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Fast Algorithms for Computing Jones Polynomials of Certain Links

Masahiko Murakamit Masao Harat Makoto Yamamoto?$ Seiichi Tani¥
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Abstract
We give fast algorithms for computing Jones polynomials of 2-bridge links, closed 3-braid links and
Montesinos links from a progressive expression. The algorithms run with O(n) operations of polynomials
of degree O(n), where n is the number of the crossings of the link diagram. We also give linear time
algorithms for computing a progressive expression from the Tait graph of a link diagram of 2-bridge links
and closed 3-braid links.

1 Introduction
In knot theory, various invariants are defined and studied for classifying and characterizing links. The
Jones polynomial [4] is one of the well-studied invariants. It is powerful for distinguishing link types. The
simplest way to define it is by using a slightly different polynomial: the bracket polynomial discovered by

L.H. Kauffman [5]. But, it takes O (ZO(V <(L))) operations of polynomials of degree O(c(L)) to compute a

Jones polynomial in the way shown by Kauffman. Actually, computing the Jones polynomial is generally
#P-hard (3, 12] and is expected to require exponential time in the worst case. K. Sekine, H. Imai and K.

Imai [10] showed an algorithm that computes Jones polynomials in O (20(V (L)) time.

Recently, it has been recognized that it is important to compute Jones polynomials for links with reasonable
restrictions. For any link diagram L, we denote the number of the crossings of L by c(L) J. A. Makowsky
[6] showed that Jones polynomials are computed from the Tait graph G of L in polynomial time if the
treewidth of G is a constant. J. Mighton [7] showed that Jones polynomials are computed from the Tait
graph G of L with O(c(L ) ) operations of polynomials of degree O(c(L)) if the treewidth of G is at most 2.
M. Hara, S. Tani and M. Yamamoto [2] showed that Jones polynomials of 2-bridge links are computed from
the Tait graph of L with O(c(L)?) operations of polynomials of degree O(c(L)), and Jones polynomials of
closed 3-braid links and arborescent links are computed from the Tait graph of L with O(c(L)3) operations
of polynomials of degree O(c(Z)). T. Utsumi and K. Imai [11] showed that Jones polynomials of pretzel
links are computed from the Tait graph of L in O(c(L)?) time.

In this paper, we give algorithms that compute Jones polynomials of 2-bridge links and closed 3-braid
links from the Tait graph of L with O(C(L)) operations of polynomials of degree O(c(L)) We also show
that Jones polynomials of Montesinos links are computed from a progressive expression of L with O(c(L))
operations of polynomials of degree O(c(L)).

2 Preliminaries

A link of n components is a subset of R3 that consists of n disjoint, simple closed curves. A link of one
component is a knot. An image of a link by a natural projection from R3 to a plane is regular if it contains
only finitely many multiple points, all multiple points are double points and these are traverse points. A
regular image of a link is called a link diagram if the overcrossing line is marked at every double point in the
image. Furthermore, the double points are called crossings. For any link diagram L, we denote the number
of the crossings of L by ¢(L). A link is oriented if each of its components is given an orientation.

Definition 2.1 The Kauffman bracket polynomial is a function from link diagrams to the Laurent polyno-
mial ring Z[A*!] with integer coefficients in an indeterminate A. It maps a link diagram L to (L) € Z[A*!]
~ and is characterized by
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Here, O is the link diagram of the unknot without a crossing and Lu QO is a link diagram consisting of the
link diagram L together with an extra closed curve () that contains no crossing at all, neither with itself

nor L. In (iii) the formula refers to three link diagrams that are exactly the same except near a point where
they differ in the way indicated.

The writhe w(L) of an oriented link diagram L is the sum of the signs of the crossings of L, where each
crossing has sign +1 or —1 as defined (by convention) in Figure 1.

Definition 2.2 The Jones polynomial V(L) of an oriented link L is the Laurent polynomial in ¢!/2 with
integer coefficients, defined by

V(L) = (-A4)~*E)()

t1/324-2"
where L is any oriented link diagram for L.

Given any link diagram Z, we can color the faces black and white in such a way that no two faces with a
common edge are the same color. We color the unique unbounded face white. We call this the Tait coloring
of L. As in Figure 2, we can get a signed planar graph G of L; its vertices are the black faces of the Tait
coloring.and two vertices are joined by a signed edge if they share a crossing. The sign of the edge is +1 or
—1 according to the (conventional) rule shown in Figure 3. G is the Tait graph of L.

