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The effects of dispersal on population dynamics:
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Abstract In this paper,we consider the effect of dispersal on the permanence and extinction of
single and multiple endangered species that live in changing patches environment. Different from the
former studies,our discussion include the more important situation in conservation biology that species
live in a weak patchy environment in the sense that species will become extinct in some of the isolated
patches. For single population model,we show that the identical species can persist for some dispersal
rates,and can also vanish for another set of restriction on dispersal rates,though the endangered single
species will vanish in some isolated patches without the contribution from other patches. Furthermore we
consider the existence,uniqueness and global stability of the positive periodic solution. For prey-predator
system,we can make both prey and predator species to be permanent by choosing the dispersal rates
appropriately even if the prey species has negative intrinsic growth rate in some patches. Particularly,
for a prey-predator system, we provide a sufficient and necessary condition to guarantee the prey and
predator species to be permanent.

Key words. Logistic equation,Lotka-Volterra system, diffusion, permanence,extinction,
periodic solution, stability.

1 Introduction

Since the poineering theoretical work by Skellem [9],many works have focused on the effect of spatial fac-
tors which play a crucial rule in persistence and stability of population [1-13]. Most of the previous papers
deal with autonomous population systems and indicate that a dispersal process in an ecological system is
often considered to have a stabilizing influence on the system [12],but is also probably destabilizing the
system|(8].

Recently, some authors have also studied the influence of dispersal on the time dependent population
models (see [13]). The authors always assume that the intrinsic growth rates are all continuous and
bounded above and below by positive constants(this means that every species lived in a suitable environ-
ment). They obtained some sufficient conditions that guarantee permanence of every species and global
stability of a unique positive periodic solution.

However,the actual living environment of endangered species is not always like this. Because of the
ecological effects of the human activities and industry,e.g. the location of manufacturing industries, the
pollution of the atmosphere,of river,of soil,etc., more and more habitats were broken into patches and some
of the patches were polluted. In some of these patches,even in every patches the species will go extinct
without the contribution from other patches,and hence the species live in a weak patchy environment.
The living environments of some endangered and rare species such as giant panda {29-31] and alligator
sinensis [34] are some convincing examples.

In order to protect the endangered and rare species,we have to consider the effects of habitat frag-
mentation and diffusion on the permanence and extinction of single and multiple species living in weak
environments. The present paper consider the following interesting problem:to what extent does dispersal
lead to the permanence or extinction of endangered single and multiple species which could not persist
within some isolated patches.

Let C' denotes the space of all bounded continuous functions f : R — R,CY is the set of nonnegative
f € Cand Cy is the set of all f € C such that f is bounded below by a posxt;lve constant. Given f € C,we

denote
™ =§§gf(t), fb= inf £(2)
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and define the lower average Ap(f) and upper average A(f) of f by

T—00 t—~ 8

AL(f) = lim inf t—s)_l/tf(r)dr

and

Ap(f) = l1m sup (t— )~ 1/ f(ndr
00 ¢ _g>r
respectively. If f € C is w—periodic,then the average A, (f) of f must be equal to A.(f) and Ap (f),that
is
Aulf) = Au(f) = Aae(f) =™ [ Fi0y
Definition. The system of differential equations

z=F(t,z), z€R"

is said to be permanent if there exists a compact set K in the interior of R} = {(z1,22, - ,Zn) € R" |
z; > 0,i=1,2,--- ,n}, such that all solutions starting in the interior of RY ultimately enter K.

2 The effect of habitat fragmentation on single species

In this section, we consider the system as composed of patches connected by discrete and linear diffusions,
each patch is assumed to be occupied by a single species as follows

n

8o = mlbu(t) ~ ai()zd + 3 Dy(t)(es — ), (=12, ,m) (21)

i=1

where z;(i = 1,2,--- ,n) denotes the species z in patch i. b;(t) € C,ai(t),D;;(t) € C+(i # j) and
D;;(t) = 0. b;(t) is the intrinsic growth rate for species z in patch i; a;(t) represents the self-inhibition
coefficient; and D;;(t) is the dispersal coefficient of species = from patch j to patch i.

