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Identification problems for nonlinear perturbed
sine-Gordon equations

MERZEI¥E O 5— (Shin-ichi Nakagiri)
BESWHBERFELX @ %@t (Junhong Ha)

1. Introduction

In Ha and Nakagiri [9] we studied the identification problems of the damped sine-Gordon equa-
tion

Py, Oy :

-572—+a-é¥—BAy+'ysmy=5f, (1.1)
where a, 8,7, 0 are unknown constant parameters. In [9] the existence and the necessary condi-
tions of optimality for the optimal parameter ¢* = (a, 8*,v*, 6*) is established for the appropriate
cost without including the cost of parameters q = (¢, 3,7, 9).

Several types of perturbed sine-Gordon equations differently from (1.1) are proposed to de-

scribe the dynamics of the phase difference in the Josephson junctions in various situations. We
refer to, e.g. [1], [3]-[6], [11]. In Kivshar and Malomed [5] the perturbed equation

0%y 9%y 0% [0y
Z Y % isiny =€—mrm | — 1.2
52 g2 T UMY T 52 (Bt) (12)
is proposed by taking into account of losses or dissipation due to the current along a dielective
barrier in Josephson junctions. The nonlinear perturbation
Py %y
—2 — —>= +s8iny = €sin2 1.3
52 52 +siny = esin 2y (1.3)
is also proposed by Kivshar and Malomed [4] to determine the inelastic interaction of a fast
kink and a weakly bounded breather. The additional nonlinear perturbations E{‘zl €; Sin K;y are
possible in (1.3).
Recently in Ramos [10] the numerical analysis of perturbed sine-Gordon equation of the gen-
eralized form

52 52 ‘ . o . 0% (0o
_a_tg—_-53:—%+Smy=€16—g+62y+€38m2y+64ﬁ ('a—z) (14

subject to homogeneous Neumann boundary conditions in the finite line is studied rather com-
pletely based on the implicit finite difference methods. There are various interesting observations
of solutions in [10] according to the differences of perturbations for €; terms. It is an important
physical problem to identify such constant parameters ;.
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In this paper we study the problems of identification of a general equation described by

0%y 0Ay L
A ; sin Ky + 0y = 1.5
e toeg P y+;% W+ oy =vf (1.5)
in R™, where o, 3,7i,9,x; and v are constants and f is a prescribed source function. In our
identification problems all parameters a, 3, ¥i, J, ki, v are assumed to be unknown but the number
L is prescribed. The objective of this paper is to extend the results in [9] to the the equations

(1.5) under the homogeneous Neumann boundary conditions in n-dimensions.

2. Perturbed sine-Gordon equations

Let £ be an open bounded set of R with a piecewise smooth boundary I' = 9. Let Q =
(0,T) x @ and £ = (0,T) x I'. We consider the Kivshar-Malomed type perturbed sine-Gordon
equations described by

o’y _ 04
atg 6ty ﬂAy-i-Z%smmyHy fin Q, (2.1)

1=1

where o, > 0, 8,v;,5; € R,i=1,--- ,L,A is a Laplacian in R" and f is a given function. The
boundary condition is the homogeneous Neumann condition

9y
3 =0 on . v (2.2)
The initial values are given by
y(0,z) = yo(z) in Q and -‘Z—Z:(O,x)=y1(w) in Q. (2.3)

First we introduce two Hilbert spaces H and V by H = L?(Q) and V = H(f), respectively.
"We endow the space H = L?(f)) with the inner product and norm :

(%,6) = /n Y@@z, |9l = )2, Véw e LXQ). (2.4)
For ¢,¢ € V = H(Q) we define
9 = 2_; [ )@l ey

The duality pairing between V and V' is denoted by (-,-). The inner product and norm of
V = H(Q) are defined by

(81 = (,0) + (@, 9), 9]l = (v, ¥)1>, Vo, € H(Q). (2.6)

Then the pair (V, H) is a Gelfand triple space with a notation, V < H = H' < V', which
means that embeddings V C H and H C V' are continuous, dense and compact. The norm of
the dual space V' is denoted by || - ||«-
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Now we introduce the bilinear form
a6, 0) = /Q Vo Vods = (6,9), Yé,0 € HI(Q). (2.7)

Then we can define the bounded operator A € L£(V,V’) through (2.7). The operator A is an
isomorphism from V onto V' and it is also considered as a self-adjoint operator in H = L3(9)
with dense domain D(A) in V and in H,

o9

D(A)={¢eV: ApeH}={pc H'(Q): &~

=0 on I}
Also we define the sine function for z € H = L?(2) by
(sinz)(z) =sinz(z) for a.e. z € Q.