AN /
N

Figure 1: Signs of crossings

+1
Figure 3: Signs of edges

A tangle is a portion of a link diagram from which there emerge just 4 arcs. The tangle consisting of two
vertical strings without a crossing is called 0-tangle. The tangle twisted 0-tangle k times is called k-tangle
and is denoted by Ix. They are called integer tangles (Figure 4). The tangle consisting of two horizontal
strings without a crossing is called co-tangle. For a set S, we denote the number of the elements of S by
|S]. For an integer z, sign(z) is defined by the following:

sign(z) = 1 if z >0,

BE=Y -1 iz <o

Let G = (V, E) be a graph, where V is the vertex set of G and E is the edge set of G. For any vertex
v € V, degg(v) denotes the degree of v in G and Ng(v) denotes the set of the neighbors of v in G. For any
subset V' of V, G[V'] denotes the induced subgraph of G by V’. For any vertices u,v € V, edgesigng is a
function from V x V to Z and edge.signg(u,v) is the sum of the signs of the edges of G that join u and v.

3 Algorithms for 2-bridge links
Schubert [9] defined a numerical link invariant called bridge number and many knot theorists have been
studying it (see [8, 1]). In particular, the 2-bridge link is one of the most important link types. It is well
known that any 2-bridge link has a diagram consisting of integer tangles I, as in Figure 5 where a; is an
integer for k=1,...,m.

Definition 3.1 A link diagram as in Figure 5 is called a normal diagram of a 2-bridge link and is denoted
by R(a1,...,am). The progression (ai,...,am) is called a progressive expression of the normal diagram.

Lemma 3.2 For any Tait graph G = (V, E) of a normal diagram of a 2-bridge link, there exists a vertez
v € V such that G[V — {v}] is a path.
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0-tangle 3-tangle (-2)-tangle
Figure 4: Integer tangles

m is an odd number m is an even number
Figure 5: Normal diagrams of 2-bridge links

Lemma 3.3 For any Tait graph G = (V, E) of a normal diagram of a 2-bridge link, for a vertezv €V, if
degg(v) is the mazimum degree of G, then G[V — {v}] is a path.

Given the Tait graph of a normal diagram Lofa 2-bridge link, Procedure progression_2-bridge
computes a progressive expression of L.

Procedure progression_2-bridge N

INPUT: The Tait graph G = (V, E) of a normal diagram L of a 2-bridge link.
OUTPUT: A progressive expression (ay,...,am) of L.
p—|V|-1L
Label a vertex v € V as “vp” such that degg(vp) is the maximum degree of G.
Label all vertices v € V — {vp} a8 “vy,...,vp-1" such that v; and v;;; are adjacent for i =0,...,p—-2.
Compute edge_signg (v, vp) for i =0,...,p — 1 and edgesigng(vj,vj41) for j=0,...,p—2.
Initialize i as “0” and k as “1”.
whilei<p-1do

{ k is an odd number }

ay «— —edge_signg(vi, vp).

Increment k.

{ k is an even number }

Initialize a; as “0”.

repeat

ax «— ai + edgesigng(vi, vi41)-
Increment 1.

until degg(v;) #2o0ri=p—1

Increment k.
od
ay — —edge signg(vp—1,vp).

Lemma 3.4 Given the Tait graph of a normal diagram L of a 2-bridge link, Procedure progression_2-
bridge computes a progressive ezpression of L in O(c(L)) time.

Lemma 3.5 For any normal diagram E(al, .v.r@m) of a 2-bridge link, the following recurrence formula
holds.

4 la1]

A% (—A72 — A2) 4 (—A) S -disn(e) § (-A"“‘“(“'))k ifm=1,

k=1
|aa|

~ . k .
(R(a1,.- ., 8m)) = 4 Aﬂ:(_A“’)"‘+(—A)"""_z'm(a’)(R(al));("A“""( =>) fm=2,

Aom(—A-3)8m-1(R(ay,...,am_2))
- laml . k ’
+(—A)'3“""m‘“(“'“)(R(al, S ) Z (_Amzn(nm)) ifm>3.
\ k=1
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Given a progressive expression of a normal diagram L of a 2-bridge link, Procedure bracket_2-bridge
computes the Kauffman bracket polynomial of L by using the recurrence formula in Lemma 3.5. While
the algorithm is running, every Kauffman bracket polynomial is computed once at most.

