating the modification above we eventually
arrive at x; = T, when we have

z1 € argminfi[—p] N arg minf5[+p].

Finally note that, if the functions f; and f, are integer-valued, the length function £
is integer-valued, and hence p is also integer-valued.
The SSP algorithm is summarized below.

Algorithm SSP  (fi, fo: M-convex)
Step 0. Find z; € argmin f; and z; € argmin f,. Set p:= 0.
Step 1. If z; =z, then stop.

Step 2. Construct G and compute £ for f,[—p], f2[+p], z1 and z» by (15) and (16).
Set S := supp*(z1 — 2), T := supp™(z1 — T2).

Step 3. Compute the shortest distances d(v) from S to all v € V' in G with respect to £.
Find a shortest path P from S to T with a minimum number of arcs, and let ¢ be
the terminal vertex of P.

Step 4. For all v € V, set p(v) := p(v) + min{d(v), d(t)}.
Update z; and z; by (20) and (21).
Go to Step 1.

Lemma 6. If dom fy Ndom f; # @ and z; # x5, then there exists a path from S =
suppt (z; — z2) to T = supp~(z1 — Z2).

Proof: To prove by contradiction, suppose that there exists no path from S to T and
let W be the set of the vertices reachable from S. Then W 2 S and WNT = 0.
Define set functions p; : 2V — Z U {+o0} as

pi(X) = sup{z(X) | z € dom f;}
for i = 1,2. For z € dom f; we obviously have?

2(X) < pi(X) (VX CV).
2As is well known (see [3, §4.4]), the M-convexity of dom f; implies that p; is submodular and

dom f; = {z € ZV | 2(X) < pi(X) (VX C V), 2(V) = ps(V)}.
However, we do not need this fact for the proof of Lemma 6.
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We also have 2(V) = p;(V) since y(V) is constant for all y € dom f;. Hence, for all
z € dom f; N dom f, we have

(V) = 2(V) = 2V \ X) + 2(X) S pu(V\ X) + po(X) (VX CV).  (22)
Since z; € dom f; and there exists no arc of A; from W to V' \ W, we have
2(V\W) = py(V\ W)
by Lemma 3 applied to an M-convex function
—2(V\W) ifze€domf,
f(z)~={ AVAW) h

400 otherwise.
Symmetrically, since =, € dom f, and there exists no arc of A; from W to V'\ W, we have
z2(W) = pa(W).
Adding these yields
21(V) — [81(W) — 22(W)] = p(V\ W) + po(W).

This contradicts (22), since z;(V) = p1(V) and [z1(W) — zo(W)] > 0 by W 2 S and
WNnT=40.
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