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Fredholm Equations and Volterra Equations
Arising from Fuzzy Boundary Value Problems
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1 Introduction

There are many fruitful results on representations
of fuzzy numbers, differentials and integrals of
fuzzy functions. The authors establish fundamen-
tal results concerning differentials {(e.g., {5, 6, 7, 8,
9, 10, 19, 11, 12, 24]), integrals (e.g., [1, 20]), the
existence and uniqueness of solutions for initial
value problems of differential equations (e.g., [15,
16, 18, 25, 26]), the asymptotic behaviours of so-
lutions (e.g., [3, 4, 13, 14, 17, 23]). In this study
we introduce the couple parametric representa-
tion corresponding to the results due to Goetschel-
Voxman so that it is easy to analyze fuzzy differ-
ential equations. By the couple representation we
can discuss differential, integral of fuzzy functions
and asymptotic behaviours of solutions for fuzzy
differential equations in an analogous way to the
theory of ordinary differential equations. In a sim-
ilar way we treat fuzzy differential equations with
fuzzy boundary conditions.
Our aim is to discuss the existence and unique-
- ness of solutions for the following boundary value
problems of fuzzy differential equations:

g (t) = f(t,z,z ), z(a)=A,z(b)=B. (11)

Here J = [a,b}] C R = (—00,+00), t € J, and
fuzzy numbers A, B € F& ,which is a set of fuzzy
numbers with compact supports and strictly quasi-
convexity, and f : J x Ft x F&t — Ftis an
Fgt-valued function.

Let I = {0,1]. In what follows a fuzzy number
x is characterized by a membership function u,
which has four properties. We consider a set of
fuzzy numbers with compact supports denoted by
Fet:

Definition 1 Denote

Ft = {us : R — I satisfying (i) — (iv) below}.

(i) There ezists a unique m € R such that py(m) =
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(ii) The support set supp(uz) = cl({{ € R :
p(€) > 0}) is bounded in R;

(iii) po is strictly quasi-convex on supp(is);

(iv) po is upper semi-continuous on R.

Function p is strictly quasi-convex , i.e., strictly
fuzzy convex, on supp(ps) if

pz(Mr + (1= A)é2) > min[uz(61), #=(€2)] (1.2)

for 0 < A <1 and &1,€2 € J such that & # €. In
usual case a fuzzy number z satisfies quasi-convex
on R, i.e,

pz (M + (1~ Néz) 2 min[uz(&l)’l"'m(gﬂl

for0<A<1andé&, & €R.

In the similar way as [9, 10] we consider the
following parametric representation of y, € Fg
such that

z1(e) = min La(pz), z2(e) = max La(ps)

for 0 < o <1 and that
21(0) = min ¢l(supp(iz)), z2(0) = max cl(supp(pz)).

We denote a fuzzy numbers z by (z1,z3), i.e.,,z =

(x1,72). Condition (iii) in the above definition

plays an important role in proving properties of
membership function y, in Theorem 1, where we

show significant properties concerning the end- .
points of the a-cut set

La(ps) = {§ € R : p(§) 2 o}

Let a metirc in F2t be d(z,y) = sup,e;(|21(a)-
y1(a)] + |z2(@) — y2(a)) for z = (z1,22),y =
(y1,7%2). In [23] it can be shown that the metric
space (Fgt,d) is complete.

We treat fuzzy type of Nagumo’s Condition to
(1.1) and give the existence and uniqueness the-
orems to (1.1) by parametric representation of
fuzzy numbers. Moreover we show applications of
fuzzy type of Nagumo’s condition to the Fredholm
equation concerning (1.1) by applying the contrac-
tion principle and the Schauder’s fixed point the-
orem.



2 Parametric representation of
fuzzy functions

In [23] we showed that a fuzzy number z = (21, z2)
means a bounded continuous curve in the R? space
as follows.

Theorem 1 Denote & = (z1,z2) € Fit, where
z1,72: I — R. Then it follows that the following
properties (i)-(iii) hold:

(i) z; € C(I),i = 1,2. Here C(I) is the set of
all the continuous functions on I;

(ii) There exists a unique m € R such that
z1(1) = 22(1) = m, z1(a) < m £ z3(a)
forael;

(ili) One of the following statements (a) and (b)
hold;

(a) It follows that z:(a) < z2(a) for 0 <

o < 1 and zy(a), z2(a) are non-decreasing,

non-increasing in « € I, respectively;
(b) 1(e) =z2(@) =m for0 <a < 1.

