Fast Algorithms for Computing Jones Polynomials of Certain Links

Masahiko Murakami†

Masao Hara[‡]

Makoto Yamamoto§

Seiichi Tani¶

村上 雅彦

原 正雄

山本 慎

谷 聖一

Abstract

We give fast algorithms for computing Jones polynomials of 2-bridge links, closed 3-braid links and Montesinos links from a progressive expression. The algorithms run with O(n) operations of polynomials of degree O(n), where n is the number of the crossings of the link diagram. We also give linear time algorithms for computing a progressive expression from the Tait graph of a link diagram of 2-bridge links and closed 3-braid links.

1 Introduction

In knot theory, various invariants are defined and studied for classifying and characterizing links. The Jones polynomial [4] is one of the well-studied invariants. It is powerful for distinguishing link types. The simplest way to define it is by using a slightly different polynomial: the bracket polynomial discovered by L.H. Kauffman [5]. But, it takes $\mathcal{O}\left(2^{\mathcal{O}(\sqrt{c(\widetilde{L})})}\right)$ operations of polynomials of degree $\mathcal{O}(c(\widetilde{L}))$ to compute a Jones polynomial in the way shown by Kauffman. Actually, computing the Jones polynomial is generally #P-hard [3, 12] and is expected to require exponential time in the worst case. K. Sekine, H. Imai and K. Imai [10] showed an algorithm that computes Jones polynomials in $\mathcal{O}\left(2^{\mathcal{O}(\sqrt{c(\widetilde{L})})}\right)$ time.

Recently, it has been recognized that it is important to compute Jones polynomials for links with reasonable restrictions. For any link diagram \widetilde{L} , we denote the number of the crossings of \widetilde{L} by $c(\widetilde{L})$. J. A. Makowsky [6] showed that Jones polynomials are computed from the Tait graph G of \widetilde{L} in polynomial time if the treewidth of G is a constant. J. Mighton [7] showed that Jones polynomials are computed from the Tait graph G of \widetilde{L} with $\mathcal{O}(c(\widetilde{L})^4)$ operations of polynomials of degree $\mathcal{O}(c(\widetilde{L}))$ if the treewidth of G is at most 2. M. Hara, S. Tani and M. Yamamoto [2] showed that Jones polynomials of 2-bridge links are computed from the Tait graph of \widetilde{L} with $\mathcal{O}(c(\widetilde{L})^2)$ operations of polynomials of degree $\mathcal{O}(c(\widetilde{L}))$, and Jones polynomials of closed 3-braid links and arborescent links are computed from the Tait graph of \widetilde{L} with $\mathcal{O}(c(\widetilde{L})^3)$ operations of polynomials of degree $\mathcal{O}(c(\widetilde{L}))$. T. Utsumi and K. Imai [11] showed that Jones polynomials of pretzel links are computed from the Tait graph of \widetilde{L} in $\mathcal{O}(c(\widetilde{L})^2)$ time.

In this paper, we give algorithms that compute Jones polynomials of 2-bridge links and closed 3-braid links from the Tait graph of \widetilde{L} with $\mathcal{O}(c(\widetilde{L}))$ operations of polynomials of degree $\mathcal{O}(c(\widetilde{L}))$. We also show that Jones polynomials of Montesinos links are computed from a progressive expression of \widetilde{L} with $\mathcal{O}(c(\widetilde{L}))$ operations of polynomials of degree $\mathcal{O}(c(\widetilde{L}))$.

2 Preliminaries

A link of n components is a subset of \mathbb{R}^3 that consists of n disjoint, simple closed curves. A link of one component is a knot. An image of a link by a natural projection from \mathbb{R}^3 to a plane is regular if it contains only finitely many multiple points, all multiple points are double points and these are traverse points. A regular image of a link is called a link diagram if the overcrossing line is marked at every double point in the image. Furthermore, the double points are called crossings. For any link diagram \widetilde{L} , we denote the number of the crossings of \widetilde{L} by $c(\widetilde{L})$. A link is oriented if each of its components is given an orientation.