If a;(t), bi(t) are continuous and bounded above and below by positive constants, Wang and Chen [13]
showed that the system is permanent for any continuous,nonnegative and bounded dispersal rates D;;(t).

However,in the process that the endangered species be going to extinction,its birth rate is less than the
death rate. In this place,we will indicate that human can rescue the endangered species from extinction
by controlling dispersal rates.

Theorem 2.1[5]. Given any &; > 0(i = 1,2,--- ,n), the initial value problem

&= abi(t) - ait)zi] + 3 Dis(0)(x; — 23) (2.2)
. Bi0) =i =12, n

has a unique solution z(t) = (x1(t), z2(t), - - - , n(t)) which exists for all ¢ > 0. Moreover, there exists
M > 0,7 > 0, such that , ) :
0<z;(t) <M for t>r, (2.3)
the region D = {(x1,Z2,--- ,xn) | 0 < z; < M,i = 1,2,--- ,n} being positively invariant with respect to
(2.1).
A consequence of Theorem 2.1 is that for & > 0(: = 1,2,--- ,n) the solution of (2.2) is ultimately
bounded above. We will show that this solution is also ultimately bounded below away from zero provided
that one of the following conditions is satisfied.

. n
(H2.1) There exists ip(1 < ip < n), such that Ar(6) > 0,where §(t) = b;,(t) — Z D;;(t).

(H2.2) A1(9) > O,where 6(t) = min {bi(t) - Z D,,(t) + Z Dji(t)}.

j=1 j=1
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Theorem 2.2[5]. Suppose that (H2.1) or (H2.2) holds, then there exists §;,0 < 6; < M and 7 > 0,
such that the solution of (2.2) satisfies

(I),;(t)ZJ,;, tZ*r,z':l,Q,---,n (2.4)

where 6;( = 1,2,-++ ,n) depend on the various assumptions (H2.1) and (H2.2).

Theorem 2.1 and 2.2 have established that under the one of the assumptions (H2.1) or (H2.2),there
exist positive constants m and M,the solution of (2.1) with positive initial values ultimately enter the
rectangular region @ = {(z1,%2, -+ ,Zn) | m < z; < M,i = 1,2,--- ,n}, therefore the population is
permanent.

Remark 2.1. According to the proof of Theorem 2.2, if species z is permanent in a fixed patch i,
then species 7 is also permanent in other patches for any dispersal rates Dj;(t)(4,§ = 1,2, ,n).

Next we will consider the extinction of system (2.1). Denote

Y(t) = max {(bi(t) - ZD.,(t +ZDn(t>}

=1 j=1
Theorem 2.3(5]. Suppose that f0+°° %(t)dt = —oo , then the solution of (2.1) satisfies

zi(t) >0 i=1,2,---,n,t > 400

Next we assume that the functions b;(t), a;(t), D;;(t), (3,7 = 1,2,- - - ,n) in system (2.1) are all periodic
functions with common period w,and consider the positive periodic solution of (2.1).

Theorem 2.4[4]. Suppose that the assumption (H2.1) or (H2.2) holds, then system (2.1) has at least
one posmve w-periodic solution which is globally asymptotically stable.

3 Permanence in dispersal prey-predator system

We introduce an exotic predator species y into some patches which were occupied by native species .
" Assume that species ¢ and y obey following Lotka-Volterra dispersal model

& = 2ilbi(t) — ai(t)as — cilt yzl+ZDu(t><ma'“'*)

j_

U = yi[-di(t) + ei(t)as — fi(t)ys] + Z Xii ()Y — %)

j=1

(3.1)

i=1,2,---,n.

where y; is the density of species y in patch i; the coefficients d;(t), e;(t), c;(t) are all nonnegative and
bounded continuous functions. f;(t), Ai;(t) € C+(i # ) and A;(t) = 0. .
Theorem 3.1(5].(A).Suppose that following assumption (H3.1) or (H3.2) be satisfied,

(H3.1) There exists ig(1 < 49 < n) such that Az (f1) > 0,where 8y (t) = biy(t) — cig (t) Ny — Z D;,;(t),
i=1