Conversely, under the above conditions (i) -(iii),
if we denote

ps(§) =sup{a € I:z1(a) S § S z2(a)} (2.3)

Then u, is the membership function of z, i.e.,
uy € FSL.

Denote a fuzzy function z = (z1,z2) : J — Ft
has a variable ¢ € J and the parameter a € I such
that z;,z2 are functions defined on J x I to R.
Fuzzy function = = (x1, z2) is called differentiable
at ¢ if there exists an fuzzy number n € F5t such
that (d1) z(t + h) = z(t) + hny + o(h) and (d2)
z(t) = z(t—h)+hn+o(h) as b — +0. Here o(h) =
(01(h), 02(h)),i.e., imjp o &%}Q = 0. Denote
z (t) = 1. It’s called a differential coefficient of
the Hukuhara-differentiation (See [19]). It can
be seen that z = (1, z2) is called differentiable at
t if and only if 71 (-, @), z2(-, @) are differentiable at
t for any o € I and there exists ) € F£ satisfying
the above (d1) and (d2).

Fuzzy function z = (21, ) is called integrable
over [t1,t2] if 1,72 are integrable over [t1, 2] for
any a € I. Define

’/: z(s)ds = {(/: z1(s, a)ds, /: z2(s,a)ds)T € R?
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3 Fredholm equation arising
from fuzzy boundary prob-
lems

1) Fredholm equations

Assume that f : J x F5t x Fgt — Fgt is contin-
uous. Consider the following Fredholm equation

z(t) = w(t) + /b G(t, 5)f(s,2(s), @ ())ds

for t € J. Here a fuzzy function w € C(J) and an
R—valued function G € C(R?) with G(t,s) > 0
such that

A(b—1) + B(t —a)

w(t) e (3.4)
@-t)s=a) (p<t<s<h
— b—a -_—btze =
ot = { (e=gl=e) acecizg

Then we get w" (t) = 0 and also w(a) = A4, w(b) =
B. 1t follows that

b — )2 b —_
/G’(t,s)dssﬁ—s—g—)—, /%tq(t,s)dssb g

2

In the same way in theory to boundary value prob-
lems of ordinary differential equation the following
proposition are shown immediately.

Proposition 1 Fuzzy function z is a continuously
differentiable solution of (1.1) if and only if x is
a fized point of T : C*(J; Ft) — C*(J; F3t) such
that

b ,
T@)E) = w®) + [ Gt,0)f(s,2(), ()ds.
Here C1(J; F&) is the set of continuously differ-
enticble functions defined on J to F2t, etc.

In the same way in applying the contraction prin-
ciple [17] gets the existence and uniquess theorem
of (1.1).

Theorem 2 Suppose that There exist positive num-
bers K, L such that

d(f(t,z,), f(t,u,v)) < Kd(z,u) + Ld(y, v) (3.6)

fort e J and z,y,u,v € Fgtand that

Kb-a? Lb-a) _;

8 2
ca€l}.
Then (1.1) has one and only one solution in C*(J; F¥).

3.7)
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We illustrate the above theorem as follows.

Example 1 Let fuzzy numbers k = (k1,k2), £ =
(01,22) € F& with ky(a) 2 0,6,(a) 20 forael
and k2(0) < K,£5(0) < L, respectively. Assume
that positive real numbers K, L satisfy the inequal-
ity (3.6) and p; > 0,q; > 0 for ¢ = 1,2. We
consider fuzzy functions f = (f1, f2) of (t,z,y) €
J X Ft x F& with ¢ = (21,22).y = (y1,Y2) such
that

fi(t, z1(a), z2(), 1 (@), y2(a), @)
= ki(@)e™Pz;(0) + Li(a)e™ W yi(a)

for a € I,i=1,2. Then, for any boundary values
(A,B) € F& x Ft, there erists a unique solution

for (1.1).

