oooooooooo 13750 2004 0 92-98

92

On Alternating Context-Free Grammars — Old and New
Versions and Their Characterizations (An Extended Abstract)

(Alternating CFG &1 — #IBfE & £ D&FE A T)
BREAXE #HEF2H FB 18 (Etsuro Moriya)*

Department of Mathematics, School of Education
Waseda University, Shinjuku-ku, Tokyo, 169-8050, Japan

and

K4y - Byt K%E Dieter Hofbauer, Maria Huber, Friedrich Otto
Fachbereich Mathematik/Informatik,Universitat Kassel, 34109 Kassel, Germany

Abstract

A new type of ‘alternating ‘context-free grammar’,
called state-alternating contest-free grammar is in-
troduced, and the generative power of it is com-
pared to some well-known language classes, espe-
cially to the alternating context-free grammar of
Moriya (1989) and to the alternating pushdown
automaton. Further, various derivation strategies
are considered, and their influence on the expres-
sive power of (state-) alternating context-free gram-
mars is investigated.

1 Introduction

Alternation is a powerful generalization of non-
determinism that has led to many interesting
results in automata and complexity theory. It
was first introduced by Chandra, Kozen and
Stockmeyer [1, 2] for general Turing machines
and by Ladner, Lipton and Stockmeyer [7, 8]
for pushdown automata. It is known that the
class of languages L(ALBA) accepted by alter-
nating Turing machines in linear space (the
so-called alternating linear bounded automata
ALBA) coincides with the class L(APDA) of
languages accepted by the alternating push-
down automata APDA, which in turn coin-
cides with the deterministic time complexity
class EXPTIME := | J.,o DTIME(c") [2, 8].

*This author was supported in part by Waseda Uni-
versity Grant for Special Research Projects #2002C-
006.

The (non-alternating) pushdown automata
accept exactly the context-free languages, while
the nondeterministic Turing machines with lin-
ear space bounds accept exactly the context-
sensitive languages. Hence, one would like
to also obtain a grammatical characterization
for the class of languages L(APDA) accepted
by the alternating pushdown automata. This
question was first addressed by Moriya [10]
by considering alternating context-free gram-
mars. Here an alternating contezt-free gram-
mar is a grammar G = (V,U, %, P, S), where
V is a set of variables (or nonterminals), U C
V is a set of universal variables, while the
variables in V \ U are called ezistential, ¥
is a set of terminals, S is the start symbol,
and P is a set of context-free productions. In
the derivation process an existential variable
is rewritten as usual, but a universal variable
is rewritten by applying all productions with
that variable as left-hand side simultaneously,
thus giving a finite number of successor sen-
tential forms. In this way a derivation is not
a linear chain, but it has the form of a tree.
A terminal word w can be derived from G,
if there exists a finite derivation tree in the
above sense such that the root is labelled with
the start symbol and all leaves are labelled
with w.

In the following we will denote the class of
alternating context-free grammars by ACFG,
and the class of languages generated by them
by L{ACFG). Further, L(e-free-ACFG) will de-

note the class of languages generated by alter-
nating context-free grammars without e-rules,
and L(linear-ACFG) the class of languages gen-
erated by linear alternating context-free gram-
mars. Finally we use £, (ACFG) and Ly, (e-
free-ACFG) to denote the corresponding classes
of languages generated by the leftmost deriva-
tion strategy.

In [10] it is claimed that a language is ac-
cepted by an alternating pushdown automa-
ton if and only if it can be generated by an
alternating context-free grammar, but unfor-
tunately the arguments given in that paper
contain some serious flaws that have not been
overcome to this day. One of the problems
stems from the fact that in an alternating
context-free grammar the derivation strategy
chosen makes a difference in contrast to the
situation for context-free grammars. In par-
ticular, for an alternating context-free gram-
mar G, the set of words generated by leftmost
derivations is in general a proper subset of
the set of words that can be generated by G.
Nevertheless some interesting partial results
have been obtained. First, Chen and Toda [3]
presented complexity theoretical characteriza-
tions of the language classes L (linear-ACFG)
and Ly, (e-free-ACFG) by showing that

