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Robustness of limit cycles of a planar system
under the delayed feedback control
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1 Introduction

In 1992 Pyragas (8] proposed a new scheme for controlling chaos which is known as delayed
feedback control (DFC). The idea of this scheme is as follows. Consider an n dimensional
chaotic system

@) & = F(z),
and the system with an m dimensional control force u(t),
(2) &(t) = F(2(t)) + Bu(t),

where B is an n X m constant matrix which represents the accessible elements. To stabilize
an unstable periodic orbit (UPO) embedded within a strange attractor of (1), we takes the
difference u(t) = —K(x(t) — z(t — 7)) as a control force, where the control amplitude K is
m X n matrix. If the period T" of the UPO which we intend to stabilize is known a priori, we
could achieve the successful control by setting 7 = T'. DFC has been applied to many systems
numerically because of the simplicity to use. Though the analysis is very difficult, the analytical
understanding also has been gained just over the past few years [1,6,7,9].

The aim of this work is to prove the effectiveness (or ineffectiveness) of DFC scheme on
planar systems analytically. In this paper we give some examples for which DFC scheme with a
scalar control force u has no influence on Hopf bifurcating solutions. Note that “a scalar control
force” means that the control amplitude K is given by an 1 X n matrix, that is, a column vector.

Consider planar ordinary differential equations with a scalar parameter p.

3 & — Flmip),

Assume that the Hopf bifurcation occurs at 4 = 0. Especially, in this article we consider only
the following normalized case when

P = Ao+ fabs, A= (# 1),

where z = col(z1,%3), |z| = \/2% + 23, and f: [0,00) — R is a C* (k > 3) function satisfying
f(0) = 0. Note that we refer to Theorem 11.15 in [3] as the Hopf bifurcation theorem reformu-
lated to be more directly applicable to this system. To see the bifurcation diagram for periodic
orbits of (3) precisely, let us introduce polar coordinates (r,8) defined by

T, =rcosf, T9 = —rsinb.



Then we obtain
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dr
= = (u+ f(r)r
de
— =1
dt
Example 1.1. For f(r) = —r?: there is a unique nontrivial periodic orbit whose amplitude

is p = /p if p > 0. The periodic orbit is orbitally asymptotically stable. See Fig. 1 for the
bifurcation diagram. Because the bifurcation curve emanates from the origin to the right, the

bifurcation is called supercritical.

Example 1.2. For f(r) = —(r? — ¢)? + ¢? with ¢ > 0 a fixed constant: there are two nontrivial
periodic orbits, one orbitally unstable and the other orbitally asymptotically stable, for —c? <

i < 0 with amplitudes p = /¢ /u + ¢2. See Fig. 2 for the bifurcation diagram. Because the

bifurcation curve emanates from the origin to the left, the bifurcation is called subcritical.
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Fig. 1. Supercritical Hopf bifurcation (Ex. Fig. 2. Subcritical Hopf bifurcation (Ex.
1.1). 1.2).
Adding the DFC with a scalar control force u to the system (3), we have
dz M 1 T
@ Z=a@erslaherie,  Aw=(* L), w0 =-F)-ot-)

where b and 'k are in R?, and k7 represents a transpose of k.
The linearized equation of (4) at z = 0 becomes

) D — Awelt) - 57 (@(0) ~ o~ 7))

The characteristic equation of (5) is

p(2) =det [2] — A(p) + (1 — e ")bkT] = 0.

Define two sets of the characteristic roots of (5) as

A :={z: p(z) = 0 and Rz > 0}, Ag := {z: p(z) = 0 and Rz = 0}.

Here Rz represents the real part of a complex number 2.
To avoid complication in calculating, throughout this paper we assume

(H1) kTb=0.
Then it is convenient to write b and k as follows:
b=b( %) and k=@ (%),
—sinéd cos d

wherelA)SO,lzzeRandO§6<27r.
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Lemma 1.1 (RIMS Kokyuroku No. 1309, 2003). Suppose that (H1) holds and |bk| is
sufficiently small. If 7 = 27, then for any small ||

(i) p < 0 implies AU Ay = 0.

