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Abstract

We discuss an interpretation of the Dempster-Shafer updating rule for belief
functions in terms of unanimity games, utilizing the additivity of the core operation.
This interpretation leads us to a simple proof for the equivalence of Dempster-Shafer
updating rule and the maximum likelihood updating rule.
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1 Notation and basic facts
We use the following notation and definitions.

o QO is a finite set. Each element w € Q is called a state.

o F =2\ {0} is the collectlon of all non-empty subsets of Q. For each E € .7-' we

write Fg = {S€ F: SNE #0}.

e A function v : 2% — R with v(#) = 0 is a game and identified with a point in R”.

o A game v € R is a capacity if it is non-negative (v(S) > 0 for all § € F), monotone

(v(S) € v(T) if S C T), and normalized (v(Q2) = 1).

e A game v € RY is additive if v(S) +v(T) = v(SUT) for 8,T € F with SNT = 0.
An additive capacity is called a probability function. The set of all the probability

functions is denoted by A(£).

*Kajii acknowledges financial support by MEXT, Grant-in-Aid for 21st Century COE Program. Ui

acknowledges financial support by MEXT, Grant-in-Aid for Scientific Research.



o A game v € R is convez (or supermodular) if v(S) +v(T) < v(SUT)+v(SNT)
for all 5,T € F. ’

e For T € F, denote by up € R” the unanimity game on T: it is a game such that
up(S) = 1if T C S and ur(S) = 0 otherwise. A unanimity game is a convex
capacity, so is any convex combination of them.

e For v € RY, its conjugate v' € R” is defined by the rule v/(S) = v(2) — v(5°) for
all S € F where ¢ = Q\S. Note that (v') =v and (v+w) =v' + /.

e The core of v € Rf‘is
C(v) := {z € R : 2(S) > v(S) for all S € F and z(Q) = »(?)}
where 2(8) = 3 5 2(w). If v is a capacity,
C(v)={p € A(Q):p(S) >v(S) for all S € F}.
o Note that the core of a unanimity game has a simple structure:
Clur) = {p € AQ) : p(T) = 1}.

Proposition 1 (Shapley, 1953) The set of all unanimity games {ur:T € F} is a
linear base for RT. So any v € RT has a unique expression of the form

v = Z Brur. (1)

TeF

Note that, for E € F, v(E) = Yy Br and v'(E) = Yrnps BT = Lrerg P A
game v € R¥ is said to be totally monotone if, in the unique representation (1), Br is
non-negative for all T € F. A totally monotone capacity is also called a belief function
(Dempster, 1967, 1968; Shafer, 1976).

The core operation is additive (in the Minkowski sum) on the set of convex games.
Proposition 2 Ifv and w are convez, C(v) + C(w) = C(v + w).

Proposition 2 can be extended to non-convex games in terms of the Minkowski differ-
ence (Danilov and Koshevoy, 2000). The following result is due to Strassen (1964), which
is often cited in the literature of belief functions. Technically, it is a simple corollary of
the additivity result above, but this turns out to be a very powerful tool.

11t is difficult to tell the reference to which this result should be attributed. The result is apparently
known in the operations research literature for some time. It is also known in the cooperative game
literature.
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Corollary 3 (Strassen, 1964) Let v = Y . frur be totally monotone. Then, p €
C(v) if and only if there exists gv € A(Q) with ¢r(T) = 1 for each T € F such that
p =Y, rBrer. Equivalently,

C(v) =Y BrC(ur).

TeF
2 Dempster-Shafer and maximum likelihood updating

Let v be a belief function and write v = ., Brur where 8y > 0. Since v(Q) =
SrerBr = 1, the collection {Br:T € F } defines a probability distribution over F.
Then, Corollary 3 suggests the following interpretation of v.

Imagine a decision maker who believes that w € Q is chosen by the following two-stage
process:

1. an event T € F is chosen according to {87 : T € F},

2. a state w € T is chosen according to some gr € A(Q) with ¢p(T) = 1, ie,
gr € C(ur).

Assume that the decision maker knows {Gr : T € F} (and thus v), but does not know
gr for any T € F. Then, any probability distribution of the form

Z Brar where gr € C(ur)
T

is consistent with the two-stage process. Corollary 3 says that C(v) is exactly the set of
all the consistent probability functions. _

Now suppose that the decision maker learns from an outside source that an event
E € F has occurred. There can be many plausible ways to modify the two-stage process
in response. The following is certainly one of them.

1. For the first stage, the decision maker should rule out any event which contradicts
E: that is, discard any event T € F with TN E =0, ie., T ¢ FEg.

9. For the second stage, once T € Fg has been chosen, the decision maker should
rule out any state which contradicts E: that is, discard any sate w ¢ T'N E.