(H3.2) A(71) > O,where 71(t) = min {5i(t) - ()N, — D Dis(t) + Y Di(t)}
i=1 i=1

where N, is the upper bound of y;(t). Then prey species is permanent.
(B).Suppose further that following assumption (H3.3) or (H3.4) be satisfied,

(H3.3) There exists ip(1 < ip < n) such that AL(62) > 0,where 82(t) = eiq (t)Caip — iy (£) — Z Aigji(2),
; et
(H3.4) AL(7v2) > 0,where 7o(t) = mm {e,( Yzi — di(t) — E Aiji(t) + Z Aji(t)}.

j=1 ' j=1
where (; is the lower bound of m,-(t).Then predator species is permanent.
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Example 3.1. Consider the following periodic and patchy predator-prey system

&1 =z,(12+ %sint — 3z, — 1) + Di2(t)(z2 — 1)

o :272(—1+4—Sint-—$2 —y2)+D21(t)(3:1 ~—.7:2) (3.2)
Y1 =yi(-1+sint +z; —y1) + A2(t) (w2 — 11) '
Y1 =y2(—1+sint + 22 — y2) + A1 () (1 — v2)-

Where Di3(t), D1 (t), A2(t)and Agy(t) are all positive continuous and periodic functions with common
period 27.

Note that if the patches are isolated from each other(Dia(t) = Da1(t) = A12(t) = Aa1(t) = 0),it is
clear that species  and y will go extinct in patch 2.

Given any positive solution (z1(t), z2(t), y1(t), y2(t)) of (3.2),we have

C 3 <z (124 41smt ~ 3x1) + Dra(t)(zg — z1)
Is < .’l}z( 1+ i sint — 1122) + Dzl(t)(.’lll — Ta).

From the proof of Theorem 3.1,there exists 7; > 0,such that
0 < z;(t) < 25/6,0 < y;(t) < 53/12(i =1,2) for t>m. (3.3)

Consequently,
> :cl(12 +1 smt — 3z1) + Dh2(t)(z2 — 1)
T > zz(—"— + smt — Z3) + Doy (¢)(z1 — x2)

for t > 7. Furthermore,
) 22
T > :1:1(? — DM — 3z,)

there exists 75(m2 > 71), such that

z1(t) > "‘31—)'-,"5 for t2m
provided D{f < 22/3,where € be any positive number. Particularly,we can choose D < 1,e = 1/9,such
that z1(t) > 2 = (g for t > .
According to the proof of Theorem 2.2,there exist positive” consta.nts (z2 and 73(73 > 73),such that
Za(t) > (z2 for t > 73.
Finally, :
1 2 yi(1+sint + 1 — 1) + A2 (t) (2 — 1)

for t > 75. By Theorem 2.2,there exist positive constants {1, {2 and 74(74 > 73) such that
Yi(t) > (i for t>14,i=1,2

provided Az-,r(/\lz) <1
To sum up,under the assumptions

D% <1 and Azw(Alz) <1 . (34)

the species = and y are permanent.

According to above discussion,we know that people can avoid the local extinction of the endangered
species z and y in patch 2 by controlling the dispersal rates.

Next we study the following system

T =2 [bl(t) — a1 (t):z:l —C1 (t)y] + Dlz(t):b‘z — Dy (t)z1
Ig = :L‘z[bz(t) — az(t)z‘g] + Dzl(t)wl — Dya(t)ao (3.5)
¥ =yl-d(t) + e(t)z1 — f(t)y — q(t)y(t — 7))

T is a positive constant. For (3.5) we make the following assumptions
(H3.5) Aw[bl(t) — Dgy(t)] > 0.
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Theorem 3.1.[6] Under the assumption (H3.5), system (3.5) is permanent if and only if
(H3.6)  A,[—d(t)+ e(t)zi(t)] > 0.
where (z7(t), z5(t)) be the positive periodic solution of the system

Ty = .’El[bl (t) —a (t)wﬂ + Dlz(t).’tz — Do (t).’l)l
L9 = .’Ez[bz(t) - ag(t)l'gl + Dy, (t)a:l — D]z(t)a:g.
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