P = LOG(Lm(linear-ACFG)) and
PSPACE = LOG(Lim(e-free-ACFG)),

where LOG(L) denotes the closure of the lan-
guage class £ under log-space reductions. For
a linear grammar each derivation is necessar-
ily leftmost, and so the first result above can
be restated as P = LOG(L(linear-ACFG)). Then
Ibarra, Jiang, and Wang gave a grammatical
characterization for L(APDA) in [5] by show-
ing that L(APDA) = L(linear-erasing-ACFG),
where an alternating context-free grammar G
is called linear erasing if there is a constant ¢
such that every string of length n in the lan-
guage generated by G has a derivation tree
containing only sentential forms of length at
most ¢-n. However, Ibarra, Jiang, and Wang
require in addition that the grammar intro-
duces endmarkers for the terminal strings gen-
erated, that is, the language they consider

consists of all terminal strings w such that
the string w is generated by the grammar.
While the inclusion of L(linear-erasing-ACFG)
in L(APDA) = L(ALBA) remains valid even
without the endmarkers, it is not clear whether
the converse inclusion does, as the simula-
tion of an alternating linear-bounded automa-
ton by a linear-erasing alternating context-
free grammar given in [5] crucially depends
on the use of these endmarkers.

We will consider a new variant of alter-
nating context-free grammar, a variant that
is obtained by combining the notion of gram-
mars with states with the notion of alterna-
tion. Context-free grammars with states, ab-
breviated as SCFG, were introduced by Kasai
in [6]. A state-alternating context-free gram-
mar, sACFG for short, will be an SCFG in
which we distinguish between existential and
universal states, and in which we mark certain
states as final. Let

G:(Q,U,V,Z,P,S,QO,F)

be such a grammar, where U C @ is the set of
universal states and F C @ is the set of final
states, and let (p, @) be a sentential form. If p
is an existential state, that is, p € @\ U, then
we choose an occurrence of a variable A in «,
say « = a1 Aag, and a production of the form
(p, A) — (g,0) and derive (g, a1802) from
(p, @). If, however, p is a universal state, and
(p> A) - (Qhﬂl)a SRR (P, A) - (q.s,ﬁs) are
all the productions with lefthand side (p, 4),
then from (p,01Aasz) we obtain all the sen-
tential forms (g1, v1512), ..., (gs, 218s02)
in parallel, and following this step all these
sentential forms are rewritten further, inde-
pendently of each other. In this way a deriva-
tion tree is obtained from G in analogy to the
computation tree that is associated with an al-
ternating automaton and its input. By L(G)
we denote the language consisting of all words
w € ¥* for which there exists a derivation tree
such that the root is labelled with (go, S) and
all leaves are labelled with pairs of the form
(p,w) with p € F. Here we remark that the
labels of different leaves may differ in the first
component, that is, in the state, but that they

93

94

must agree in the second component, that is,
in the terminal string.

The notion of leftish derivations was intro-
duced for the first time in [6]. We also con-
sider leftish derivations for sACFG and we use
L1:(ACFG) and Ly (e-free-ACFG) to denote the
classes of languages generated by the leftish
derivation strategy. Here a derivation step
(p, BAY) = (q,B0) is called leftish, if no
rule can be applied to the prefix 3. Thus,
B may contain occurrences of variables, but
under the current state p none of them can be
rewritten.

In Section 2 we will compare the sACFGs
to the ACFGs. In Section 3 we will present
an example of a language that is generated by
an ACFG in leftmost mode as well as in unre-
stricted mode, but that cannot be written as
the intersection of finitely many context-free
languages. In Section 4 we will consider vari-
ous restricted versions of sSACFGs and analyze
the complexity of the language classes gener-
ated by leftmost derivations. Then, in Sec-
tion 5, we will derive characterizations for the
language classes Lim(SACFG) and Lin(ACFG)
in terms of alternating pushdown automata.
Finally in Section 6 we will consider the classes
of languages that are generated by sACFGs
by using leftish derivations and unrestricted
derivations, respectively.

2 Basic Properties of ACFGs
and sACFGs

- In this section we will show some basic prop-

erties of the classes of languages generated by
various kinds of ACFGs and sACFGs. We will
mainly concentrate on the leftmost derivation
strategy, but some other strategies are also
considered at various places. In particular,
we will see that the sSACFGs are at least as
powerful as the ACFGs, and we will establish
a normal form result for both these types of
grammars.