Definition 2.1 The Kauffman bracket polynomial is a function from link diagrams to the Laurent polynomial ring $\mathbb{Z}[A^{\pm 1}]$ with integer coefficients in an indeterminate A. It maps a link diagram \widetilde{L} to $\langle \widetilde{L} \rangle \in \mathbb{Z}[A^{\pm 1}]$ and is characterized by

[†]Graduate School of Integrated Basic Sciences, Nihon University. 日本大学大学院総合基礎科学研究科

masahiko@tani.cs.chs.nihon-u.ac.jp

[‡]Department of Mathematical Sciences, Tokai University. 東海大学理学部情報數理学科 masao@ss.u-tokai.ac.jp

⁸Department of Mathematics, Chuo University. 中央大学理工学部数学科 maketoy@math.chuo-u.ac.jp

Partially supported by Grant-in-Aid for Science Research No.14540136(C)(2), Japan Society for Promotion of Science and Research Projects for Promotion of Advanced Research at Graduate School, Chuo University.

[『]Department of Computer Science and System Analysis, Nihon University. 日本大学文理学部制報システム解析学科

sei-ichi@tani.cs.chs.nihon-u.ac.jp

Partially supported by Grant-in-Aid for Science Research No.14580391(C)(2), Japan Society for Promotion of Science.

(i)
$$\langle \bigcirc \rangle = 1$$
, (ii) $\langle \widetilde{L} \sqcup \bigcirc \rangle = (-A^{-2} - A^2) \langle \widetilde{L} \rangle$, (iii) $\langle \times \rangle = A \langle \rangle (\rangle + A^{-1} \langle \times \rangle$.

Here, \bigcirc is the link diagram of the unknot without a crossing and $\widetilde{L} \sqcup \bigcirc$ is a link diagram consisting of the link diagram \widetilde{L} together with an extra closed curve \bigcirc that contains no crossing at all, neither with itself nor \widetilde{L} . In (iii) the formula refers to three link diagrams that are exactly the same except near a point where they differ in the way indicated.

The writhe $w(\tilde{L})$ of an oriented link diagram \tilde{L} is the sum of the signs of the crossings of \tilde{L} , where each crossing has sign +1 or -1 as defined (by convention) in Figure 1.

Definition 2.2 The *Jones polynomial* V(L) of an oriented link L is the Laurent polynomial in $t^{1/2}$ with integer coefficients, defined by

$$V(L) = (-A)^{-3w(\widetilde{L})} \langle \widetilde{L} \rangle \bigg|_{t^{1/2} = A^{-2}},$$

where \widetilde{L} is any oriented link diagram for L.

Given any link diagram \tilde{L} , we can color the faces black and white in such a way that no two faces with a common edge are the same color. We color the unique unbounded face white. We call this the *Tait coloring* of \tilde{L} . As in Figure 2, we can get a signed planar graph G of \tilde{L} ; its vertices are the black faces of the Tait coloring and two vertices are joined by a signed edge if they share a crossing. The sign of the edge is +1 or -1 according to the (conventional) rule shown in Figure 3. G is the *Tait graph* of \tilde{L} .

Figure 1: Signs of crossings

Figure 2: A Tait graph

Figure 3: Signs of edges

A tangle is a portion of a link diagram from which there emerge just 4 arcs. The tangle consisting of two vertical strings without a crossing is called 0-tangle. The tangle twisted 0-tangle k times is called k-tangle and is denoted by I_k . They are called integer tangles (Figure 4). The tangle consisting of two horizontal strings without a crossing is called ∞ -tangle. For a set S, we denote the number of the elements of S by |S|. For an integer z, sign(z) is defined by the following:

$$\operatorname{sign}(z) = \begin{cases} 1 & \text{if } z \ge 0, \\ -1 & \text{if } z < 0. \end{cases}$$

Let G = (V, E) be a graph, where V is the vertex set of G and E is the edge set of G. For any vertex $v \in V$, $\deg_G(v)$ denotes the degree of v in G and $N_G(v)$ denotes the set of the neighbors of v in G. For any subset V' of V, G[V'] denotes the induced subgraph of G by V'. For any vertices $u, v \in V$, edge_sign_G is a function from $V \times V$ to Z and edge_sign_G(u, v) is the sum of the signs of the edges of G that join u and v.