2) Fuzzy type of Nagumo’s condition
Assume that the following properties (i) -(iii).

(i) Function f = (f1, fa) : J X F&t x F&t — F
is continuous. Here (f1, f2) is the parametric
representation of f.

(ii) Let r; > 0,7 = 1,2. There exists a function
h; : [0,00) — [0, 00) such that

fi(t, z1(e), z2(0), 11 (a), p2(@), )] < hi(lys(a)))

for t € Jya € I,i = 1,2, and |z;(c)] <

i, ¥ = (Y1,42) € Ft. Here z = (21, %2),y =
(v1, y2) are parametric representations of z, y,
respectively.

(iii) Assume that h;, i = 1,2, satisfy

* ndn
+0 hy ("))

> 2r;.

The above condition is applied to the fuzzy
boundary value problem (1.1) in the same way
as [2].

Lemma 1 Assume that f = (f1, f2) satisfies fuzzy
type of Nagumo’s condition. Letr; > 0, i = 1,2,
be in fuzzy type of Nagumo’s condition and a so-
lution = = (z1,z2) € C*(J; Ft) of (1.1) satisfy
lzi(t, @) <7r; fori=1,2,te Ja€l

There exist numbers N; > 0,7 = 1,2 such that
lx;(t, a)f < N; forte Jya el

The proof can be proved in the similar to Theo-
rem 1.4.1in [2]. In case where f € C(JxR"xR")

[2] gives Nagumo’s condition in R™ and its ap-
plication to boundary value problems of ordinary
differential equations.

3) Fuzzy type of Nagumo’s condition con-
cerning z =0

In what follows we consider fuzzy type of Nagumo’s
condition concerning z" = 0. Assume that the fol-
lowing properties (i) -(iii).

(@) f=(fi,fo) : I X Fgt x Fgt — Fgt is con-
tinuous; .

(ii) Let »; > 0,1 =1,2, and w is the function in
(3.4). There exists a function h; : [0,00) —
[0, 00) such that

[fi(, z1(0), z2(a), y1 (@), y2(a), @)
< hi(lps(@) — wilt, @)) (3.8)
forteJaeli=1,2, apd
lzi(e) — wi(t,@)| <7y, y = (yl,y2) € flgt‘

Here z = (z1,%2),¥ = (Y1, Y2) are paramet-
ric representations of z,y, respectively;

(iii) Assume that h;, i = 1,2, satisfy

* ndn
+o hi (m)

> 2r;. (39)

Lemma 2 Assume that there ezist functions h;,i =
1,2, satisfy (3.8) and (8.9). Letr; > 0, i =
1,2, be in (3.9) and a solution x = (z1,z2) €
C%(J; FE) of (1.1) satisfy

|Z,’(t, a) - Wy (ta a)' S i

fori=12teJanda €l
There exist numbers N; > 0,i = 1,2, such that

|z;(t, @) — w;(t, )] < N
forte Jjael.

The proof can be done in the similar to Lemma
1.

In cases where h;(n) = 1, hi(n) = n? forn > 0
it suffices that N; satisfies N; > 2r;, N; > 0, for
(8.9), respectively.

4) Applications of fuzzy type of Nagumo’s
condition to z” =0

In this section we show the existence of solu-
tions for (1.1) by applying Schauder’s fixed point



theorem as well as we give the existence and unique-
ness of solutions by applying the contraction prin-
ciple under assumption that Nagumo’s condition
concerning z = 0. Let r = (r;,m2) and N =
(N1, N2). Denote

Su(r,N) =
{(z,9) e B x Rt |wi(@) —wilt, )| < 7y,

lyi(e) — w;(t, @) < N;, fori=1,2,te J,a €I} +

Theorem 3 Assume that the same conditions of
Lemma 2 hold. Let

!fi(taxl(a):xZ(a)ayl(a)vy2(a)= a)l
2N,' 81',?
< min(+——, ———
= mm(b-—a’ (b—a)z)
forte J,(z,y) € Suw(r,N),i=1,2,a €.
TherIL (1.1) has at least one solution z such that
(z(t),z (t)) € Sw(r,N) fort € J and any A,B €
Fet.

[2] show Nagumo’s condition of R™, but they
give no theorems of existence of solutions for bound-
ary value problems.