Using the operator A and the sine function siny, the problem (2.1), (2.2), (2.3), is converted
to the following Cauchy problem in H:

di;}tgt) + Ady(t)

y(0) = o, ;E(O) =1
The solution space should be introduced in this perturbed case is defined by
Wyv(0,T) = {glg € L*(0,T;V),¢' € L*(0,T; V), 9" € L*(0, T; V'}}

+ BAyY(t) + Z'Yt sin iy + 0y = f(t), t€(0,T),
i=1 (2'8)

with inner product

T

(f, 9wy (01 = fo ((F(£),9®) + (£'(£),9' ) + (F(2), 8" ())v) dt,
where (-,-)y- is the inner product of V/. We denote by D'(0,T) the space of distributions on
(0,T). The definition of weak solutions of the problem (2.8) is as follows.

Defintion 2.1. A function y is said to be a weak solution of (2.8) if y € Wy(0,T) and y
satisfies

@' (), 8) + (/' (), 8) + (By(), 6) + Z yisinkiy(-), ¢) + (6y(-), 8) = {£(-), 8)

=1

for all ¢ €V in the sense of D'(0,T),
y(0) =90, ¥(0)=u

For the existence, uniqueness and regularity of weak solutions for (2.8), we can prove the
following theorem. For a proof, see Ha and Nakagiri [8].

Theorem 2.1. Let 0,8 >0, §,7i,k; €ER,i=1,--- ,L and f, yo, y1 be given satisfying
feL?0, T;V'), weH(Q), nel’(Q). (2.9)

Then the problem (2.8) has a unique weak solution y in Wy (0,T). The solution y has the
regularity

y € C([0,T]; H*(©))), ¥ € C([0,T]; L*(Q)). (2.10)
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3. Identification of constant parameters

In this section we study the identification problems for perturbed sine-Gordon equations de-
scribed by

L
y" + (00 + @) Ay + (Bo + FAy + D visinmiy + 6y =vf in (0,T),

=1

(3.1)
y(0) =30, ¥'(0) =1,

where ag > 0 and By > 0 are fixed. In (3.1) we multiply the constant J to the forcing term f
and replace the diffusion parameters o to ap + o? and 3 to By + (2 to obtain the linear space of
parameters o, 8, vi, 6, k;, v. Hence the diffusion terms in (3.1) never disappear and are uniformly
coercive for all o, 8 € R. :

For the setting of the identification problems for (3.1), we assume that the parameters
o, B, 7,6, k; and v appeared in (3.1) are unknown and we take P = R as the set of
parameters ¢ = (o, 8,71, - ,YL,0,K1,- - ,kL,¥). The Euclidean norm and the inner pro-
ductof P are denoted simply by |- | and (-,-), respectively. For simplicity of notations we
write ¢ = («, 8,7, 6, ki, V) € P.

By Theorem 2.2, for each g € P there exists a unique weak solution y = y(g) € Wy/(0,T) of
(3.1). Then we can uniquely define the solution map ¢ — y(g) of P into Wy (0,T).

Let K be a Hilbert space of observations and let || - ||x be its norm. The observation of y(q)
is assumed to be given by

z(g) = Cy(q) € K, (3.2)

where C is a bounded linear observation operator of Wy (0, T) into K.
The cost functional attached to (3.1) with (3.2) is given by

J(q) = lICy(q) — zall% + (Mq,q) for g€ P, (3.3)

where z; € K is a desired value of y(q) and M is a symmetric and non-negative (2L+4) x (2L+4)
matrix on P = R2L+4,

Assume that an admissible subset P,q4 of P is convex and closed. As in [9] we study the
existence and characterization problems for the perturbed sine-Gordon equations. That is, the
following two problems:

(i) Find an element ¢* € P,q such that

inf J(q) = J(¢"); 34
o J)=J(7) (3.4)

(ii) Give a characterization to such the ¢*.

“As usual we call ¢* the optimal parameter and y(g*) the optimal state. In order to solve (ii),

we shall derive the necessary conditions on g¢*. If J(g) is Gateaux differentiable at ¢* in the
direction g — ¢*, then ¢* has to satisfy

DJ(g*)(g—g*) 20 for all q € Pyq, (3.5)

where DJ(q*) denotes the Gateaux derivative of J(g) at ¢ = ¢* in the direction ¢ — ¢*.
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3.1. Existence of optimal parameters

The following theorem shows the continuity of solution map g — y(g), which is crucial to solve
the problems (i) and (ii).

Theorem 3.1. The map ¢ — y(q) : P = Wy (0,T) is weakly continuous. That is, y(gn) —
y(q) weakly in Wy (0,T) as g, — g in R?E+4,

The following theorem follows immediately from Theorem 3.1 and the lower semi-continuity
of norms.