3 Algorithms for 2-bridge links

Schubert [9] defined a numerical link invariant called bridge number and many knot theorists have been studying it (see [8, 1]). In particular, the 2-bridge link is one of the most important link types. It is well known that any 2-bridge link has a diagram consisting of integer tangles I_{a_k} as in Figure 5 where a_k is an integer for $k = 1, \ldots, m$.

Definition 3.1 A link diagram as in Figure 5 is called a *normal diagram* of a 2-bridge link and is denoted by $\tilde{R}(a_1,\ldots,a_m)$. The progression (a_1,\ldots,a_m) is called a *progressive expression* of the normal diagram.

Lemma 3.2 For any Tait graph G = (V, E) of a normal diagram of a 2-bridge link, there exists a vertex $v \in V$ such that $G[V - \{v\}]$ is a path.

Figure 5: Normal diagrams of 2-bridge links

Lemma 3.3 For any Tait graph G = (V, E) of a normal diagram of a 2-bridge link, for a vertex $v \in V$, if $\deg_G(v)$ is the maximum degree of G, then $G[V - \{v\}]$ is a path.

Given the Tait graph of a normal diagram \widetilde{L} of a 2-bridge link, **Procedure progression_2-bridge** computes a progressive expression of \widetilde{L} .

Procedure progression_2-bridge

```
INPUT: The Tait graph G = (V, E) of a normal diagram \widetilde{L} of a 2-bridge link.
OUTPUT: A progressive expression (a_1, \ldots, a_m) of L.
Label a vertex v \in V as "v_p" such that \deg_G(v_p) is the maximum degree of G.
Label all vertices v \in V - \{v_p\} as "v_0, \ldots, v_{p-1}" such that v_i and v_{i+1} are adjacent for i = 0, \ldots, p-2.
Compute edge_sign_G(v_i, v_p) for i = 0, \ldots, p-1 and edge_sign_G(v_j, v_{j+1}) for j = 0, \ldots, p-2.
Initialize i as "0" and k as "1".
while i < p-1 do
    \{ k \text{ is an odd number } \}
    a_k \longleftarrow -\text{edge\_sign}_G(v_i, v_p).
    Increment k.
    \{ k \text{ is an even number } \}
    Initialize a_k as "0".
    repeat
        a_k \longleftarrow a_k + \text{edge\_sign}_G(v_i, v_{i+1}).
        Increment i.
    \texttt{until} \ \deg_G(v_i) \neq 2 \ \texttt{or} \ i = p-1
    Increment k.
od
           - -\operatorname{edge\_sign}_G(v_{p-1}, v_p).
```

Lemma 3.4 Given the Tait graph of a normal diagram \widetilde{L} of a 2-bridge link, Procedure progression_2-bridge computes a progressive expression of \widetilde{L} in $\mathcal{O}(c(\widetilde{L}))$ time.

Lemma 3.5 For any normal diagram $\widetilde{R}(a_1,\ldots,a_m)$ of a 2-bridge link, the following recurrence formula holds.

$$\langle \widetilde{R}(a_1,\ldots,a_m) \rangle = \begin{cases} A^{a_1}(-A^{-2}-A^2) + (-A)^{-3a_1-2\mathrm{sign}(a_1)} \sum_{k=1}^{|a_1|} \left(-A^{4\mathrm{sign}(a_1)} \right)^k & \text{if } m=1, \\ A^{a_2}(-A^{-3})^{a_1} + (-A)^{-3a_2-2\mathrm{sign}(a_2)} \langle \widetilde{R}(a_1) \rangle \sum_{k=1}^{|a_2|} \left(-A^{4\mathrm{sign}(a_2)} \right)^k & \text{if } m=2, \\ A^{a_m}(-A^{-3})^{a_{m-1}} \langle \widetilde{R}(a_1,\ldots,a_{m-2}) \rangle & \\ + (-A)^{-3a_m-2\mathrm{sign}(a_m)} \langle \widetilde{R}(a_1,\ldots,a_{m-1}) \rangle \sum_{k=1}^{|a_m|} \left(-A^{4\mathrm{sign}(a_m)} \right)^k & \text{if } m \geq 3. \end{cases}$$