Procedure bracket_2-bridge _
INPUT: A progressive expression (a1, ...,an) of a normal diagrarlx L of a 2-bridge link.
OUTPUT: The Kauffman bracket polynomial (R(as, ..., am)) of L.
Compute (R(a)) and (R(ai, az)).

Initialize ¢ as “3”.
while i <m do
Ia'-'l k
T — Z (__A:hign(a.-)) .
k=1 - - -
Compute (R(ay,...,a;)) from (R(ay,...,a;—2)), (R(ay,...,ai-1)) and T.
Increment 1.
od

Lemma 3.8 Given a progressive ezpression of a normal diagram L of a 2-bridge link, Procedure bracket_2—
bridge computes the Kauffman bracket polynomial of L with O(c(L)) operations of polynomials of degree
O(c(L)).

Theorem 3.7 The Jones polynclmz:al of a 2-bridge link is bompu.ted from the Tait graph of a normal diagram
L of the 2-bridge link with O(c(L)) operations of polynomials of degree O(c(L)).

4 Algorithms for closed 3-braid links

A 3-braid is a set of 3 strings, all of which are attached to a horizontal bar at the top and at the bottom
and each string intersects any horizontal plane between the two bars exactly once (see Figure 6 (a)). Given
any 3-braid, its ends on the bottom edge may be joined to those on the top edge to produce the closed
3-braid link (see Figure 6 (b)). It is clear that any closed 3-braid link has a diagram consisting of integer
tangles I,, as in Figure 7 where a; is an integer for k=1,...,m.

Definition 4.1 A link diagram as in Figure 7 is called a normal diagram of a closed 3-braid link and is
denoted by Bf(a;,...,am). The progression (ay,...,am) is called a progressive ezpression of the normal
diagram.

.
S)
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B4t

(a)
Figure 6: (a) A 3-braid, (b) A closed 3-braid link

m is an odd number m is an even number
Figure 7: Normal diagrams of closed 3-braid links

Lemma 4.2 For any Tait graph G = (V, E) of a normal diagram of a closed 3-braid link, there ezists a
vertez v € V such that G[V — {v}] is a cycle.
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Given the Tait graph of a normal diagram L of a closed 3-braid link, Procedure progression_3-braid
computes a progressive expression of L.

Procedure progression_3—braid _
INPUT: The Tait graph G = (V, E) of a normal diagram L of a closed 3-braid link.

OUTPUT: A progressive expression (ai,...,am) of L.
p—|V|-1L
if there exists a vertex v € V such that |Ng(v)| > 4

Label v as “vp”,
else if there exists a vertex v € V such that |[Ng(v)| =0

Label v as “vp”,
else if there exists a vertex v € V such that [Ng(v)| =1

Label v as “vp”,
else if there exists no vertex v € V such that |[Ng(v)| #2 { for any vertex v € V, |[Ng(v)| =2}

Label a vertex v € V as “v,” such that G[V — {vp}] is a cycle,
else

V' — {v|veV,|Ng(v)| =3},

Label a vertex v € V as “v,” such that ﬂ Ng(v') = {v,}.

v'EV/—{vp}
Label the all vertices v € V — {v,} as “vg,...,vp-1"
such that v; and v;41 mod p 8re adjacent fori=0,...,p— 1.

Compute edge_signg (v;, vp) and edge_signg (i, Vi41 mod p) fori =0,...,p— 1.
Initialize ¢ as “0” and k as “1”.
repeat

{ k is an odd number }

a; «—— —edge_signg (v;, vp).

Increment k.

{ k is an even number }

Initialize ax as “0”.

repeat

ax «— a, + edgesigng(vi, Vi+1 mod p)-
Increment i. ,

until degg(vi) #20ri=p

Increment k.
untili=p

Lemma 4.3 Given the Tait graph of a normal diagram L of a closed 3-braid link, Procedure progres-
sion_3-braid computes a progressive expression of L in O(c(L)) time.

Lemma 4.4 For any normal diegram ﬁ(al, ...yGm) of a closed 3-braid link, the following recurrence for-
mula holds. -
[ (A2 - A)(R(a1)) ifm=1,
A% (B(ay,...,a8m-1)) + (—A)~3am—2sig0(am) ifm>2 and
- laml . k ‘
~ x(R(@1,--.,0m-1)) — Adsign(am) m is an even number,
(B(a'll"'aam»:{ ;( )

A®n(B(ay,...,am-1)) + (—A)~3am+a1)-2sign(am) ifm > 3 and
- lam| . k
x(R(az,...,am-1)) E (—A“‘““(““')) m is an odd number.