In the following theorem we get the existence
and uniqueness of solutions for (1.1).

Theorem 4 Assume that the same conditions of
Theorem 3 hold. Assume that there exist inte-
grable functions p1,ps : J — [0,00) such that for
teJi=12/(z,y),(u,v) € Sy(r,N)

'fi(t, 1’1(&), x2(a)1 n (a)9 yZ(a)) a)
~fi(t, w1 (@), u2(a), vi(@), v2(a), a)|
< pi(t)(d(z,u) + d(y, v))

and
b
A=sup/ G(t,s)p1(s)ds
teJ Ja

b oG
+sup [ ——(t,8)pa(s)ds < 1. (3.10)
teJ Ja ot

Then (1.1) has one and only one solution in C%(J; Fgt)

such that(z(t), z (t)) € Su(r,N) fort € J and any
A,B e F.

In the following example we illustrate Theorem
4.

Example 2 Denote fuzzy numbers k = (k1,k2),£ =
(£1,£3),m = (m1,mz),n = (n1,n2) € F such
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that all k1(0), £1(0), m1(0),n1(0) are non-negatige.

Denote integrable and non-negative functions a;, b;, c;, d;

defined on [0,00) fori = 1,2. Assume that a;(t) <
az(t), b1 (t) < bo(t), e1(t) < c2(t), di(2) < da(t) for
teJ Let

fi(t,z1(a), z2(a), y1 (), y2(a), @)
ki(a)ai(t)|z1(a) — wi(t, o)
£i(a)bi(t)|z2(@) — wa(t, @)

mi(a)e; () (a) — wy(t, )]

ni(@)d: (t)|y2(a) — wy(t, )|

{ogt e J,z = (z1,22),y = (¥1,¥2) € Su(r,N),i =

Assume that r;, N; for i = 1,2 satisfy the fol-
lowing conditions (i) - (ii).

(1) There exist py,pa such that (5.10) holds and
that

+ +

ma.x(kl(l)al(t),Zl(l)bl(t),
2N1m1(1)c1 (t), n (1)d1(t))
<p(t)
max(k2(0)az(t), £2(0)ba(t),
2N2m2 (0)02 (t), ng (O)d2 ('t))
< pa(t)
fort e J.
(ii) Suppose that
Sugpi(t)(rl +ra+ N2+ N,)
te
., 8rg 2N;
. S mm(ﬁ, m)
fori=1,2 and that Ny > 0, N3 > 2r,.

We get hi(n) = 1 ha(n) = 5 for n > 0. It fol-
lows that [7o(n/hi(n))dn = [ (n/ha(n))dn = oo.
Then conditions of Theorem 4 are satisfied. There-
fore, by Theorem 4, (1.1) has one and only one
solution in Sy (r, N) for any (A, B) € F&t x Fgt.

4 Volterra equation arising from

fuzzy boundary problems

By putting y; = :z:’l, Yo = z; we have

Ty 0010 T
d zs _ 0 0 0 1 X2
@l wnl”"lo0oo0oo0o0 0
Y2 0 00O Y2
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0

0
fi(t, 21, 22,91, 92)
fa(t, 1, 2,41, 92)

+

Then, by denoting z = (z1,22,%1,%2)7 € R4, we
get

Z—;(t) = Mz+F(t,2), L(z)=c  (411)
Here

0010 0
0001 0

M=14 99 o | Fta= filt,z) |’
0000 falt, 2)
A

_| A2

c=| g (4.12)
B,

and £ is a bounded linear operator from C(J)* to
R* as follows:

L(z) = (z1(a), z2(a), z1(b), wz(b))T-

In this case we get the fundamental matrix

0
X(t) =M = :
1

COO M
co~O
OO~

with X(0) = E, where E is the identity matrix.
Let U satisfy

1 0 a0
010 a
C(X()Zo) = 10 5b 0 zo=Uz
01 0 b
for zy € R4. It follows that
b 0 —-a 0
1 0 b 0 -a
-1 —
vt = b-al| -1 0 1 0
0 -1 0 1
We denote a norm in R by || 2 ||= |z1] + |z2| +
1] + lyz] and || U ||= P, I Uz|.
Zj|=
b+1

Then | U |= max(2,a +b) and | U™! ||= b
In what follows we give the existence and unique-
ness theorems by applying Schauder’s fixed point

theorem or the contraction principle as in the sim-
ilar way as in {21] and [22]. Let 7 > 0. Denote a
subset in C(J x I)* by

S = {z= (21,22, 41, 42)7 € C(IxI)*: doo(2,0) < 7}.