Example 2.1. For i = 1,2, let G; == (V;, U;,
%, P;, S;) be an ACFG, where we assume that
VinVy =0, and let G := (V,U, X%, P,S) be

defined by taking V := ViUV U {S}, U :=
UiulyuU {S}, and
P.=P UPQU{S-—)SLS%SQ}.

Then it is easily seen that G generates the
language L(G1) N L(G3). This shows that,
for any derivation mode m, the language class
Ln(ACFG) is closed under intersection. It fol-
lows analogously that L, (SACFG) is closed un-
der intersection. Further, as each context-free
grammar can be regarded as an ACFG with no
universal variables, it follows that £,,(ACFG)
contains each language that can be written as
the intersection of finitely many context-free
languages.

The next lemma shows that any ACFG can
be simulated by an sACFG. Here in addi-
tion to the leftmost, leftish and unrestricted
derivation modes mentioned before, we also
consider the rightmost derivation mode, which
is a trivial analogy to the leftmost one. We
denote by L,m(X) the class of languages gen-
erated by grammars of type X under the right-
most derivation strategy.

Lemma 2.2. For each ACFG G, we can con-
struct an sSACFG G such that Ly, (G) = L (G')
holds, where m is the leftmost, the rightmost,
the leftish or the unrestricted derivation mode.
Moreover, if G is e-free and/or (right-) linear,
then so is G'. :

Currently we don’t know whether the con-
verse of Lemma 2.2 holds. At least for linear
grammars we do have the converse of Lemma
2.2

Lemma 2.3. For each linear sACFG G, we
can construct a linear ACFG G’ such that G
and G' generate the same language. More-
over, if G is right-linear and/or e-free, then
so is G'.

The above lemmas give the following con-
sequences.

Theorem 2.4. (a) L(e-free-right-linear-ACFG)
= L(e-free-right-linear-sACFG) and
L(right-linear-ACFG) = L(right-linear-sACFG).
(b) L(e-free-linear-ACFG) = L{(e-free-linear-
sACFG) and L(linear-ACFG) = L(linear-sACFG).

(¢) Lin(e-free-ACFG) C L, (e-free-sACFG) and
Ln(ACFG) C L,,(sACFG), where m is any of
the leftmost, the leftish, the rightmost or the
unrestricted derivation mode.

We close this section with two results con-
cerning the form of sSACFGs. The first re-
sult states that for these grammars a nor-
mal form similar to the Chomsky normal form
exists. We call a production of an sACFG
G=(Q,UV,X P,S,q,F) a unit-production
if it is of the form (p, A) — (g, B) for some
p,q € Q and A, B € V. The sACFG G is said
to be in weak Chomsky normal form if it sat-
isfies the following conditions:

(1) each production (p, A) — (g,) from P
satisfies o € (VUV2U X U {e});

(2) for each pair (p, A) € @ x V, if there are
two or more productions with lefthand
side (p, A), then all these productions
are unit-productions.

Thus, it is only for unit-productions that it
plays a role whether the actual state is uni-
versal or existential. The second result states
that we can assume without loss of generality
that all states of an sACFG are final.

Lemma 2.5. For each derivation mode m and
each ACFG (sACFG) G, we can construct an
ACFG (sACFG) G’ in weak Chomsky normal
form such that G and G’ are equivalent with
respect to derivation mode m, and all states
of G' are final in case G' is an sACFG. In
addition, if G is e-free, then so is G'.

3 A Lower Bound for £,,(ACFG)

In Section 2 we have seen that Ly, (ACFG) is a

lower bound for the language class Lim (SACFG).

Here we will give a lower bound for £, (ACFG).
As we have seen in Example 2.1, £, (ACFG)
includes the class of languages that can be
obtained as the intersections of finitely many
context-free languages. Let CFL, denote the
class of k-intersection languages, that is, the
class of languages that can be written as the
intersection of k context-free languages, and
let CFL, := Jg>o CFLi. Liu and Weiner [9]

95

proved that the classes CFLy form an infinite
hierarchy within the class of context-sensitive
languages. From Example 2.1 we obtain the
following inclusion.

Observation 3.1. CFL, C Lin(ACFG)NL(ACFG).