" Dempster and Shafer (Dempster, 1967, 1968; Shafer, 1976) advocated a similar line
of reasoning, and showed that the following updating rule captures this idea. The con-
ditional (or updated) capacity given E with v'(E) > 0 is defined as follows:
_V(A°NE) _ v(AUES) - v(

E°)
JE) 7 (E) for all A C Q, (2)

vB3(A) =1
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which is often referred to as the Dempster-Shafer (DS) updating rule.

The formula (2) can be reinterpreted utilizing Corollary 3 and the two-stage process
interpretation. Fix an event E € F. The conjugate v/ of v giv% V(E) = Yorerg Prs
i.e., v/(E) is the probability that an element in Fg is chosen in the first stage. Assume
throughout that v/(E) > 0.

In the modified first stage when T € Fg is chosen, since v'(E) = Y pcx, Or, it
is natural to assign a probability Brg := Br/v'(E) to each T € Fg. In the modified
second stage when w € T is chosen, the possibility of w € T'N E is ruled out. Thus, the
decision maker should consider probability functions of the form 3 7¢z, Bripqr where
gr € A(Q) satisfies gr(T N E) = 1. These probability functions are exactly those in the
elements of 3 rc z_ Br|eC(urnE), which is equal to C(Prex, Or| gurng) by Corollary
3. This observation naturally leads us to the following alternative characterization of
the DS updating rule:

Theorem 4 Let v =Y 1 OBrur be a belief function where By > 0 for all T € F. Then

= 2 Br|EUTNE- @)

TeFE

Proof. For any A € F,

> Bripurne(A) = #E) > o Br

TeFE {TeFg:TNECA}

Br
TeFE {TeFg:As\(TNE)#0}

=v’(E)(ZﬂT > &)'

TeFE {T:TN(A*NE)#0}

s (5

The last equality holds since 7N (A°N E) # 0 implies TN E # @ and thus T’ € Fg.

Since Yorer, Br = v'(E) and Yiranaenmyt) BT = Lreryeng Or = V(A°N E), the
last expression is exactly the same as (2). m

Example 1 (The DS updating for unanimity games) Letv = up. Note that v/(E) >
0 if and only if TN E # 0. Since Bgp = 1 if § = T, otherwise Bgp = 0, we have
vES = UTNE:

An advantage of thinking the DS updating rule in terms of (3) over (2) is that it
is straightforward to show that the DS updating rule is equivalent to the maximum
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likelihood updating rule over the set of probability functions C(v). For this purpose, fix
a belief function v = ) Brur and an event E € F. Define

Ce(v) = {p EAQ):p= Z Brar, ar € C(urng) if T € Fg, qr € C(ur) otherwise} .
TeF

Note that Cg(v) C C(v) by Corollary 3.

Lemma 5 p € Cg(v) if and only if p € argmax{p(E) : p € C(v)}. That is, Cg(v) is
the set of probability functions in C(v) which mazimize the likelihood of E.

Proof. For any p =) .z Brqr € C(v) where gr € C(ur),
p(E)= Y Brar(E)= Y Brar(E)< Y Br-
TeF TeFg TeFg
The equality holds if and only if, for every T € Fg with fr > 0, ¢r(E) = 1, ie,

gr € C(urng). Since YrcrBrar = YrerBrar 8s far as gr = gy for T € F with
Br > 0, the lemma is proved. ®

Now we shall relate Cg(v) to the DS updating rule: the DS updating rule is equivalent
to the maximum likelihood updating rule over C(v). This result is reported in Gibloa
and Schmeidler (1993) and Denneberg (1994), with different proofs.

Proposition 6 g € C(v2%) if and only if ¢ = p(:|E) for some p € Cg(v).
Proof. Pick any p = Brer € Cg(v). Then, for each A € F, we have:
p(ANE) =" prer(ANE)= Y frar(ANE)= Y Brar(4).

TeF TeFg TeFE
Indeed, the first equation holds by definition, and the second holds since gr(A N E) <
gr(E) = 0 for every T ¢ Fp. For the last, note that gr(A4) > gr(ANE) > gr(ANTNE).
But if T € Fg then ¢qr € C(urng) and gr(A) = gr(ANT N E), which implies g7(4) =
ar(ANE).
Notice in particular that p(E) = 3 ¢z, Brar(E) = Yorer, Br = v'(E). Thus, for
any A,

. 1
p(AIE) = p(ANE)/p(E) = ——= > Brar(A) = )_ Briper(A).
v(E) ;
€Fg TeFe

Thus, p(-|E) € Yrer, BrigCurne) = C(Xre s, Bripurne) = C(vp®) from (3).

On the other hand, start with any g € C (v28), thus we can write g = u—r(lﬁy 2 rery Prar
with ¢r € C(urng) by (3). Fix qr € C(ur) arbitrarily for T ¢ Fg, and define
p =Y rer Brar. Then p € Cr(v) by construction, and g = P(-|E). m



Example 2 (The DS updating for unanimity games, ctd.) If v = ur and TN
E #0, p e Cg(v) if and only if p(T' N E) = 1, which is equivalent to p € C(urng).
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