Given a progressive expression of a normal diagram \widetilde{L} of a 2-bridge link, **Procedure bracket_2-bridge** computes the Kauffman bracket polynomial of \widetilde{L} by using the recurrence formula in **Lemma 3.5**. While the algorithm is running, every Kauffman bracket polynomial is computed once at most.

```
Procedure bracket_2-bridge
```

```
INPUT: A progressive expression (a_1,\ldots,a_m) of a normal diagram \widetilde{L} of a 2-bridge link. OUTPUT: The Kauffman bracket polynomial \langle \widetilde{R}(a_1,\ldots,a_m) \rangle of \widetilde{L}. Compute \langle \widetilde{R}(a_1) \rangle and \langle \widetilde{R}(a_1,a_2) \rangle. Initialize i as "3". while i \leq m do T \longleftarrow \sum_{k=1}^{|a_i|} \left( -A^{4\mathrm{sign}(a_i)} \right)^k. Compute \langle \widetilde{R}(a_1,\ldots,a_i) \rangle from \langle \widetilde{R}(a_1,\ldots,a_{i-2}) \rangle, \langle \widetilde{R}(a_1,\ldots,a_{i-1}) \rangle and T. Increment i.
```

Lemma 3.6 Given a progressive expression of a normal diagram \widetilde{L} of a 2-bridge link, **Procedure bracket_2**-bridge computes the Kauffman bracket polynomial of \widetilde{L} with $\mathcal{O}(c(\widetilde{L}))$ operations of polynomials of degree $\mathcal{O}(c(\widetilde{L}))$.

Theorem 3.7 The Jones polynomial of a 2-bridge link is computed from the Tait graph of a normal diagram \widetilde{L} of the 2-bridge link with $\mathcal{O}(c(\widetilde{L}))$ operations of polynomials of degree $\mathcal{O}(c(\widetilde{L}))$.

4 Algorithms for closed 3-braid links

A 3-braid is a set of 3 strings, all of which are attached to a horizontal bar at the top and at the bottom and each string intersects any horizontal plane between the two bars exactly once (see Figure 6 (a)). Given any 3-braid, its ends on the bottom edge may be joined to those on the top edge to produce the closed 3-braid link (see Figure 6 (b)). It is clear that any closed 3-braid link has a diagram consisting of integer tangles I_{a_k} as in Figure 7 where a_k is an integer for $k = 1, \ldots, m$.

Definition 4.1 A link diagram as in Figure 7 is called a *normal diagram* of a closed 3-braid link and is denoted by $\widetilde{B}(a_1, \ldots, a_m)$. The progression (a_1, \ldots, a_m) is called a *progressive expression* of the normal diagram.

Figure 6: (a) A 3-braid, (b) A closed 3-braid link

Figure 7: Normal diagrams of closed 3-braid links

Lemma 4.2 For any Tait graph G = (V, E) of a normal diagram of a closed 3-braid link, there exists a vertex $v \in V$ such that $G[V - \{v\}]$ is a cycle.