(ii) p = 0implies A =@, Ag = {%i}. Moreover the multiplicity of i is 1 and Rg—z u=£,>
Z2=I1
0.

(iii) g > 0 implies Ag = @ and A has two elements.

This lemma shows that if we set 7 = 27 then the DFC has no influence on the Hopf
bifurcation point of (3).

2 Hopf bifurcating solution & DFC

In this section we will calculate the Hopf bifurcating solution under the DFC when 7 = 27. Note

that for 4 = 0 (5) has a pair of purely imaginary characteristic roots %, while all the other

eigenvalues have negative real parts by Lemma 1.1. Thus the asymptotic behavior of solutions

of (4) near the equilibrium z = 0 for small |x| governed by the dynamics on the center manifold.
Let 4 = 0 in (5), that is, consider

(6) ‘;—f = A(0)z(t) — bkT (z(t) — 2(t — 7)), T =2m.

Denote the generalized eigenspace of (6) associated with Ag = {%i} by P. A basis of P is

86) = @u(s) e, 810) = (%2,) ato) = ()

—gins CO8 8

and the following relation holds.
B(s) = ©(0)e4®s,

If ¢ € P, then there exists a € R? such that ¢ = ®a and the solution z(¢) of (6) through ¢ at
t = 0 satisfies z;(¢) = eA(9)¢®a. In other words, the solution of (6) on the generalized eigenspace
of P behaves essentially an ordinary differential equation

dy
i A(0)y.

To compute the corresponding projection onto the generalized eigenspace pig, consider the adjoint
equation of (6)

™ W) ) (5} 5) + wle) =+ eeT
with respect to the bilinear form
i
(¥, ¢) = ¥(0)8(0) + 3 P(€ +7)bkT $(€)dE

for all ¥ € C* = C([0,7],R'%?) and ¢ € C = C([-7,0],R%). The basis of the generalized
eigenspace of (7) associated with g is

Y(s) = (://j;g;) , W1(s) = (coss,—sins), 1a2(s) = (sins,coss).
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It is convenient to introduce a notation of a matrix R(#),

R(6) = (0959 —-sin9> .

sinf cosf

Then ®(s) = R(-s) and ¥(s) = R(s). Therefore we obtain

(T, ) = B(0)3(0) + / B(e + 7)bETB(E)de
0

=1+ | R(¢+2m)bkTR(—€)d¢
-2

-1+ f 02 REE)B{REKY de
0
_I4 f %b(::’j((g gg) i(—sin(é — 6), cos(¢ — 8))de

—cos(¢ — 6) sin(¢ — 6) cos?(¢ - 8) de
—sin?(¢ — 9) cos(¢ — &) sin(¢ — 9)

Zi://( ( —sin2(¢ — 4) c082(£—5)+1) de

C!')
Eopld

H

cos2(6—-38)—1 sin2(¢-9)

) — I+ bkxR (—%)

Q‘)

and

(,3)! = —;—77)2 {r+8kar (3)}-

In the following we denote (¥, ®)~! = ¥ and ¢ = 1+ (bkr)?. For any ¢ € C, we can decompose
it as follows: ,
¢ =dc+ 99, where c¢= Uy(¥,¢) and (¥, #9) =

Now let = be a solution of (4) through ¢ € C at t = 0, and let x? , y(t) be defined by
=y + .'L'?, y(t) = \I’O(\I’:xt)’
¢=c+¢%  c=T(¥,0).

Using the similar arguments in [2] :v? = O(u) as p — 0 whenever |z;| < u, so that the basic
problem lies in the investigation of the ordinary differential equation

® W AQ)y + %o {y + F(l)o}
Again we introduce polar coordinates (r,8) defined by
y; = rcosf, yp = —rsiné.
Then we have
dr
&) -no

dt
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= R(6) [A(0) + (u+ f(r))To]y
= r0) [r(-5) + O (1 irr (5))] o

2 q 2
-(5) == )+ ()}
-r q 0 1
Therefore we obtain
dr
i m&m(u + f(r)r
©) y )
= =1~ Stk + £))-

Remark 2.1. Equations (9) shows that DFC has no effects on the Hopf bifurcating solutions
of the planar system (3) when we take the time delay 7 = 2.
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