Here
doo (2, 2) = sup d(z(t), Z(t)) + sup d(y(t), §(t))
teJ teJ
where

. Z(t, ) = ($(t, ')$ y(t’ ))1 E(ta ) = (j(ta ')ag(tv ))

in Fgt x Fgt and

Q—J(t, ) = (9_:1 (t: ')1 52“1 ))a g(ti ) = (gl (t! ')a'g2(ts ))

in Fgt for ¢t € J. Then the following functions
ber)(§) = sup{a €l:z1(t,a) <€ <Lzt @)}
pyey(§) = suplael:p(ta) <<t a)}

are membership functions of fuzzy numbers =(t), y(t)
in Fgt for t € J, respectively. Moreover it can be
seen that S is a convex and closet subset in C(I)*.

In the similar way of discussion as the theory
of ordinary differential equations it follows that
x € S is a continuous solution of (4.2) if and only
if

2(t) = X (@)U~ (c - £(g:))
+ /Mz(s)ds+/ F(s,2(s))ds

for t € J, where

t
2:(t) = / X (&)X Y (s)F (s, 2(s))ds.

Putting

b
Q= / max (b s+ 1(fa(e,2)| + fa(s, ),

we have do(g:,0) < Q for z € S. By Schauder’s
fixed point theorem we get the existence of solu-
tions for (4.1).

Theorem 5  Assume that positive numbers R, r
satisfy R < e~(®=2) and

QL@+ vy
r> -9 _R .




Let f1, f2 satisfy

b
/ max (1f1(s,2)| +|fals, 2))ds < rR.
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The continuity of g, on S means that V is con-
tinuous. The uniform continuity of F leads to the
equicontinuity of V and the compactness of V is
proved by Ascoli-Arzela’s theorem. By Schauder’s
fixed point theorem it follows that there exists at

Ifc = (A1, A2, By, B2)T € R* with (Ay, Az), (B1, B2) € least one solution in S. This completes the proof.

Fit satisfies

r(e=(-%) — R) B

Il Groo—]

£l

then (4.1) has at least one solution in S.

Proof. Let u € S be fixed. Consider the
following boundary linear problem

3—; = Mz(t) + F(t,u), L(z) =c.

Then there exists a unique solution z, of the above
problem such that

zu(t) = X(t)U_l(c - L(qu)) + Qu(t)
X(a)U™ (e~ L(qu))

+/thu(s)ds+/tF(s,u(s))ds

for t € J. Denote a mapping by [V(w)](t) = z,(t)
for u € S,t € J. Then the solution z of (4.1) means
that z is a fixed point of V in S.

We shall prove V is an into mapping. From the
definition of V and || X(¢) [K b+ 1fort € J it
follows that

lz(®) I <G+DUU el
+ || £ ” doc(qu,o))

+ LnMwawu@

+ [ I FeuG) as
< G+D)IU el
+1mnm+/n%@u@+m

for t € J. By Gronwall's inequality we have

| 2u(2) |

<@+ IU T Al +1£1Q+rR) <.

Thus we have doo(24,0) < 7 for u € S. It’s clear
that z, satisfies Conditions (i)- (iii) in Theorem 1.
Therefore 2z, € S for v € S. Thus V is uniformly
bounded.

Finally we show the existence of uniqueness
theorem of solutions of (4.1) by the contraction
principle.

Theorem 6  Assume that there ezists an inte-
grable function £ : J — R4 such that

b
G+ UL+ £ u)/ (b— s + 1)¢(s)ds < 1.

Let F be in (4.3) such that
d(F(t,2), F(t,2)) < £(t)d(z2, 2)

forz = (z,y),% = (Z,9) andt € J, wherez,y,%,j €
Fgt. Then (4.1) has one and only one solution for
any c in (4.3).
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