Given the Tait graph of a normal diagram \widetilde{L} of a closed 3-braid link, **Procedure progression_3-braid** computes a progressive expression of \widetilde{L} .

```
Procedure progression_3-braid
   INPUT: The Tait graph G = (V, E) of a normal diagram \widetilde{L} of a closed 3-braid link.
  OUTPUT: A progressive expression (a_1, \ldots, a_m) of L.
  p \longleftarrow |V| - 1.
   if there exists a vertex v \in V such that |N_G(v)| \geq 4
     Label v as "v_p",
   else if there exists a vertex v \in V such that |N_G(v)| = 0
     Label v as "v_p",
   else if there exists a vertex v \in V such that |N_G(v)| = 1
     Label v as "v_p",
   else if there exists no vertex v \in V such that |N_G(v)| \neq 2 { for any vertex v \in V, |N_G(v)| = 2 }
     Label a vertex v \in V as "v_p" such that G[V - \{v_p\}] is a cycle,
  Label a vertex v \in V as "v_p" such that \bigcap_{v' \in V' - \{v_p\}} N_G(v') = \{v_p\}.
Label the all vertices v \in V - \{v_p\} as "v_0, \ldots, v_{p-1}" such that v_i and v_{i+1} no
                                                           such that v_i and v_{i+1 \mod p} are adjacent for i = 0, \dots, p-1.
  Compute edge_\operatorname{sign}_G(v_i, v_p) and edge_\operatorname{sign}_G(v_i, v_{i+1 \mod p}) for i = 0, \ldots, p-1.
  Initialize i as "0" and k as "1".
  repeat
     \{k \text{ is an odd number }\}
     a_k \longleftarrow -\text{edge\_sign}_G(v_i, v_p).
     Increment k.
     \{k \text{ is an even number }\}
     Initialize a_k as "0".
     repeat
        a_k \longleftarrow a_k + \text{edge\_sign}_G(v_i, v_{i+1 \mod p}).
        Increment i.
     \texttt{until} \ \deg_G(v_i) \neq 2 \ \texttt{or} \ i = p
     Increment k.
  until i = p
```

Lemma 4.3 Given the Tait graph of a normal diagram \widetilde{L} of a closed 3-braid link, **Procedure progression_3**-braid computes a progressive expression of \widetilde{L} in $\mathcal{O}(c(\widetilde{L}))$ time.

Lemma 4.4 For any normal diagram $\widetilde{B}(a_1,\ldots,a_m)$ of a closed 3-braid link, the following recurrence formula holds.

$$\langle \widetilde{B}(a_1,\ldots,a_m)\rangle = \begin{cases} (-A^{-2}-A^2)\langle \widetilde{R}(a_1)\rangle & \text{if } m=1, \\ A^{a_m}\langle \widetilde{B}(a_1,\ldots,a_{m-1})\rangle + (-A)^{-3a_m-2\mathrm{sign}(a_m)} & \text{if } m\geq 2 \text{ and } \\ \times \langle \widetilde{R}(a_1,\ldots,a_{m-1})\rangle \sum_{k=1}^{|a_m|} \left(-A^{4\mathrm{sign}(a_m)}\right)^k & \text{m is an even number,} \\ A^{a_m}\langle \widetilde{B}(a_1,\ldots,a_{m-1})\rangle + (-A)^{-3(a_m+a_1)-2\mathrm{sign}(a_m)} & \text{if } m\geq 3 \text{ and } \\ \times \langle \widetilde{R}(a_2,\ldots,a_{m-1})\rangle \sum_{k=1}^{|a_m|} \left(-A^{4\mathrm{sign}(a_m)}\right)^k & \text{m is an odd number.} \end{cases}$$

Given a progressive expression of a normal diagram \widetilde{L} of a closed 3-braid link, **Procedure bracket_3-braid** computes the Kauffman bracket polynomial of \widetilde{L} by using the recurrence formulas in **Lemma 3.5** and **Lemma 4.4**. While the algorithm is running, every Kauffman bracket polynomial is computed once at