We will consider a sequence of example
languages Ly (k > 2), and L,. For k > 2,
let X := {a1,0a9,...,ax}, and let Li be the
language

Li:={(a}a®...a}*)?|i; > 1} C X}
Further let L, be the language
{(a*ba®2b? .. .a*b*)? | k > 0,i; > 1} C {a, b}*.
Liu and Weiner [9] proved that

{(a®a? ...a}*)? | i; > 0} € CFLg N CFLg_;.

A slight modification of their proof gives the
following lemma.

Lemma 3.2. For each k > 2, Ly € CFL; <
CFLg_1.

On the other hand, concerning L, we can
show the following lemmas.

Lemma 3.3. L, ¢ CFL,,.
Lemma 3.4. L, € Lim(ACFG) N L(ACFG).

From Observation 3.1 and Lemmas 3.3 and
3.4, we obtain the main result of this section.

Theorem 3.5. CFL, € Lin(ACFG)NL(ACFG).

4 Upper Bounds for Some
Subclasses of £, (sACFG)

In this section we consider upper bounds for
some subclasses of L, (sACFG).

Theorem 4.1. L(right-linear-ACFG) coincides
with the class REG of regular languages.

By Theorem 2.4(a) this gives the following
consequence. '

Corollary 4.2. L(right-linear-ACFG) =
L(right-linear-sACFG) = REG.

Combining Theorem 2.4 (b) with the re-
sult of Chen and Toda on L(linear-ACFG) (3],
we obtain the following corollary.

Corollary 4.3. LOG(L(linear-ACFG))
LOG(L(linear-sACFG)) = P.

Since P = ALOGSPACE (2], Corollary 4.3
can be viewed as the counterpart (with re-
spect to alternation) of the well-known result
by Sudborough [11] that NLOGSPACE = LOG
(L(linear-CFG)), where NLOGSPACE (ALOG-
SPACE, respectively) denote the class of lan-
guages that are accepted by nondeterministic
(alternating, respectively) Turing machines in
logarithmic space. Below we will repeatedly
refer to the complexity class DLINSPACE which
is the class of languages that are accepted by
deterministic Turing machines within linear
space. Note that NLINSPACE (DLINSPACE,
respectively) coincides with the class of con-
text-sensitive langnages (deterministic context-
sensitive languages, respectively).

Finally, we turn our attention to the &-
free SACFGs. We say that an sACFG G has
bounded unit-productions if there exists a con-
stant ¢ > 1 such that, for each w € Lin(G),
there exists a leftmost G-derivation tree for
w such that the number of applications of
unit-productions (i.e., productions of the form
(p, A) — (g, B), where p, q are states and A, B
are variables) on each path of this derivation
tree is bounded from above by the number
¢ |w|. Based on the notion of bounded unit-
productions, we can now establish the follow-
ing interesting result.

Theorem 4.4. L, (e-free-sACFG) C DLINSPACE.
This result together with Theorem 2.4 (c)

and the result of Chen and Toda on e-free
ACFGs [3] yields the following result.

Corollary 4.5. LOG(Ln(e-free-ACFG)) =
LOG(Ly, (e-free-sACFG)) = PSPACE.

5 Characterizing Language
Classes by Automata

The original purpose for introducing the ACFGs
was to give a characterization for the language

class L(APDA) [10]. Such a characterization
will be derived in this section in terms of the
sACFGs with leftmost derivations. We begin
by restating the definition of the APDA in
short.

An alternating pushdown automaton, APDA
for short, M is given through an 8-tuple (@, U,
1,4, qo, Zg, F), where @ is a finite set of
states, U C @ is a set of universal states, ¥
is an input alphabet, I' is a pushdown alpha-
bet, go € @ is the initial state, Zyg € T is
the bottom marker for the pushdown store,
F C Q is a set of accepting (or final) states,
and § : Q@ x (ZU{e}) XxT' = Pgn(Q x T*) is
a transition function. A configuration of M is
described by a triple (g, u,), where q € Q is
the actual state, u € ¥.* is the remaining part
of the input with the input head scanning the
first symbol of u, and « is the current content
of the pushdown store with the first letter of «
being the symbol on the top of the pushdown
and the last letter of « being the symbol on
the bottom of the pushdown. As usual the
initial configuration for an input w € X* is
the triple (go, w, Zp), and a final configuration
has the form (q,¢, @) with ¢ € F and o € T™*.