\ k=1

Given a progressive expression of a normal diagram L of a closed 3-braid link, Procedure bracket_3—

braid computes the Kauffman bracket polynomial of L by using the recurrence formulas in Lemma 3.5
and Lemma 4.4. While the algorithm is running, every Kauffman bracket polynomial is computed once at
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most.

Procedure bracket_3—braid
INPUT: A progressive expression (a1, ...,am) of a normal diagram L of a closed 3-braid link.
OUTPUT: Ihe Kauqman brafket polynogial (E(al, ..,am)) of L.
Compute (R(a1)), (B(a1)), (B(a1,a2)), (R(a1,a2)), {R(a2)),
(B(al,ag,as)) (R(a1,a2,a3)) and <R(02,0,3)).
Initialize ¢ as “4”.
while ¢ <|¢':‘? do

T 30 (casee)”

k=1

if ¢ is an even number _ N

Compute (B(al, .,a;)) from (B(al, .,8i-1)), {R(a1,...,ai-1)) and T,
else

Compute~(B(a1,...,a.-)) from (B(ay,...,0i-1)), (R(az,...,ai-1)) and T.
Compute (I}(al,...,ai)) from (R(a1,...,ai-2)), (R(a1,...,8i-1)) and T
Compute (R(ag,...,a;)) form (R(ay,...,ai-2)), (R(az,...,ai-1)) and T.
Increment 1.

od

Lemma 4.5 Given a progressive expression of a normal diagram L of a closed 3-braid link, Procedure
bracket_3—-braid computes the Kauffman bracket polynomsal of L with O(c(L)) operations of polynomials

of degree O(c(L)).

Theorem 4.6 The Jones polynomial of a closed 9-bridge link is computed from the Tait graph of a normal
diagram L of the closed 8-braid link with O(c(L)) operations of polynomials of degree (')(c(L))

5 Algorithms for Montesinos links
Definition 5.1 A link that has a link diagram as in Figure 8 is a_Montesinos link. The link dxagram is

called a normal diagram of the Montesinos link and is denoted by M (au, ooy @img | laaa, .- @im,). The
progression (a1, ---,81m,| - lan,---, glm,) is called a progressive expression of the normal diagram. A link

diagram as in Figure 9 is denoted by N(a11,...,01m,| - len,- .., Gim,)-

Figure 8: A normal diagram of a Montesinos link Figure 9: ]V(au, ey Gimy| e lan, - Gimy)

Lemma 5.2 For any normal diagram M (@11, »81m, |- - la11s - - - Gim,) Of & Montesinos link, the following
recurvence formula holds.
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(M(a1,...,01m| - lans, - ., Gim,))

( (-A~3)en ifl=1andm; =1,
(—A~3)%(R(ays, ..., G1m, ) ifl=1andmy >2,
A% (N(a1y, ..., 81my| - |G1=11, .- - Bl=1my_,))

+(_A)-30u*'3315n(“u)(M(an, () aalmll ct tal—ll) sy al—lml_l))
janl K
x . (—Avisnen)) 122 andmy =1,
k=1

A%3(—A=3)8 (M(a11, ..., Gimy |+ |G1=11, -+ Bi=1my_y))

+(—A)den—2siga(aa) (M(ayy, ..., Gam, | - [@1-11, -+ Bl 1y |G11))
laiz} K
X Z (—A‘“““(“")) ifl>2andmy =2,
k=1
A%t (_A-a)mm‘_1 (ﬁ(ally e »almll v Ialll ey alm,—Z))
+(_A)"3¢lm, —2!1511(011“, )(M(a'll’ e 1a]m1| e Ialla e 3a'lm|—~1))
Ialmll k
x Z (—A4‘i5“(°"“l)) ifl>2andm; > 3.
\ k=1
For any ﬁ(au, vy @imy | |G, -+ -, Gim, ), We also get a recurrence formula.

Theorem 5.3 The Jones polynomial of a Montesinos link is computed from a progressive ezpression of a
normal diagram L of the Montesinos link with O(c(L)) operations of polynomials of degree O(c(L)).
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