most.

```
Procedure bracket_3-braid INPUT: A progressive expression (a_1,\ldots,a_m) of a normal diagram \widetilde{L} of a closed 3-braid link. OUTPUT: The Kauffman bracket polynomial \langle \widetilde{B}(a_1,\ldots,a_m) \rangle of \widetilde{L}. Compute \langle \widetilde{R}(a_1) \rangle, \langle \widetilde{B}(a_1) \rangle, \langle \widetilde{B}(a_1,a_2) \rangle, \langle \widetilde{R}(a_1,a_2) \rangle, \langle \widetilde{R}(a_2) \rangle, \langle \widetilde{B}(a_1,a_2,a_3) \rangle, \langle \widetilde{R}(a_1,a_2,a_3) \rangle and \langle \widetilde{R}(a_2,a_3) \rangle. Initialize i as "4". while i \leq m do T \longleftarrow \sum_{k=1}^{|a_i|} \left( -A^{4 \text{sign}(a_i)} \right)^k. if i is an even number Compute \langle \widetilde{B}(a_1,\ldots,a_i) \rangle from \langle \widetilde{B}(a_1,\ldots,a_{i-1}) \rangle, \langle \widetilde{R}(a_1,\ldots,a_{i-1}) \rangle and T, else Compute \langle \widetilde{B}(a_1,\ldots,a_i) \rangle from \langle \widetilde{B}(a_1,\ldots,a_{i-1}) \rangle, \langle \widetilde{R}(a_2,\ldots,a_{i-1}) \rangle and T. Compute \langle \widetilde{R}(a_1,\ldots,a_i) \rangle from \langle \widetilde{R}(a_1,\ldots,a_{i-2}) \rangle, \langle \widetilde{R}(a_1,\ldots,a_{i-1}) \rangle and T. Compute \langle \widetilde{R}(a_2,\ldots,a_i) \rangle form \langle \widetilde{R}(a_2,\ldots,a_{i-2}) \rangle, \langle \widetilde{R}(a_2,\ldots,a_{i-1}) \rangle and T. Increment i. od
```

Lemma 4.5 Given a progressive expression of a normal diagram \widetilde{L} of a closed 3-braid link, **Procedure** bracket_3-braid computes the Kauffman bracket polynomial of \widetilde{L} with $\mathcal{O}(c(\widetilde{L}))$ operations of polynomials of degree $\mathcal{O}(c(\widetilde{L}))$.

Theorem 4.6 The Jones polynomial of a closed 3-bridge link is computed from the Tait graph of a normal diagram \widetilde{L} of the closed 3-braid link with $\mathcal{O}(c(\widetilde{L}))$ operations of polynomials of degree $\mathcal{O}(c(\widetilde{L}))$.

5 Algorithms for Montesinos links

Definition 5.1 A link that has a link diagram as in Figure 8 is a *Montesinos link*. The link diagram is called a *normal diagram* of the Montesinos link and is denoted by $\widetilde{M}(a_{11},\ldots,a_{1m_1}|\cdots|a_{l1},\ldots,a_{lm_l})$. The progression $(a_{11},\ldots,a_{1m_1}|\cdots|a_{l1},\ldots,a_{lm_l})$ is called a *progressive expression* of the normal diagram. A link diagram as in Figure 9 is denoted by $\widetilde{N}(a_{11},\ldots,a_{1m_1}|\cdots|a_{l1},\ldots,a_{lm_l})$.

Figure 8: A normal diagram of a Montesinos link

Figure 9: $\tilde{N}(a_{11}, \ldots, a_{1m_1} | \cdots | a_{l1}, \ldots, a_{lm_l})$

Lemma 5.2 For any normal diagram $\widetilde{M}(a_{11},\ldots,a_{1m_1}|\cdots|a_{l1},\ldots,a_{lm_l})$ of a Montesinos link, the following recurrence formula holds.