Theorem 3.2. If Pog C P = R2LH {5 compact or M is a positive and symmetric on R2L+4
then there exists at least one optimal parameter q* € P,q for the cost (3.3).

3.2. Necessary conditions

For proving that J(g) is Gateaux differentiable at ¢* in the space of parameters, we have to
estimate the quotients z) = (y(gx) — y(g*))/) in the space Wy (0,T), where gx = ¢* + A(g —
q*), A€ (0,1] and ¢,¢* € P. We set yx = y(gx) and y* = y(g*) for simplicity.

Let us begin to prove the weak Gateaux differentiability of the solution map g — y(q) of P
into Wy (0, T).

Theorem 3.3. The map q — y(q) of P into Wy (0,T) is weakly Giteauz differentiable. That
is, for fized ¢ = (e, B, i, 6, ki, v) and ¢* = (a*, 8,7}, 0%, &F,v*) in P the weak Gdteauz derivative
z = Dy(q*)(g — q%) of y(q) at g = q" in the direction ¢ —g* ezists in Wy (0,T) and it is a unigue
weak solution of the evolution equation

,
2"+ (" + ap) A2 + (B2 + Bo) Az + i('y{n: coskiy*)z + 6%z
! = 2a"(a — a)Ay* +26*(B" - B)Ay* +L(_61* -8y + i, (o} — w) sin sy (3.6)
+Z v cos kY ) (kY — ki)y* + (v -v)f in (0,T),
| 20) = #(0) =0,

where y* = y(q*).

Since the map g — y(q) : P = Wy(0,T) is Gateaux differentiable at ¢* in the direction g —g¢*,
the inequality (3.5) is equivalent to

(Cylq*) — 2¢,C2z) k' .,k >0, Vg € Pag, (3.7)

where z is the solution of (3.6). To avoid the identification problem to be complicated we study
the problem according to two types of simple observations as follows:

1. Observe the distributed state Cy(q) = y(q) € L2(0, T; H) and take K = L2(0, T; H);

2. Observe the time terminal state Cy(q) = y(¢;T) € H and take K = H.

1. Case of Cy(q) = y(q) € L*(0,T; H)
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In this case we give the cost functional by

J) = rly(@ - zall}z0r.m + (Mg, ), (3.8)

where z4 € L?(0,T; H) and r > 0. Then the necessary condition (3.7) with respect to (3.8) is
written by

r(y(q*) = 24, 2)L2(0,m;m) + (M@*, ¢ — %) > 0, Vg € Pog. (3.9)
Hence by standard arguments we have the following theorem.

Theorem 3.4. The optimal parameter q* for the cost (3.8) is characterized by the two states
y =y(q*),p =p(q*) of equations

L
Y + (o + )y + (Bo + B2 Ay + Z'y,* sinkiy + &*y =v*f in (0,7),

e (3.10)
y(0) =50, '(0) =1,

L
P’ — (02 + ag)Ap' + (B + Bo)Ap + )_ (¥} K} coskiy*)p+ 6*p = r(y(q*) — 24) in (0,T),

i=1
p(T) =p'(T) =
(3.11)
and one inequality
T
[ et te - o)ay” +26°(8" — 1Ay + (5" - 8 (3.12)
+Z(7z 'Yz smrc,,y*—i»z 71. COSN y i _n‘i)y*-l'(y*_l/)f) dt
=1

+ (Mq ,q*—q) >0 forallq € Py

2. Case of Cy(q) = y(q;T) € H
In this case the cost functional is given by

J(q) = rly(g;T) — za|* + (Mq, ), (3.13)

where 2z € H and r > 0. Then the necessary condition (3.7) with respect to (3.13) is written
by

r(y(q"T) — 24, 2(T)) + (Mq"*, ¢~ ¢*) 20, Vq € Paq. (3.14)
Thus we have the following theorem.

Theorem 3.5. The optimal parameter ¢* for the cost (3.13) is characterized by the two states
y =y(q"),p = p(g*) of equations
L
¥+ (a0 + &)y + (Bo + B2 Ay + Y 7l sinkjy + 8y =v*f in (0,T),

2 (3.15)
y(O) = Yo, ,yl(o) = Y1,
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L
p" — (a*? + ag) Ap’ + (8*? + By) Ap + Z(ﬁn: coskiy)p+d*p=0 in (0,7),

£ (3.16)
p(T) =0, p'(T)=-r(y(¢T) — 2a).
and one ineguality
T
/ (.20 (0" — @) Ay” + 26" (8" - B) A" + (6" = O}y’ (3.17)

+Z . — i) sinkjy* +2:(fyz cos k;y*)(Ki — Ki)y* + (W —V)f) dt

+ (Mq ,q—q") >0, Vq E Pad-
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