An input w € X* is accepted by M, if there
is a successful computation tree of M on that
input, that is, there is a finite tree the nodes of
which are labelled by configurations of M such
that the following conditions are satisfied:

(1) the root is labelled with the initial con-
figuration (qg, w, Zy);
(2) each leaf is labelled with a final config-
uration;
(3) if an inner node is labelled by (g, au, Za),
where g e Q\U,ae X U{e}, Z €T,
then it has a single successor node that
it labelled by (p, u, Ba) for some (p, B) €
J(Qa a,Z);
if an inner node is labelled by (g, au, Za),
where g € U, a € XU {€}, Z €T, and
if J(q’ a, Z) = {(Pl,ﬂl),) (Pm; ﬂm)}9
then this node has m successor nodes la-
belled by (Pl: U, ﬁla)a ey (Pm; u, ﬁma)9
respectively.

(4)

By L(M) we denote the language consisting

of all strings that are accepted by M.
Next we establish two technical lemmas on
APDAs.

Lemma 5.1. For each APDA M, there exists
an APDA M’ such that L(M) = L(M'), and
all final states of M' are existential.

Lemma 5.2. If a language L is accepted by
an APDA by final state, then L is also accepted
by an APDA N by empty pushdown, where, in
addition, each universal transition of N is an
e-transition.

Based on these technical results we can
now establish the following characterization.

Theorem 5.3. L, (sACFG) = L(APDA).

By Lemma 2.2 and the result on L(APDA)
from [8] the above characterization yields the
following consequence.

Corollary 5.4. Lim(ACFG) C Lim(sACFG) =
L(APDA) = EXPTIME.

We will next derive a characterization of
the language class L, (ACFG) in terms of a
variant of the alternating pushdown automata,
the so-called stack-alternating pushdown au-
tomaton, stackAPDA. A stackAPDA is a push-
down automaton which has a single state only
and whose pushdown symbols are divided into
two types, universal and ezistential ones. Fur-
ther, a stackAPDA accepts by empty push-
down. Thus, a stackAPDA is denoted by a
5-tuple M = (X,T',U, §, Zy), where X and T
are finite sets of input and pushdown sym-
bols, respectively, U C T is a set of universal
pushdown symbols, and Z3 € T is the ini-
tial pushdown symbol. The transition rela-
tion § is a partial function from (XU {e}) xT
into the finite subsets of I'*. A configura-
tion (z, Za) € ¥* x I'T* of M represents the
current content = on the input tape and the
current content Za on the pushdown store,
where the input head is on the leftmost sym-
bol of z and Z is the topmost symbol on the
pushdown store. The initial configuration on
input z is (z,Zp). For a given input z, a
computation tree for M is a finite rooted tree

the nodes of which are labelled with config-
urations. It is defined in the same way as
that for an ordinary alternating pushdown au-
tomaton, except that the pushdown symbol
on the top of the pushdown store of M plays
the counterpart to the universal or existential
states of an ordinary alternating pushdown
automaton. Thus, an input z is accepted by
the stackAPDA M, if there is a computation
tree for M such that the root is labelled with
(z, Zy), and each leaf is labelled with the pair
(,€).

It is important to note that if a is an in-
put symbol and Z is a universal stack sym-
bol of a stackAPDA M, and if M contains the
transitions 8(a, Z) = {61, ..., Bp} as well as
8(e,Z) = {m, ..., 7q}, then a node 7 of a
computation tree of M that is labelled with a
configuration of the form (ax, Za) has either p
sons labelled with (z, f1a), ..., (z, Bpr), re-
spectively, or g sons labelled with (ax, 11¢r),
..., (az,vqx), respectively. If we relax the
condition, requiring that in the above situa-
tion both the a- and the e-transitions must
be applied, then we say that the stackAPDA
M works in relazed mode.

Lemma 5.5. L£(stackAPDA) = L elaxed (Stack-
APDA), where L ejaxed (stackAPDA) denotes the
class of languages that are accepted by stack-
APDAs in relazed mode.

Based on the normal form result for ACFGs
(Lemma 2.5) and the above result, we now
derive the following characterization.