$$\begin{split} &\langle \widetilde{M}(a_{11},\ldots,a_{1m_{1}}|\cdots|a_{l1},\ldots,a_{lm_{l}})\rangle \\ &= \begin{pmatrix} (-A^{-3})^{a_{11}} & \text{if } l=1 \text{ and } m_{1}=1, \\ (-A^{-3})^{a_{11}} \langle \widetilde{R}(a_{12},\ldots,a_{1m_{1}})\rangle & \text{if } l=1 \text{ and } m_{1}\geq 2, \\ &A^{a_{11}} \langle \widetilde{N}(a_{11},\ldots,a_{1m_{1}}|\cdots|a_{l-11},\ldots,a_{l-1m_{l-1}})\rangle \\ &+ (-A)^{-3a_{11}-2\mathrm{sign}(a_{11})} \langle \widetilde{M}(a_{11},\ldots,a_{1m_{1}}|\cdots|a_{l-11},\ldots,a_{l-1m_{l-1}})\rangle \\ &\times \sum_{k=1}^{|a_{11}|} \left(-A^{4\mathrm{sign}(a_{11})}\right)^{k} & \text{if } l\geq 2 \text{ and } m_{l}=1, \\ &A^{a_{12}} (-A^{-3})^{a_{11}} \langle \widetilde{M}(a_{11},\ldots,a_{1m_{1}}|\cdots|a_{l-11},\ldots,a_{l-1m_{l-1}})\rangle \\ &+ (-A)^{-3a_{12}-2\mathrm{sign}(a_{12})} \langle \widetilde{M}(a_{11},\ldots,a_{1m_{1}}|\cdots|a_{l-11},\ldots,a_{l-1m_{l-1}}|a_{l1})\rangle \\ &\times \sum_{k=1}^{|a_{12}|} \left(-A^{4\mathrm{sign}(a_{12})}\right)^{k} & \text{if } l\geq 2 \text{ and } m_{l}=2, \\ &A^{a_{1m_{l}}} (-A^{-3})^{a_{1m_{l}}-1} \langle \widetilde{M}(a_{11},\ldots,a_{1m_{1}}|\cdots|a_{l1},\ldots,a_{lm_{l}-2})\rangle \\ &+ (-A)^{-3a_{1m_{l}}-2\mathrm{sign}(a_{1m_{l}})} \langle \widetilde{M}(a_{11},\ldots,a_{1m_{1}}|\cdots|a_{l1},\ldots,a_{lm_{l}-1})\rangle \\ &\times \sum_{k=1}^{|a_{1m_{l}}|} \left(-A^{4\mathrm{sign}(a_{1m_{l}})}\right)^{k} & \text{if } l\geq 2 \text{ and } m_{l}\geq 3. \end{split}$$

For any $\widetilde{N}(a_{11},\ldots,a_{1m_1}|\cdots|a_{l1},\ldots,a_{lm_l})$, we also get a recurrence formula.

Theorem 5.3 The Jones polynomial of a Montesinos link is computed from a progressive expression of a normal diagram \widetilde{L} of the Montesinos link with $\mathcal{O}(c(\widetilde{L}))$ operations of polynomials of degree $\mathcal{O}(c(\widetilde{L}))$.

References

- [1] G. Burde, H. Zieschang. Knots, Walter de Gruyter, 1985.
- [2] M. Hara, S. Tani, M. Yamamoto. A polynomial-time algorithm for computing the Jones polynomials of arborescent links (in Japanese). Information Technology Letters Vol. 1, pp.16-17 (2002).
- [3] F. Jaeger, D. L. Vertigan, and D. J. A. Welsh. On the computational complexity of the Jones and Tutte polynomials. *Math. Proc. Camb. Phil. Soc.*, 108:35-53, 1990.
- [4] V. F. R. Jones. A polynomial invariant for knots via Von Neumann algebras. Bull. Amer. Math. Soc., 12:103-111, 1985.
- [5] L. H. Kauffman. State models and the Jones polynomial. Topology, 26:395-407, 1987.
- [6] J. A. Makowsky. Colored Tutte polynomials and Kauffman brackets for graphs of bounded tree width. Preprint.
- [7] J. Mighton. Knot Theory on Bipartite Graphs. PhD thesis, Dept. of Math., University of Toronto, Canada, 1999.
- [8] D. Rolfsen. Knots and Links, Publish or Perish, Inc., 1976.
- [9] H. Schubert. Über eine Numerische Knoteninvariante. Math. Z., 61:245-288, 1954.
- [10] K. Sekine, H. Imai, K. Imai. Computation of Jones Polynomial (in Japanese). Transaction of the Japan Society for Industrial and Applied Mathematics, 8 No. 3 (1998) 341–354.
- [11] T. Utsumi, K. Imai. Computation of the Jones Polynomials for Pretzel Links (in Japanese). IPSJ SIG Technical Reports No.085 (2002).
- [12] D. J. A. Welsh. Complexity: Knots, Colorings and Counting, Cambridge Univ. Press, 1993.