Theorem 5.6. Lim(ACFG) = L(stackAPDA).

Summarizing Corollary 5.4 and Theorem
5.6 we have the following result.

Corollary 5.7. L(stackAPDA) = L (ACFG)
C Lim(sACFG) = L(APDA).

6 Comparisons of Derivation
Strategies |

So far we have mostly considered leftmost deri-
vations for ACFGs and sACFGs, but of course

a7

there are many strategies to select an occur-
rence of a variable in a sentential form to ap-
ply a production. Here we compare the ex-
pressive power of the ACFGs and the sACFGs
with respect to the leftmost, the leftish and
the unrestricted derivation modes.

Theorem 6.1. (a) Ly (e-free-sACFG) C L(APDA).

(b) L (sACFG) = RE.
Corollary 6.2. L (e-free-sACFG) C Ly (sACFG).

As to the expressive power of the various
derivation modes for the sACFGs, we have

Theorem 6.3. (a) Lim(e-free-sACFG) C
Ly (e-free-sACFG) and L(e-free-sACFG) C
Ly (e-free-sACFG).

(b) Lim(sACFG) C Li(sACFG) and
L(sACFG) C Ly (sACFG).

Corollary 6.4. (a) Lim(e-freeeACFG) =
Ly (e-free-ACFG) C Ly (e-free-sACFG).
(b) Lim(ACFG) = Li(ACFG) ¢ L1 (sACFG).

Observe that L(e-free-sACFG) C Ly (e-free
sACFG) C Lin(sACFG) holds by Corollary 6.2
and Theorem 6.3 (a).

References

{1] A.K. Chandra and L.J. Stockmeyer, Alterna-
tion, in Proc. of 17th FOCS, pp.98-108, IEEE
Computer Society Press, 1976.

[2] A.K. Chandra, D.C. Kozen and L.J. Stock-

meyer, Alternation, Journal of the ACM, 28:

114-133, 1981.

Z.Z. Chen and S. Toda, Grammatical charac-

terizations of P and PSPACE, The Transac-

tions of the IEICE, E 73: 1540-1548, 1990.

J.E. Hopcroft and J.D. Ullman, Introduction

to Automata Theory, Languages, and Com-

putation, Addison-Wesley, Reading, M.A.,

1979.

O.H. Ibarra, T. Jiang and H. Wang, A char-

acterization of exponential-time languages by

alternating context-free grammars, Theoreti-

cal Computer Science, 99: 301-313, 1992.

T. Kasai, An infinite hierarchy between

context-free and context-sensitive languages,

Journal of Computer and System Sciences, 4:

492-508, 1970.

[3]

(5]

[6]

[7] R.E. Ladner, R.J. Lipton and L.J. Stock-
meyer, Alternating pushdown automata, in
Proc. of 19th FOCS, pp.92-106, IEEE Com-
puter Society Press, 1978.

R.E. Ladner, R.J. Lipton and L.J. Stock-
meyer, Alternating pushdown and stack au-
tomata, SIAM Journal on Computing, 13:
135-155, 1984.

L. Liu and P. Weiner, An infinite hierarchy of
intersections of context-free languages, Math-
ematical Systems Theory, 7: 185-192, 1973.
E. Moriya, A grammatical characterization of
alternating pushdown automata, Theoretical
Computer Science, 67: 75-85, 1989.

H. Sudborough, A note on tape-bounded
complexity classes and linear context-free lan-
guages, Journal of the ACM, 22: 499-500,
1975.

(9]
(10]

[11]

Appendix

The diagram below depicts the known inclusion
relations between some of the important language
classes discussed in the paper and some well-known
language and complexity classes. Here
denotes an inclusion, —— denotes a proper
inclusion, and denotes equality.

RE
n

Cr (SACFG)
C(sACFG)/ ExjrlME
c.,,.(.l.:\CFc)
L(A:DA
L (&-free-sACFG) ALINSPACE
/ —~ csL c,.,,(ACFc.)
L(ACFG)L(s-fres sACFG) DLINSPACE
L(stlckAPDA)

X

£ (s-frae-ACFG) Ly (&= fm-sACFc)

Cin (&- frn-ACFG)

CFL

!

REG
1]
L(right-tinear-sACFG)
n
L(right-linear-ACFG)

